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Abstract

By an influential theorem of Boman, a function f on an open set U in Rd is smooth
(C∞) if and only if it is arc-smooth, that is, f ◦ c is smooth for every smooth curve
c : R → U . In this paper we investigate the validity of this result on closed sets. Our
main focus is on sets which are the closure of their interior, so-called fat sets. We obtain
an analogue of Boman’s theorem on fat closed sets with Hölder boundary and on fat
closed subanalytic sets with the property that every boundary point has a basis of
neighborhoods each of which intersects the interior in a connected set. If X ⊆ Rd is any
such set and f : X → R is arc-smooth, then f extends to a smooth function defined on
Rd. We also get a version of the Bochnak–Siciak theorem on all closed fat subanalytic
sets and all closed sets with Hölder boundary: if f : X → R is the restriction of a
smooth function on Rd which is real analytic along all real analytic curves in X, then f
extends to a holomorphic function on a neighborhood of X in Cd. Similar results hold
for non-quasianalytic Denjoy–Carleman classes (of Roumieu type). We will also discuss
sharpness and applications of these results.

1. Introduction

In this paper we study differentiability of functions defined on closed subsets of Rd. One way
to endow an arbitrary set X with a smooth structure is by declaring which curves R → X and
which functions X → R should be smooth. Together with a natural compatibility condition, this
leads to the notion of a Frölicher space; cf. [FK88, KM97]. Here we study the Frölicher space
generated by the inclusion of a closed set X in Rd and some of its relatives. We will not use the
terminology of Frölicher spaces in the paper but the connection is made precise in Remark 1.7.

1.1 Boman’s theorem and its relatives
Let f : U → R be a function defined in an open subset U of Rd. Then f induces a mapping
f∗ : UR

→ RR, f∗(c) = f ◦ c, whose invariance properties encode the regularity of f .

Result 1.1 (Boman [Bom67]). A function f : U → R is smooth (C∞) if and only if f∗C∞(R, U)
⊆ C∞(R,R).

Similarly, Hölder differentiability can be characterized by f∗; we denote by Ck,α, for k ∈ N,
α ∈ (0, 1], the class of k-times continuously differentiable functions whose partial derivatives of
order k satisfy a local α-Hölder condition.
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Result 1.2 [FK88, FF89, KM97]. A function f : U → R is of class Ck,α if and only if f∗C∞(R, U)
⊆ Ck,α(R,R).

Furthermore, there is an ultradifferentiable version of Boman’s theorem. We recall that, for
a positive sequence M = (Mk)k∈N, the Denjoy–Carleman class (of Roumieu type) CM (U,Rm) is
the set of all functions f ∈ C∞(U,Rm) such that for all compact K ⊆ U ,

∃C, ρ > 0 ∀k ∈ N ∀x ∈ K : ‖f (k)(x)‖Lk(Rd,Rm) 6 Cρkk!Mk. (1.1)

The sequence M is called non-quasianalytic if CM contains non-trivial functions with compact
support. If M is log-convex, then CM is stable under composition. We refer to § 2.1 for this and
more on Denjoy–Carleman classes.

Result 1.3 [KMR09]. Assume that M = (Mk) is non-quasianalytic and log-convex. A function
f : U → R is of class CM if and only if f∗CM (R, U) ⊆ CM (R,R).

Remark 1.4. Boman actually showed that f is smooth if and only if f∗CM (R, U) ⊆ C∞(R,R),
for some arbitrary non-quasianalytic log-convex sequence M .

A glance at the proofs confirms that the curves along which the regularity in question is
tested can be taken to have compact support.

A function f : U → R with the property that f ◦ c is real analytic (Cω) for all real analytic
c : R → U clearly does not need to be real analytic on U ⊆ Rd, let alone continuous; see [BMP91].
But there is the following result.

Result 1.5 (Bochnak and Siciak [Boc70, Sic70, BS71]). A function f : U → R is real analytic
if and only if f∗C∞(R, U) ⊆ C∞(R,R) and f∗Cω(R, U) ⊆ Cω(R,R).

Actually, a smooth function f ∈ C∞(U) which is real analytic on affine lines is real analytic
on U .

We remark that if M = (Mk) is quasianalytic such that Cω ( CM , then a C∞-function
f : U → R which satisfies f∗CM (R, U) ⊆ CM (R,R) need not be of class CM ; see [Jaf16].

1.2 Arc-smooth functions
In this paper we investigate the validity of the above results on non-open subsets X ⊆ Rd. For
arbitrary subsets X ⊆ Rd we define

A∞(X) := {f : X → R : f∗C∞(R, X) ⊆ C∞(R,R)},
AM (X) := {f : X → R : f∗CM (R, X) ⊆ CM (R,R)},
A∞M (X) := {f : X → R : f∗CM (R, X) ⊆ C∞(R,R)},

where we set

C∞(R, X) := {c ∈ C∞(R,Rd) : c(R) ⊆ X},
CM (R, X) := {c ∈ CM (R,Rd) : c(R) ⊆ X}.

We call the elements of A∞(X) arc-smooth functions and those of AM (X) arc-CM functions on
X. We will also consider

Aω(X) := {f ∈ A∞(X) : f∗Cω(R, X) ⊆ Cω(R,R)},
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where
Cω(R, X) := {c ∈ Cω(R,Rd) : c(R) ⊆ X}.

We will not speak of arc-analytic functions, since such are not assumed to be smooth in the
literature.

Evidently, Aω(X) ⊆ A∞(X) ⊆ A∞M (X) ⊇ AM (X). (We will see below that there is no hope
of the analogue of Result 1.2 holding on even very simple non-open sets such as the closed
half-space.)

With this notation, Results 1.1, 1.3, and 1.5 amount to

A∞(X) = C∞(X), AM (X) = CM (X), Aω(X) = Cω(X), (1.2)

if X ⊆ Rd is a non-empty open set and M = (Mk) is a non-quasianalytic log-convex sequence.

Remark 1.6. The identities (1.2) imply that, in the definition of A∞(X), AM (X), and Aω(X),
we could equivalently replace the families of curves c : R → X by families of plots p : U → X
(of the same regularity), where U is any open subset of Re with varying e.

Remark 1.7. Recall that a Frölicher space is a triple (X, CX ,FX) consisting of a set X, a subset
CX ⊆ XR and a subset FX ⊆ RX such that:

(i) f : X → R belongs to FX if and only if f ◦ c ∈ C∞(R,R) for all c ∈ CX ;

(ii) c : R → X belongs to CX if and only if f ◦ c ∈ C∞(R,R) for all f ∈ FX .

Any subset F ⊆ RX generates a unique Frölicher space (X, CX ,FX) by setting

CX := {c : R → X : f ◦ c ∈ C∞(R,R) for all f ∈ F},
FX := {f : X → R : f ◦ c ∈ C∞(R,R) for all c ∈ CX}.

In this paper we are investigating the Frölicher spaces generated by the inclusion map ιX : X →

Rd of subsets X of Rd, that is, (X, C∞(R, X),A∞(X)). For suitable sets X we try to identify the
corresponding set of functions FX = A∞(X). More on Frölicher spaces can be found in [FK88,
KM97].

1.3 Admissible sets
Let X ⊆ Rd be an arbitrary subset. A function f : X → R is said to be smooth if for each x ∈ X
there exist a neighborhood U in Rd and a smooth function F : U → R such that F |U ∩X = f |U ∩X .
If X is open, then this notion of smoothness coincides with the usual one. We denote by C∞(X)
the set of all smooth functions on X.

Definition 1.8. A subset X ⊆ Rd is called A∞-admissible if A∞(X) = C∞(X), that is, the
arc-smooth functions on X are precisely the smooth functions.

Boman’s theorem states that open subsets X ⊆ Rd are A∞-admissible. We will look for
non-open A∞-admissible sets. It follows from a result of Kriegl [Kri97] that closed convex subsets
X ⊆ Rd with non-empty interior are A∞-admissible. It is natural to consider closed sets with
dense interior.

Definition 1.9. A non-empty closed subset X of Rd is called fat if X = int(X).

If X ⊆ Rd is fat, then there are other natural possibilities for defining ‘smooth’ functions on
X which we compare in the following lemma.
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Lemma 1.10. Let X ⊆ Rd be a fat closed set. Consider the following conditions:

(1) there exists F ∈ C∞(Rd) such that F |X = f ;

(2) f ∈ C∞(X);

(3) f |int(X) ∈ C∞(int(X)) and the Fréchet derivatives (f |int(X))
(n) of all orders have continuous

extensions f (n) : X → Ln(Rd,R);

(4) f |int(X) ∈ C∞(int(X)) and the directional derivatives dnvf |int(X) for all v ∈ Rd and all n ∈ N
have continuous extensions to X;

(5) f |int(X) ∈ C∞(int(X)) and the partial derivatives ∂αf |int(X) for all α ∈ Nd have continuous

extensions to X.

Then (1) ⇒ (2) ⇒ (3) ⇔ (4) ⇔ (5). All five conditions are equivalent if X has the following

regularity property.

(6) For all x ∈ X there exist m ∈ N>0, C > 0, and a compact neighborhood K of x in X such

that any two points y1, y2 ∈ K can be joined by a rectifiable path γ which lies in int(X),

except perhaps for finitely many points, and has length

`(γ) 6 C|y1 − y2|1/m.

Proof. (1)⇒ (2)⇒ (3) are obvious.

(3)⇔ (4)⇔ (5) This follows from the fact that at points x ∈ int(X) Fréchet, directional, and

partial derivatives can be converted into one another in a linear way; cf. [KM97, Lemma 7.13].

(5)⇒ (1) By the regularity property (6), f defines a Whitney jet onX; see [Bie80, Proposition

2.16]. So Whitney’s extension theorem implies (1). 2

In general the implication (5)⇒ (1) is false; see Example 10.9.

Another natural condition for A∞-admissibility is the following; see Example 10.5.

Definition 1.11. A closed subset X ⊆ Rd is called simple if each x ∈ X has a basis of

neighborhoods U such that U ∩ int(X) is connected for all U ∈ U .

A function f : X → R is said to be real analytic if for each x ∈ X there exist a neighborhood

U of x in Cd and a holomorphic function F : U → C such that F |U ∩X = f |U ∩X . We denote by

Cω(X) the set of all real analytic functions on X.

If M = (Mk) is a positive sequence, we set

CM (X) := {f ∈ C∞(X) : (1.1) holds for all compact K ⊆ X}.

Note that we do not require that a function f ∈ CM (X) is locally a restriction of a CM -function

on Rd. We shall discuss in § 10.1 when a function in CM (X) extends to a CM -function on Rd.

Definition 1.12. A subset X ⊆ Rd is called Aω-admissible (respectively, AM -admissible) if

Aω(X) = Cω(X) (respectively, AM (X) = CM (X)).

By the Bochnak–Siciak Theorem 1.5 and Result 1.3, all open subsets X ⊆ Rd are Aω-

admissible and AM -admissible, for each log-convex non-quasianalytic M .
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1.4 Main results
Our results can be arranged in groups with respect to two criteria: regularity of the functions
(smooth, real analytic, ultradifferentiable) and regularity of the domains (Hölder sets, fat
subanalytic sets).

By a Hölder set we mean the closure of an open set which has the uniform cusp property of
index α for some 0 < α 6 1. If α = 1 we speak of a Lipschitz set. The collection of all Hölder sets
in Rd is denoted by H (Rd). (We use the term Hölder set instead of domain, since the latter is
usually reserved for open sets.) For precise definitions we refer to § 3.

The smooth case.

Theorem 1.13. Every X ∈H (Rd) is A∞-admissible. We even have

A∞M (X) = A∞(X) = C∞(X), (1.3)

for any non-quasianalytic log-convex positive sequence M = (Mk).

Theorem 1.13 is proved in § 4.

Theorem 1.14. Every simple fat closed subanalytic set X ⊆ Rd is A∞-admissible.

This is proved in § 5. The proof is based on the L-regular decomposition of subanalytic sets
and the fact that fat closed subanalytic sets are uniformly polynomially cuspidal. It uses the
result for Hölder sets (Theorem 1.13).

Remark 1.15. Hölder sets X ∈ H (Rd) and fat closed subanalytic subsets X ⊆ Rd satisfy
Lemma 1.10(6) and hence all items (1)–(5) in Lemma 1.10 are equivalent; cf. Proposition 3.8
and Theorem 5.6.

Notice that the assumption that X is simple is necessary; see Example 10.5. Hölder sets are
always simple; see Proposition 3.9.

The real analytic case.

Theorem 1.16. Let X ⊆ Rd be a fat closed subanalytic set. Let f ∈ C∞(X) be real analytic
on real analytic curves in X. Then f extends to a holomorphic function defined on an open
neighborhood of X in Cd.

The proof of Theorem 1.16 (in § 6) is based on the uniformization theorem of subanalytic sets
and a result of Eakin and Harris [EH77] (proved earlier by Gabriélov [Gab73]). The following
consequence will also be proved in § 6.

Corollary 1.17. Let X ⊆ Rd be a closed set such that for all z ∈ ∂X there is a closed fat
subanalytic set Xz such that z ∈ Xz ⊆ X. Let f ∈ C∞(X) be real analytic on real analytic
curves in X. Then f extends to a holomorphic function defined on an open neighborhood of X
in Cd.

Note that all Hölder sets satisfy the assumption in Corollary 1.17. Interestingly, for these
results we need not assume that X is simple (note that we already suppose that f ∈ C∞(X)).
Together with Theorems 1.13 and 1.14, we obtain the following corollary.

Corollary 1.18. Every X ∈ H (Rd) and every simple fat closed subanalytic X ⊆ Rd is Aω-
admissible.
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The ultradifferentiable case. Let M = (Mk) be a non-quasianalytic log-convex positive

sequence. For positive integers a let M (a) denote the sequence defined by M
(a)
k := Mak.

Theorem 1.19. Let M = (Mk) be a non-quasianalytic log-convex positive sequence. Every

Lipschitz set X ⊆ Rd satisfies CM (X) ⊆ AM (X) ⊆ CM(2)
(X).

A similar statement can be expected for Hölder sets (with the loss of regularity also depending

on the Hölder index). We will not pursue this in this paper. Instead, combining our results with

a result of [CC99, BBC18], we show in Theorem 8.4 that for fat closed subanalytic sets the loss

of regularity can be controlled in a precise way.

In an earlier version of the paper we claimed that every Lipschitz set X ⊆ Rd is AM -

admissible. That is doubtful, but we do not have a counterexample.

1.5 Permanence of admissibility

The main results all concern subsets X ⊆ Rd with maximal dimension d. The following

permanence properties yield further examples of admissible sets both of maximal dimension

and of codimension at least 1.

Proposition 1.20. Let X ⊆ Rd be A∞-admissible. If U is an open neighborhood of X in Rd
and ϕ : U → Re is a smooth embedding, then ϕ(X) ⊆ Re is A∞-admissible.

Proof. Let Y := ϕ(X). If f ∈ A∞(Y ), then g := f ◦ϕ ∈ A∞(X). Since M := ϕ(U) is an embedded

submanifold of Re, it suffices to show that for each y ∈ Y there exist a neighborhood V in M

and a smooth function F : V → R such that F |V ∩Y = f |V ∩Y .

Since X is A∞-admissible, for each x ∈ X there exist a neighborhood W in Rd and a smooth

function G : W → R such that G|W ∩X = g|W ∩X . Taking U ∩W instead of W , we may assume

thatW ⊆ U . Then F :=G ◦ϕ−1|ϕ(W ) is smooth on V := ϕ(W ) and satisfies F |V ∩Y = f |V ∩Y . 2

The same proof yields the following proposition.

Proposition 1.21. Let X ⊆ Rd be Aω-admissible. If U is an open neighborhood of X in Rd
and ϕ : U → Re is a real analytic embedding, then ϕ(X) ⊆ Re is Aω-admissible.

In the ultradifferentiable case we have the following. Note that if M = (Mk) is log-convex,

then CM is stable under composition and the CM inverse function theorem holds. If N ⊆ Re is

an embedded submanifold of class CM (i.e. the chart change maps are of class CM ), then we

define CM (N) to be the set of f ∈ C∞(N) which are of class CM in every local coordinate chart.

If Y ⊆ N , then let CM (Y ) be the set of C∞-functions on Y such that the defining estimates hold

for all compact subsets in Y in all local coordinate charts. The proof of Proposition 1.20 implies

the following.

Proposition 1.22. Let M = (Mk) be non-quasianalytic and log-convex, and let N = (Nk) be

a sequence with M 6 N . Assume that X ⊆ Rd satisfies CM (X) ⊆ AM (X) ⊆ CN (X). If U is

an open neighborhood of X in Rd and ϕ : U → Re is a CM -embedding, then Y := ϕ(X) ⊆ Re
satisfies CM (Y ) ⊆ AM (Y ) ⊆ CN (Y ).
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1.6 Sharpness of the results
We discuss in § 10.2 counterexamples which show that none of the conditions in the main results
can in general be omitted without suitable replacement.

In particular, Example 10.4, which is based on a division theorem of [JP90], shows that the
∞-flat cusp

X := {(x, y) ∈ R2 : x > 0, 0 6 y 6 exp(−1/x)}

is not A∞-admissible; in this case A∞(X) is strictly larger than C∞(X). Note, however, that for
Y := R2\ int(X) we have f ∈ A∞(Y ) if and only if f satisfies Lemma 1.10(3), but A∞(Y ) 6=
C∞(Y ); see Example 10.9.

Interestingly, the analogue for finite differentiability (i.e. Result 1.2) fails even on convex
fat closed sets such as the half-space; see Example 10.7, which is a consequence of Glaeser’s
inequality.

1.7 Applications
As a corollary of the real analytic result (i.e. Theorem 1.16) we obtain that smooth solutions
of real analytic equations on Hölder sets or closed fat subanalytic sets must be real analytic;
see Theorem 9.1. Furthermore, we obtain sufficient conditions for the existence of real analytic
solutions g of the equation f = g ◦ϕ ∈ Cω(M), where ϕ : M → Rd is a real analytic map defined
on a real analytic manifold M ; see Corollary 9.3.

The usefulness of the smooth result is illustrated by some consequences for the division of
smooth functions (see Theorem 9.5) and for pseudo-immersions (see Theorem 9.6).

1.8 Structure of the paper
We recall facts on weight sequences and Denjoy–Carleman classes in § 2, and we revisit and adapt
the CM curve lemma which is an essential tool for proving some results of the paper. In § 3 we
introduce Hölder sets and collect some of their properties. The proofs of Theorems 1.13, 1.14,
1.16 and 1.19 are given in §§ 4, 5, 6, and 7, respectively. In § 8 we discuss the ultradifferentiable
case on subanalytic sets. Applications are given in § 9. The final § 10 contains complements,
examples, and counterexamples.

Some of the results of this paper were announced in [Rai17].

2. A CM -curve lemma

This section is only of relevance for the ultradifferentiable results in the paper.

2.1 Weight sequences and Denjoy–Carleman classes
Let M = (Mk)k∈N be a positive sequence of reals. Let U ⊆ Rd be open and let CM (U,Rm) be
the corresponding Denjoy–Carleman class (of Roumieu type) as defined in § 1.1.

If N = (Nk) is another positive sequence such that (Mk/Nk)
1/k is bounded, then CM (U) ⊆

CN (U). The converse holds if k!Mk is logarithmically convex (log-convex for short). It follows that
the class CM (U) is preserved by replacing M = (Mk)k by (CkMk)k for some positive constant C.

We shall assume that the sequence M is log-convex (which entails log-convexity of k!Mk).
We may assume that M0 = 1 and that M is increasing. Indeed, the sequence Nk := CkMk/M0

for some constant C >M0/M1, is log-convex, increasing, satisfies N0 = 1, and CM (U) = CN (U).
This motivates the following definition.

Definition 2.1. An increasing log-convex sequence M = (Mk) with M0 = 1 is called a weight
sequence.
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The regularity properties of a weight sequence M = (Mk) entail stability properties of the
class CM ; cf. [RS16]. Of particular interest in this paper is the fact that, for a weight sequence
M , the composite of CM mappings is CM . By the celebrated Denjoy–Carleman theorem, the
condition ∑

k

Mk

(k + 1)Mk+1
<∞ (2.1)

holds if and only if CM is non-quasianalytic, that is, the Borel mapping which sends germs at
some point a of smooth functions to their infinite Taylor expansion at a is not injective on
CM -germs. Then there exist non-trivial CM -functions with compact support. Note that (2.1) is
equivalent to ∑

k

(k!Mk)
−1/k <∞. (2.2)

Definition 2.2. Let M = (Mk) be a weight sequence. We say that M is non-quasianalytic if
it satisfies (2.1); otherwise it is said to be quasianalytic. A weight sequence M is called strongly
non-quasianalytic if

∃C > 0 ∀k ∈ N :
∑
j>k

Mj−1
jMj

6 C
Mk−1
Mk

. (2.3)

It is said to be of moderate growth if

∃C > 0 ∀j, k ∈ N : Mj+k 6 Cj+kMjMk. (2.4)

A weight sequence is called strongly regular if it is strongly non-quasianalytic and of moderate
growth.

Example 2.3. The Gevrey sequences Gsk = k!s, s > 0, which give rise to the Gevrey classes CGs

are strongly regular weight sequences. They appear naturally in the theory of (partial) differential
equations. For s = 0 we recover the real analytic functions CG0

= Cω which obviously form a
quasianalytic class.

Note that Cω(U) ⊆ CM (U) ⊆ C∞(U) for every weight sequence M . In fact, the Denjoy–
Carleman classes form an a scale of spaces intermediate between the real analytic and the
smooth functions.

2.2 The CM curve lemma revisited
We generalize the CM curve lemma (see [KMR09, § 3.6] and [KMR11, § 2.5]) which was inspired
by [Bom67, Lemma 2].

Lemma 2.4. There are sequences tk → t∞ and sk > 0 in R with the following property. For any
non-quasianalytic weight sequence M = (Mk) and each a ∈ N>2 there is a real positive sequence
λk → 0 satisfying

λk

(
Mak

Mk

)1/(ak+1)

→ 0 as k →∞ (2.5)

such that the following holds. Let E be a Banach space. Let ck ∈ C∞(R, E) be a sequence such
that

{λ−1k c
(`)
k (t) : t ∈ I, `, k ∈ N} (2.6)

is bounded in E, for every bounded interval I ⊆ R. Then there exists a CM -curve c : R → E
with compact support and c(tk + t) = ck(t) for |t| 6 sk.
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Proof. There exists a non-quasianalytic weight sequence L = (Lk) such that (Mk/Lk)
1/k

→ ∞
(this follows, for example, from [Kom79, Lemma 6]). Choose a CL-function ϕ : R → [0, 1] which
is 0 on {t : |t| > 1/2} and 1 on {t : |t| 6 1/3}.

Let T ∈ (0, 1] and R > 0. Assume that γ ∈ C∞(R, E) is such that

‖γ(`)(t)‖ 6 R for all |t| 6 1/2, ` ∈ N.

Then there exist C, ρ > 1 such that for the curve c(t) := ϕ(t/T )γ(t) we have

‖c(`)(t)‖ =

∥∥∥∥∑̀
j=0

(
`

j

)
T−jϕ(j)

(
t

T

)
γ(`−j)(t)

∥∥∥∥
6 R

∑̀
j=0

(
`

j

)
T−jCρjj!Lj 6 CR

(
1 +

ρ

T

)`
`!L` 6 CR

(
2ρ

T

)`
`!L`. (2.7)

Choose a sequence

Tj ∈ (0, 1] with
∑
j

Tj <∞, and let tk := 2
∑
j<k

Tj + Tk. (2.8)

Now choose λj such that the following conditions are fulfilled:

0 <
λj

T kj
6
Mk

Lk
for all j, k, (2.9)

λj

T kj
→ 0 as j →∞ for all k. (2.10)

It suffices to take λj 6 infk T
k+1
j Mk/Lk. Clearly, we may in addition require that λj tends to

zero fast enough so that (2.5) holds.
By (2.6), there is R > 0 such that

‖c(`)k (t)‖ 6 Rλk for all |t| 6 1/2, `, k ∈ N.

Define

c(t) :=
∑
j

ϕ

(
t− tj
Tj

)
cj(t− tj).

The summands have disjoint supports (the support of the jth summand is contained in [tj−Tj/2,
tj + Tj/2]). Thus c is C∞ on R\{t∞}. By (2.7),

‖c(`)(t)‖ 6 CRλj

(
2ρ

Tj

)`
`!L` for |t− tj | 6

Tj
2
.

Consequently, by (2.9),
‖c(`)(t)‖ 6 CR(2ρ)``!M` for t 6= t∞.

It follows that c : R → E has compact support and is CM ; cf. [KM97, Lemma 2.9] and [KMR09,
Lemma 3.7]. 2

Remark 2.5. A similar statement holds for convenient vector spaces E. The proof can be easily
adapted to this case; cf. [KMR09] or [KMR11].
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The next lemma is a variant of [KM97, Lemma 2.8]. Recall that, given some sequence µk →

∞, a sequence xk in E is called µ-convergent to x if µk(xk − x) is bounded.

Lemma 2.6. For any non-quasianalytic weight sequence M = (Mk) there is a positive sequence

λk → 0 such that the following holds. Let E be a Banach space. Let xn → x be 1/λk-convergent

in E. Then the infinite polygon through the xn and x can be parameterized as a CM -curve

c : R → E such that c(1/n) = xn and c(0) = x.

Proof. Let L = (Lk) be a non-quasianalytic weight sequence with (Mk/Lk)
1/k

→∞. Set Tj :=

1/(j(j+1)) and choose λj such that the conditions (2.9) and (2.10) are satisfied. Let ϕ : R → [0, 1]

be a CL-function which vanishes on (−∞, 0] and is 1 on [1,∞). Let tn := 1/n and define

c(t) :=


x if t 6 0,

xn+1 + ϕ

(
t− tn+1

tn − tn+1

)
(xn − xn+1) if tn+1 6 t 6 tn,

x1 if t > 1.

Clearly, c is C∞ on R\{0}. For tn+1 6 t 6 tn we have

c(k)(t) = ϕ(k)

(
t− tn+1

tn − tn+1

)
(n(n+ 1))k(xn − xn+1)

= ϕ(k)

(
t− tn+1

tn − tn+1

)
· λn
T kn
· xn − xn+1

λn
.

Condition (2.10) guarantees that c(k)(t) → 0 as t → 0 for all k, and hence c is C∞ on R. That c

is of class CM follows from (2.9). 2

3. Hölder sets

3.1 Uniform cusp property and Hölder sets

We denote by B(x, ε) := {y ∈ Rd : |x− y| < ε} the open ball with center x and radius ε in Rd.

Definition 3.1 (Truncated open cusp). Let us consider Rd = Rd−1 × R with the Euclidean

coordinates x = (x1, . . . , xd) = (x′, xd). For 0 < α 6 1 and r, h > 0, consider the truncated open

cusp

Γαd (r, h) := {(x′, xd) ∈ Rd−1 × R : |x′| < r, h(|x′|/r)α < xd < h}.

For α = 1 this is a truncated open cone.

Definition 3.2 (Uniform cusp property). Let U ⊆ Rd be an open set and let α ∈ (0, 1]. We say

that U has the uniform cusp property of index α if for every x ∈ ∂U there exist ε > 0, a truncated

open cusp Γ = Γαd (r, h), and an orthogonal linear map A ∈ O(d) such that for all y ∈ U ∩B(x, ε)

we have y +AΓ ⊆ U .

Definition 3.3 (Hölder set). By an α-set we mean a closed fat set X ⊆ Rd such that int(X)

has the uniform cusp property of index α. We say that X ⊆ Rd is a Hölder set if it is an α-set

for some α ∈ (0, 1].
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We denote by H α(Rd) the collection of all α-sets in Rd and by

H (Rd) :=
⋃

0<α61

H α(Rd)

the collection of all Hölder sets in Rd. Note that H α(Rd) ⊆H β(Rd) if α > β.

Remark 3.4. A bounded open subset U ⊆ Rd has the uniform cusp property of index α if and
only if U has Hölder boundary of index α with uniformly bounded Hölder constant; see [DZ11,
Theorem 6.9, p. 116] and [Gri85, Theorem 1.2.2.2]. That means the following. At each boundary
point p there is an orthogonal system of coordinates (x′, xd) and an α-Hölder function a = a(x′)
such that in a neighborhood of p the boundary of U is given by {xd = a(x′)} and the set U
is of the form {xd > a(x′)}. There is a uniform bound for the Hölder constant of a which is
independent of the boundary point p.

The boundary of an α-set with α < 1 can be quite irregular. It may have Hausdorff dimension
strictly larger than d−1 and hence its Hausdorff measureHd−1 may be locally infinite. See [DZ11,
Theorem 6.10, p. 116].

Example 3.5. (1) The set X = {(x, y) ∈ R2 : x > 0, |y| 6 x1/α} is an α-set.
(2) The set X = {(x, y) ∈ R2 : x > 0, x2 6 y 6 2x2} is not a Hölder set, but X is the image of

the Hölder set {(x, y) ∈ R2 : x > 0, |y| 6 x2/2} under the diffeomorphism (x, y) 7→ (x, y+ 3x2/2)
of R2.

(3) The set X = {(x, y) ∈ R2 : x > 0, x3/2 6 y 6 2x3/2} is not a Hölder set and there is no
smooth diffeomorphism of R2 which maps X to a Hölder set.

(4) Let C ⊆ [0, 1] be the Cantor set and let f : [0, 1] → R be defined by f(x) := dist(x,C)α.
Then the set X = {(x, y) ∈ R2 : −1 6 x 6 2, f(x) 6 y 6 2 if x ∈ [0, 1], 0 6 y 6 2 if x 6∈ [0, 1]} is
an α-set.

3.2 c∞-topology on Hölder sets
The c∞-topology on a locally convex space E is the final topology with respect to all smooth
curves c : R → E. The c∞-topology on Rd coincides with the usual topology; cf. [KM97, Theorem
4.11]. The c∞-topology on a subset X ⊆ E is the final topology with respect to all smooth curves
c : R → E satisfying c(R) ⊆ X.

Proposition 3.6. Let X ∈ H (Rd). Then the c∞-topology of X coincides with the trace
topology from Rd.

Proof. Let A ⊆ X be c∞-closed in X. Let A be the closure of A in Rd. We have to show that
A∩X = A ⊆ A. The converse implication is obvious.

Let x ∈ A. Then there is a sequence xn ∈ A which tends to x. It suffices to find a smooth
curve c ∈ C∞(R, X) passing through a subsequence of xn and through x. Since A is c∞-closed in
X, this shows x ∈ A.

Since X is an α-set, for some 0 < α 6 1, we may assume that there exist a neighborhood U
of x in X and a cusp Γ = Γαd (r, h) such that for all y ∈ U we have y + Γ ⊆ int(X). By rescaling,
we may assume that r = h = 1.

Consider C(y, r) := y + Γαd (r, rα) for 0 < r 6 1. It is easy to see that there is a universal
constant c > 0 such that C(y1, r1)∩C(y2, r2) 6= ∅ provided that |y1 − y2| 6 cmin{r1, r2}.
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Figure 1. The polygon Pn.

Choose a decreasing sequence µn which tends to 0 faster than any polynomial. By passing

to a subsequence of xn (again denoted by xn), we may assume that |x−xn| 6 cµn+1/2 for all n.

Then, for all n,

|xn − xn+1| 6 |x− xn|+ |x− xn+1| 6 cµn+1.

Setting Cn := C(xn, µn), this guarantees the existence of a sequence un such that un+1 ∈
Cn ∩Cn+1 for all n. By construction, xn and un tend to x faster than any polynomial.

For u ∈ Cn define πn(u) := xn + uded (where {ei} is the standard basis in Rd). Consider the

polygon Pn through the points un, πn(un), xn, πn(un+1), un+1 (see Figure 1). It is contained

in Cn. The infinite polygon consisting of the concatenation of all Pn satisfies the assumptions

of [KM97, Lemma 2.8] and can hence by parameterized by a smooth curve c which is contained

in X and satisfies c(0) = x. 2

Remark 3.7. It is not difficult to modify the proof in order to obtain the following result. Let

X ∈H (Rd) and let M = (Mk) be a non-quasianalytic weight sequence. Then the final topology

on X with respect to all CM -curves c : R → Rd with c(R) ⊆ X coincides with the trace topology

from Rd. It suffices to take µn := λ
1/α
n for the sequence λn provided by Lemma 2.6.

3.3 Further properties of Hölder sets

The following proposition is well known. We include a proof for the convenience of the reader.

Proposition 3.8. Let X ∈H α(Rd). Then for each x ∈ X there exist a compact neighborhood

K of x in X and a constant D > 0 such that any two points y1, y2 ∈ K can be joined by a

polygon γ contained in K with ∂X ∩ γ ⊆ {y1, y2} of length

`(γ) 6 D|y1 − y2|α.

Proof. Clearly each x ∈ int(X) has this property. Let x ∈ ∂X. We may assume that in a compact
neighborhood K of x the set X is the epigraph {xd > f(x′)} of a α-Hölder function f with
respect to an orthogonal system of coordinates (x′, xd) = (x1, . . . , xd). For two points y1, y2 ∈ K
consider the segments S := [y1, y2] and S′ := [y′1, y

′
2]. If (y1, y2) ⊆ K ∩ int(X) there is nothing
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to prove. Otherwise let z′ ∈ S′ be such that f(z′) = maxy′∈S′ f(y′) and let z = (z′, zd) with
zd := f(z′) + ε|y1 − y2| for some small ε > 0 such that z ∈ K ∩ int(X). It is possible to choose ε
such that it only depends on K, not on y1, y2. We have (yi)d 6 f(z′) and thus |(yi)d − f(z′)| 6
|f(y′i) − f(z′)| for at least one i ∈ {1, 2}, say for i = 1. If (y2)d 6 f(z′), then the polygon with
vertices y1, (y′1, zd), (y′2, zd), y2 is contained in K, meets ∂X at most at one of the points yi, and
has length

|(y1)d − zd|+ |(y2)d − zd|+ |y′1 − y′2|
6 |f(y′1)− f(z′)|+ |f(y′2)− f(z′)|+ 2ε|y1 − y2|+ |y′1 − y′2|
6 C|y′1 − z′|α + C|y′2 − z′|α + (1 + 2ε)|y1 − y2|
6 D|y1 − y2|α,

for constants only depending onK. If (y2)d > f(z′), then the segment joining z and y2 is contained
in K ∩ int(X), and thus the polygon with vertices y1, (y′1, zd), z, y2 is contained in K, meets ∂X
at most at one of the points yi, and has length

|(y1)d − zd|+ |y2 − z|+ |y′1 − z′|
6 |f(y′1)− f(z′)|+ (1 + ε)|y1 − y2|+ |y′1 − y′2|
6 D|y1 − y2|α.

This finishes the proof. 2

Proposition 3.9. Every X ∈H (Rd) is simple in the sense of Definition 1.11.

Proof. The proof of Proposition 3.8 implies that there is a basis of neighborhoods U of each

x ∈ X such that int(X)∩U is path-connected for each U ∈ U . 2

4. Arc-smooth functions on Hölder sets

The aim of this section is to prove Theorem 1.13: Every X ∈H (Rd) is A∞-admissible. We even

have

A∞M (X) = A∞(X) = C∞(X), (4.1)

for any non-quasianalytic weight sequence M = (Mn).

Remark 4.1. For fat closed convex sets X ⊆ Rd, A∞-admissibility follows from a result of

Kriegl [Kri97]. The statement in [Kri97] is more general: Let X be a convex subset of a convenient

vector space E with non-empty interior. Then f ∈ A∞(X) if and only if f is smooth on int(X)

and all Fréchet derivatives (f |int(X))
(n) extend continuously to f (n) : X → Ln(E,R) with respect

to the c∞-topology of X. In general the c∞-topology is finer than the given locally convex

topology.

It is evident that

C∞(X) ⊆ A∞(X) ⊆ A∞M (X).
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The second inclusion is by definition; the first inclusion is a simple consequence of the chain rule.
Let us prove the other inclusions.

Lemma 4.2. Let 1 6 p 6 q be integers. For x ∈ Rd and v = (v′, vd) ∈ Rd let c(t) = x+(tqv′, tpvd),
for t in a neighborhood of 0 ∈ R. Let f be of class Cq in a neighborhood of the image of c. Then

(f ◦ c)(k)(0)

k!
=


1

j!
f (j)(x)((0, vd)

j) if k = jp < q,

f ′(x)((v′, 0)) if k = q 6∈ pN,

f ′(x)((v′, 0)) +
1

j!
f (j)(x)((0, vd)

j) if k = jp = q.

For all other k < q we have (f ◦ c)(k)(0) = 0.

Proof. This follows easily from an inspection of the Faà di Bruno formula

(f ◦ c)(k)(t)
k!

=
∑
j>1

∑
αi>0

α1+···+αj=k

f (j)(c(t))

j!

(
c(α1)(t)

α1!
, . . . ,

c(αj)(t)

αj !

)

and the special form of c. 2

Proposition 4.3. Let X ∈H (Rd) and f ∈ A∞(X). Then f |int(X) is smooth and its derivative

(f |int(X))
′ extends uniquely to a mapping f ′ : X → L(Rd,R) which belongs to A∞(X,L(Rd,R)),

that is,
(f ′)∗C∞(R, X) ⊆ C∞(R, L(Rd,R)). (4.2)

Proof. That f |int(X) is smooth follows from Boman’s Theorem 1.1.

There is 0 < α 6 1 such that X ∈H α(Rd). Let x ∈ ∂X. We may assume that there exist a
truncated open cusp Γ = Γαd (r, h) and an open neighborhood Y of x in X such that for all y ∈ Y
we have y + Γ ⊆ int(X). It suffices to show that (f |Y ∩ int(X))

′ extends uniquely to a mapping

f ′ : Y → L(Rd,R) which belongs to A∞(Y, L(Rd,R)).
Let p < q be positive integers such that p/q 6 α and q/p 6∈ N. Let x ∈ Y and v = (v′, vd) ∈ Γ.

Then the curve
cx,v(t) := x+ (t2qv′, t2pvd)

lies in int(X) for 0 < |t| < 1 and cx,v(0) = x. Since f ∈ A∞(X), f ◦ cx,v is C∞.
Let v ∈ Γ be fixed. We define

f ′(x)(v) :=
(f ◦ cx,v)(2p)(0)

(2p)!
+

(f ◦ cx,v)(2q)(0)

(2q)!
for x ∈ Y.

This definition turns into a correct statement if x ∈ int(X), by Lemma 4.2.
We claim that

f ′(·)(v) : Y → R maps C∞-curves to C∞-curves. (4.3)

Let R 3 s 7→ x(s) be a C∞-curve in Y . Then (s, t) 7→ cx(s),v(t) is a smooth mapping near
(0, 0) with values in X. Thus (s, t) 7→ f(cx(s),v(t)) is smooth, by Boman’s Theorem 1.1. So, in

particular, s 7→ ∂kt |t=0(f ◦ cx(s),v(t)) is smooth for all k. It follows that s 7→ f ′(x(s))(v) is smooth,
which implies the claim.
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Let s 7→ x(s) be any C∞-curve in Y such that x(s) ∈ int(X) for 0 < |s| 6 1 and x(0) = x0.
Then

f ′(x0)(v) =
(f ◦ cx0,v)(2p)(0)

(2p)!
+

(f ◦ cx0,v)(2q)(0)

(2q)!

= lim
s→0

(
(f ◦ cx(s),v)(2p)(0)

(2p)!
+

(f ◦ cx(s),v)(2q)(0)

(2q)!

)
= lim

s→0
f ′(x(s))(v).

Consequently, the given definition of f ′(x0)(v) is the only possible extension of f ′(·)(v) to x0
which is continuous on C∞-curves.

Now let v ∈ Rd be arbitrary. Since Γ is open, there exist ε > 0 and w ∈ Γ such that εv+w ∈ Γ.
For all x ∈ Y ∩ int(X), we have

f ′(x)(v) =
f ′(x)(εv + w)− f ′(x)(w)

ε
,

and the right-hand side uniquely extends to points x0 ∈ Y ∩ ∂X and satisfies (4.3), by the
arguments above.

Thus, we define f ′(x0)(v) := lims→0 f
′(x(s))(v) for some C∞-curve s 7→ x(s) in Y with

x(0) = x0 and x(s) ∈ int(X) for 0 < |s| 6 1. Then f ′(x0) is linear as the pointwise limit of
f ′(x(s)) ∈ L(Rd,R). The definition does not depend on the curve x, since it is the unique
extension for v ∈ Γ.

Let us finally show that f ′ : Y → L(Rd,R) belongs to A∞(Y, L(Rd,R)). Let x : R → Y be a
C∞-curve and let v ∈ Rd. It suffices to show that s 7→ f ′(x(s))(v) is smooth. For v ∈ Γ this follows
from (4.3). For general v, f ′(x(s))(v) is a linear combination of f ′(x(s))(v1) and f ′(x(s))(v2) for
vi ∈ Γ which locally is independent of s. The proof is complete. 2

Corollary 4.4. Let M = (Mk) be a non-quasianalytic weight sequence. Let X ∈ H (Rd) and
f ∈ A∞M (X). Then f |int(X) is smooth and its derivative (f |int(X))

′ extends uniquely to a mapping

f ′ : X → L(Rd,R) which belongs to A∞M (X,L(Rn,R)), that is,

(f ′)∗CM (R, X) ⊆ C∞(R, L(Rd,R)). (4.4)

Proof. The proof is the same with the only difference that we use CM -curves (thanks to
Remark 1.4); note that the curves cx,v are polynomial and thus of class CM . 2

Proof of Theorem 1.13. Let f ∈ A∞(X) (respectively, f ∈ A∞M (X)). Proposition 4.3 and
Corollary 4.4 imply by induction that the Fréchet derivatives (f |int(X))

(n) of all orders have

unique extensions f (n) : X → Ln(Rd,R) which satisfy

(f (n))∗C∞(R, X) ⊆ C∞(R, Ln(Rd,R))

(respectively, (f (n))∗CM (R, X) ⊆ C∞(R, Ln(Rd,R))). So f satisfies Lemma 1.10(3), since the
c∞-topology of X (respectively, the final topology on X with respect to all CM -curves in X)
coincides with the trace topology from Rd, by Proposition 3.6 (respectively, Remark 3.7). Thus
f ∈ C∞(X), by Lemma 1.10 and Proposition 3.8. 2

5. Arc-smooth functions on subanalytic sets

The goal of this section is to prove Theorem 1.14.
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5.1 Subanalytic sets
Let M be a real analytic manifold. A subset X of M is called subanalytic if for each x ∈M there
is an open neighborhood U of x in M such that X ∩U is the projection of a relatively compact
semianalytic subset of M ×N , where N is a real analytic manifold. Recall that a subset X of a
real analytic manifold M is semianalytic if for each x ∈M there exist an open neighborhood U
of x in M and finitely many real analytic functions fij , gij on U such that

X ∩U =
⋃
i

⋂
j

{fij = 0, gij > 0}.

If dimM 6 2, then the family of subanalytic sets in M coincides with the family of semianalytic
sets. In higher dimensions the family of subanalytic sets is essentially larger.

Henceforth we restrict to the case M = Rd.

Theorem 5.1 (Rectilinearization of subanalytic sets [Hir73, BM88, Par94b]). Let X ⊆ Rd be
closed subanalytic. There exists a locally finite collection of real analytic mappings ϕα : Uα → Rd
such that each ϕα is the composite of a finite sequence of local blow-ups with smooth centers
and:

(i) each Uα is diffeomorphic to Rd and there are compact subsets Kα ⊆ Uα such that
⋃
α ϕα(Kα)

is a neighborhood of X in Rd;
(ii) for each α, ϕ−1α (X) is a union of quadrants in Rd.

A quadrant in Rd is a set

Q(I0, I−, I+) = {x ∈ Rd : xi = 0 if i ∈ I0, xi 6 0 if i ∈ I−, xi > 0 if i ∈ I+},

where I0, I−, I+ is any partition of {1, 2, . . . , d}.

5.2 Bounded fat subanalytic sets are uniformly polynomially cuspidal
This is due to Paw lucki and Pleśniak [PP86]. We recall some steps of the proof which will be
needed later.

Definition 5.2. A subsetX ⊆ Rd is called uniformly polynomially cuspidal if there exist positive
constants M,m > 0 and a positive integer n such that for all x ∈ X there is a polynomial curve
hx : R → Rd of degree at most n with the following properties:

(i) hx((0, 1]) ⊆ X and hx(0) = x;

(ii) dist(hx(t),Rd\X) >Mtm for all x ∈ X and all t ∈ (0, 1].

Remark 5.3. Every compact set X ∈ H (Rd) is uniformly polynomially cuspidal; this is clear
by Definition 5.2. The converse is not true: for instance, the sets in Example 3.5(2) and (3) are
uniformly polynomially cuspidal but not in H (Rd). The set X in Example 10.9 is uniformly
polynomially cuspidal but neither subanalytic nor in H (Rd); cf. [PP88, p. 284].

Theorem 5.4 [PP86, Proposition 6.3]. LetX be a bounded open subanalytic subset of Rd. Then
there is a map h : X ×R → Rd such that h(x, t) is a polynomial in t with degree n independent
of x ∈ X with h(x, 0) = x for all x ∈ X, h(X × (0, 1]) ⊆ X, and there exist positive constants
M,m such that

dist(h(x, t),Rd\X) >Mtm for all x ∈ X, t ∈ [0, 1].
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We give a sketch of the proof in order to explicate the uniformity of hx which will be of

importance later.

The following is a corollary of the rectilinearization theorem.

Proposition 5.5 [PP86, Proposition 6.3]. Let X be a relatively compact subanalytic subset of
Rd of pure dimension d. Then there are a finite number of real analytic maps ϕj : Rd ×R → Rd
such that, for Id := [−1, 1]d,

ϕj(I
d × (0, 1]) ⊆ X for all j,⋃
j

ϕj(I
d × {0}) = X.

Let X be a bounded open subanalytic subset of Rd. Let ϕj be the maps provided by

Proposition 5.5. Then, for each j, the function

Id × [0, 1] 3 (y, t) 7→ dist(ϕj(y, t),Rd\X)

is subanalytic (cf. [BM88, Remark 3.11]). By the  Lojasiewicz inequality (cf. [BM88, Theorem

6.4]), there exist positive constants L,m such that

dist(ϕj(y, t),Rd\X) > Ltm, (y, t) ∈ Id × [0, 1].

The constants L, m may be assumed independent of j, by taking the minimum and maximum,

respectively. Choose an integer n > m and write

ϕj(y, t) = Tj(y, t) + tn+1Qj(y, t), (y, t) ∈ Rd × R,

where Tj(y, ·) is the Taylor polynomial at 0 of degree n of ϕj(y, ·) and Qj : Rd ×R → Rd is real

analytic. If we choose δ ∈ (0, 1] such that |tQj(y, t)| 6 L/2 for all j, y ∈ Id, and t ∈ [0, δ], then

dist(Tj(y, t),Rd\X) > Ltm − L

2
tn >

L

2
tm, (y, t) ∈ Id × [0, δ].

Replacing t by δt, we obtain

dist(Tj(y, δt),Rd\X) >Mtm, (y, t) ∈ Id × [0, 1],

where M := Lδm/2. Clearly,
⋃
j Tj(I

d × {0}) =
⋃
j ϕj(I

d × {0}) = X. Theorem 5.4 follows.

5.3 Fat closed subanalytic sets are m-regular

Another property of fat closed subanalytic sets we need is the fact that they are m-regular in

the following sense.

Theorem 5.6 ([Bie80, Theorem 6.17], [Har83], [BM88, Theorem 6.10]). Let X ⊆ Rd be a fat

closed subanalytic set. For each a ∈ X there exist a compact neighborhood K in X, a constant

C > 0, and a positive integer m such that any two points x, y ∈K can be joined by a semianalytic

path γ in X which intersects ∂X in at most finitely many points and satisfies

`(γ) 6 C|x− y|1/m.
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5.4 L-regular decomposition
Let us recall the L-regular decomposition of subanalytic sets.

First we introduce sets which are L-regular with respect to a given system of coordinates.
Let X ⊆ Rd be a subanalytic set of dimension d. If d = 1, then X is called L-regular if X is a
non-empty compact interval. If d > 1, then X is L-regular if it is of the form

X = {(x′, xd) ∈ Rd : f(x′) 6 xd 6 g(x′), x ∈ X ′}, (5.1)

where X ′ ⊆ Rd−1 is L-regular and f , g are continuous subanalytic functions on X ′, analytic and
satisfying f < g on int(X ′) with bounded partial derivatives of first order. If dimX = k < d,
then X is L-regular if

X = {(y, z) ∈ Rk × Rd−k : z = h(y), y ∈ X ′}, (5.2)

where X ′ ⊆ Rk is L-regular, dimX ′ = k, and h is continuous subanalytic on X ′, analytic on
int(X ′) with bounded partial derivatives of first order.

In general a subanalytic set X in Rd is said to be L-regular if it is L-regular with respect to
some linear (or equivalently orthogonal) system of coordinates. It is called an L-regular cell if it
is the relative interior of an L-regular set, that is, it is int(X) in case (5.1) and the graph of h
restricted to int(X ′) in case (5.2). By definition, every point is a zero-dimensional L-regular cell.

It is well known that L-regular sets and L-regular cells are quasiconvex (cf. [Kur92], [Par94a,
Lemma 2.2], or [KP06]): there is a constant C > 0 such that any two points x, y in the set can
be joined in the set by a subanalytic path of length at most C|x− y|.

Theorem 5.7 [Kur92, KP06, Paw08]. Let X ⊆ Rd be a bounded subanalytic set. Then X is a
finite disjoint union of L-regular cells.

For the proof of Theorem 1.14 we need the following preparatory results.

Lemma 5.8. Let [a, b] ⊆ R be a non-trivial interval such that [a, b] =
⋃k
i=1 Fi for closed sets Fi.

If a 6 supFi < b then there exists j 6= i such that supFi ∈ Fj and supFi < supFj .

Proof. Fix i and suppose that t := supFi < b. There is a sequence (t, b) 3 tn → t. After passing
to a subsequence we may assume that tn ∈ Fj for some fixed j 6= i. Since Fj is closed, t ∈ Fj . 2

Lemma 5.9. Let X ⊆ Rd be a fat closed subanalytic set. Let x ∈ ∂X and suppose there is a
basis of neighborhoods U of x such that U ∩ int(X) is connected for all U ∈ U . Then there
exist U0 ∈ U and a positive constant C such that the following holds. For all U ∈ U0 := {U ∈
U : U ⊆ U0} and for any two points y, z ∈ U ∩ int(X), there exists a rectifiable path γ in int(X)
which connects y and z and satisfies

`(γ) 6 C diam(U).

Proof. We may assume that X is bounded, by intersecting with a ball centered at x. Let U0 be
any member of U which is contained in this ball. By Theorem 5.7, int(X) is a finite disjoint
union of L-regular cells {A1, . . . , Ak}.

Fix U ∈ U0 and let y, z ∈ U ∩ int(X). Since U ∩ int(X) is connected, there is a path σ : [0, 1]
→ U ∩ int(X) with σ(0) = y and σ(1) = z. Then we have a finite disjoint union [0, 1] =

⋃k
i=1Ei,

where Ei := σ−1(Ai).
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Let E′i be the set of limit points of Ei. Then [0, 1] =
⋃k
i=1E

′
i. Let i1 ∈ {1, . . . , k} be such

that t0 := 0 ∈ E′i1 . If t1 < 1, then there exists i2 ∈ {1, . . . , k}\{i1} such that t1 ∈ E′i2 and
t2 := supE′i2 > t1, by Lemma 5.8. Moreover, [t1, b] =

⋃
j 6=i1 E

′
j ∩ [t1 ∩ b]. If t2 < b we may apply

Lemma 5.8 again and find i3 ∈ {1, . . . , k}\{i1, i2} such that t2 ∈ E′i3 and t3 := supE′i3 > t2. This
procedure ends after finitely many steps and gives a finite partition 0 = t0 < t1 < · · · < th−1 <
th = 1 of [0, 1]. The points y = z0, z1, . . . , zh = z, where zj = σ(tj), all lie in U ∩ int(X). Let ε > 0
be sufficiently small such that the balls Bj := B(zj , ε) are all contained in U ∩ int(X). For all
j = 1, 2, . . . , h− 1, there exist z−j ∈ Bj ∩Aij and z+j ∈ Bj ∩Aij+1 , by construction. Additionally,

there exist z+0 ∈ B0 ∩Ai1 and z−h ∈ Bh ∩Aih .
Since the cells are quasiconvex, for all j = 1, 2, . . . , h, there exist rectifiable paths γj ∈ Aij

joining z+j−1 and z−j such that

`(γj) 6 Cj |z+j−1 − z
−
j |,

where the constant Cj depends only on Aij . Joining the paths γj with the line segments [z0, z
+
0 ],

[z−j , z
+
j ], for j = 1, . . . , h−1, and [z−h , zh], we obtain a rectifiable path γ in int(X) which connects

y and z and has length

`(γ) 6 C diam(U),

for a constant C which depends only on the Cj and the number of cells k, since all points zj ,
z−j , z+j lie in U . 2

5.5 Proof of Theorem 1.14
The inclusion C∞(X) ⊆ A∞(X) is clear.

Let f ∈ A∞(X). Then f is smooth in int(X), by Result 1.1. We must show that f ∈ C∞(X).
This is a local problem, so we may assume without loss of generality that X is compact (by
intersecting with a suitable ball). By Lemma 1.10 and Theorem 5.6, it suffices to show that f
satisfies Lemma 1.10(3).

Fix x ∈ ∂X. By Theorem 5.4, there is a polynomial curve hx : R → Rd of degree at most n
with the properties:

(i) hx((0, 1]) ⊆ int(X) and hx(0) = x,

(ii) dist(hx(t),Rd\X) >Mtm for all t ∈ (0, 1],

where n,M,m are independent of x and t. Then there is a positive integer k = k(x) such that
hx(t) − x = tkh̃x(t), where h̃x(0) 6= 0. Set v1 := h̃x(0)/|h̃x(0)| ∈ Sd−1. Choose d − 1 directions
v2, . . . , vd ∈ Sd−1 such that v1, v2, . . . , vd are linearly independent and define

Ψx,v(t1, t2, . . . , td) := hx(t1) + t2v2 + · · ·+ tdvd

for t = (t1, . . . , td) in the set

Y := {(t1, . . . , td) ∈ Rd : t1 ∈ (0, δ), |tj | < Ctm1 for 2 6 j 6 d}.

If C := M/(2(d− 1)) and δ > 0 is chosen small enough, then Ψx,v is a diffeomorphism of Y onto
the open subset Hx,v := Ψx,v(Y ) of int(X) and it extends to a homeomorphism between Y ∪{0}
and Hx,v ∪ {x}; indeed, by (2),

dist(Ψx,v(t),Rd\X) > dist(hx(t1),Rd\X)− |t2| − · · · − |td|

> Mtm1 − (d− 1)Ctm1 =
M

2
tm1 > 0,
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for t ∈ Y . Since f is smooth in int(X), we have

∂α2
t2
· · · ∂αdtd (f ◦Ψx,v)(t) = dα2

v2 · · · d
αd
vd
f(Ψx,v(t)) for all t ∈ Y, αj > 0. (5.3)

The left-hand side of (5.3) extends continuously to t = 0, since f ◦Ψx,v ∈ A∞(Y ) and A∞(Y ) =
C∞(Y ), by Theorem 1.13, as Y is a Hölder set. Since Ψx,v is a homeomorphism Y ∪{0}→ Hx,v∪
{x}, we may conclude that the directional derivatives dα2

v2 · · · d
αd
vd
f , αj > 0, extend continuously

from Hx,v to x.
If we perturb the directions v2, . . . , vd a little such that v1, v2, . . . , vd remain linearly

independent and take the intersection Hx of the corresponding sets Hx,v, then Hx still is an
open subset of int(X) with hx(t) ∈ Hx for small t > 0 and x ∈ Hx. Then dα2

w2
· · · dαdwdf , αj > 0,

extend continuously from Hx to x for all w2, . . . , wd near v2, . . . , vd. By Lemma 1.10, we infer
that the Fréchet derivatives f (p) of all orders of f extend continuously from Hx to x.

Thus for all x ∈ ∂X and p ∈ N, we have a candidate for the Fréchet derivative f (p)(x) of f
at x and an open set Hx ⊆ int(X) on which f (p)(y) tends to this candidate as y → x. It remains
to prove that the extension of f (p) to X thus defined is continuous on X. First we show that it
is bounded.

Claim 1. For all p ∈ N, f (p) is bounded on X.

Let p ∈ N be fixed. It suffices to show that f (p) is bounded on int(X) (since X is fat). For
contradiction suppose that there is a sequence (x`) in int(X) such that ‖f (p)(x`)‖Lp →∞. Since
X is compact, we may assume that x` → x. Then x ∈ ∂X, since we already know that f is
smooth on int(X).

By Proposition 5.5, there are a finite number of real analytic maps ϕj : Rd × R → Rd such
that

ϕj(I
d × (0, 1]) ⊆ int(X) for all j,⋃

j

ϕj(I
d × {0}) = X,

where Id := [−1, 1]d. After passing to a subsequence we may assume that x` ∈ ϕj0(Id × {0}) for
all ` and some j0. Choose y` ∈ Id such that ϕj0(y`, 0) = x`. Since Id is compact, after passing
to a subsequence we may assume that y` → y and in turn that this convergence is faster than
any polynomial. The infinite polygon through the points y` and y can be parameterized by a
smooth curve c : R → Id such that c(1/`) = y` and c(0) = y (cf. [KM97, Lemma 2.8]). Then
s 7→ ϕj0(c(s), 0) is a smooth curve in X through the points x` and x.

Since ϕj0 is real analytic, for small t1 we have ϕj0(y, t1) = x+ tk1ϕ̃j0(y, t1) for some positive
integer k and a real analytic map ϕ̃j0 with ϕ̃j0(y, 0) 6= 0. Then ϕ̃j0(z, t1) 6= 0 for (z, t1) in a
neighborhood of (y, 0). Thus,

v1(z, t1) :=


∂t1ϕj0(z, t1)

|∂t1ϕj0(z, t1)|
=

kϕ̃j0(z, t1) + t1ϕ̃
′
j0

(z, t1)

|kϕ̃j0(z, t1) + t1ϕ̃′j0(z, t1)|
if t1 > 0,

ϕ̃j0(z, 0)

|ϕ̃j0(z, 0)|
if t1 = 0,

is continuous in (z, t1), where t1 > 0, near (y, 0). It follows that we can find an open set of
directions v ∈ Sd−1 such that v1(c(s), 0) and v are linearly independent for s near 0. For such v,

(s, t1, t2) → f(ϕj0(c(s), t1) + t2v)
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Figure 2. If y ∈ (x, a] and X ∩B(x, |x− a|) = ∅ then X ∩B(y, |y − a|) = ∅.

is smooth for small s ∈ R, t1 > 0, and |t2| 6 Ctm1 , by the arguments in § 5.2 and the considerations
in the first part of the proof. But this implies that dpvf(x`) is bounded for all such v, and hence
f (p)(x`) is bounded, a contradiction. Claim 1 is proved.

Claim 2. The Fréchet derivatives f (p), p ∈ N, are continuous on X.

Let x ∈ ∂X and suppose that (xn) and (yn) are two sequences in int(X) both converging to
x. By Lemma 5.9, for each ε > 0 there exists n0 ∈ N such that for all n > n0 the points xn and
yn can be joined by a rectifiable path γn in int(X) with length `(γn) 6 ε. Since f is smooth in
int(X), we may apply the fundamental theorem of calculus and Claim 1 to conclude

‖f (p)(xn)− f (p)(yn)‖Lp 6
(

sup
z∈γn
‖f (p+1)(z)‖Lp+1

)
`(γn) → 0 as n →∞.

If we assume that the sequence (xn) lies in Hx, we obtain that f (p)(y) → f (p)(x) for all int(X) 3
y → x. Finally, suppose that ∂X 3 xn → x. Choose yn ∈ Hxn ∩B(xn, 1/n). Then

‖f (p)(x)− f (p)(xn)‖Lp 6 ‖f (p)(x)− f (p)(yn)‖Lp + ‖f (p)(xn)− f (p)(yn)‖Lp → 0

as n →∞. This proves Claim 2 and hence the theorem. 2

6. The Bochnak–Siciak theorem on tame closed sets

In this section we prove Theorem 1.16. The strategy for the proof is the following. Since f ∈
C∞(X), we can associate with every x ∈ X the formal Taylor series Fx of f at x. Using a result
of Eakin and Harris [EH77] and Gabriélov [Gab73], we show that each Fx is convergent and
coincides with f on their common domain. To prove that all Fx glue together to give a global
holomorphic extension we will use the following lemma.

Lemma 6.1. Let X ⊆ Rd be closed and let U ⊆ Rd be open with U ∩X 6= ∅. Then there is an
open subset U0 of U with U0 ∩X = U ∩X and such that for all x ∈ U0 and all a ∈ Ax := {a ∈
X : |a− x| = dist(x,X)} we have [x, a] ⊆ U0.

Proof. Set U0 := {x ∈ U : [x, a] ⊆ U for all a ∈ Ax}. Then, for all x ∈ U0 and all a ∈ Ax, we have
[x, a] ⊆ U0. To see this, let y ∈ [x, a]. If y = x there is nothing to prove. Otherwise Ay = {a} and
[y, a] ⊆ [x, a] ⊆ U (as in Figure 2).

Clearly, U0 ∩X = U ∩X. It remains to show that U0 is open. To this end we first observe
that if xn → x and Axn 3 an → a, then a ∈ Ax. This follows from letting n →∞ in |xn− an| =
dist(xn, X), since X is closed.

If U0 is not open, then there exists a sequence xn → x, where xn 6∈ U0 and x ∈ U0. So, for
all n, there exist an ∈ Axn and yn ∈ [xn, an]\U . After passing to a subsequence, we may assume
that an → a ∈ Ax, by the observation above, and in turn that yn → y ∈ [x, a]. Since x ∈ U0 we
have y ∈ U , a contradiction. 2
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Proof of Theorem 1.16. Suppose that X ⊆ Rd is a fat closed subanalytic set. There exist an
analytic manifold M and a proper analytic map ϕ : M → Rd such that X = ϕ(M), by the
uniformization theorem; see, for example, [BM88]. Then f ◦ϕ is C∞ and real analytic on real
analytic curves in M . By the Bochnak–Siciak theorem (Result 1.5), f ◦ϕ is analytic on M . For
each x ∈ X there is y ∈ ϕ−1(x) such that ϕ has generic rank d at y. By a result of Eakin and
Harris [EH77] (proved earlier by Gabriélov [Gab73]), the homomorphism ϕ∗ of formal power
series rings given by formal composition with ϕ at y is strongly injective, that is, the formal
Taylor series Fx of f at x converges. It represents a holomorphic function Fx in a neighborhood
Ux of x in Cd which coincides with the real analytic function f |int(X) on int(X)∩Ux.

It remains to show that the Fx piece together to give a global holomorphic extension of f to
a neighborhood of X in Cd. We may assume that

Ux = UR
x × i(−rx, rx)d, (6.1)

where UR
x ⊆ Rd. We use Lemma 6.1 to replace each UR

x by the connected component of (UR
x )0

which contains x (and leave the part of Ux in iRd unchanged). Thus we may assume that the
cover {UR

x } of X has the property that for each z ∈ UR
x all segments [z, a], a ∈ Az, belong to

UR
x . By (6.1), each Ux has the property that for z + iw ∈ Ux also z + itw ∈ Ux for all t ∈ [0, 1].

Let V be a connected component of Ux ∩Uy. It follows that if z + iw ∈ V , then z ∈ V R :=
V ∩Rd, and V R is a connected component of UR

x ∩UR
y . Moreover, [z, a] ⊆ V R for all a ∈ Az ⊆ X.

Since X = int(X), the intersection V R ∩ int(X) is non-empty and on this set the holomorphic
extensions Fx and Fy coincide with f . By the identity theorem, Fx and Fy coincide on V . Since
the component V of Ux ∩Uy was arbitrary, Fx and Fy coincide on Ux ∩Uy. 2

Proof of Corollary 1.17. The assumption for X clearly implies that X = int(X). For each
boundary point z ∈ ∂X there is a holomorphic function Fz defined in a neighborhood Uz of
z in Cd which coincides with f on Uz ∩ int(X); this follows from Theorem 1.16 applied to the
subanalytic set Xz. Using Lemma 6.1 as in the proof of Theorem 1.16, one easily concludes the
assertion. 2

7. Arc-CM functions on Lipschitz sets

In this section we prove Theorem 1.19: All X ∈H 1(Rd) satisfy

CM (X) ⊆ AM (X) ⊆ CM(2)
(X),

for any non-quasianalytic weight sequence M = (Mk).
It can be expected that a similar statement holds for X ∈ H α(Rd), where α < 1, with a

larger weight sequence N = N(α,M) instead of M (2). We do not pursue this question any further
for α-sets, but results of this type for subanalytic sets are presented in § 8.

7.1 Reduction to an open set of directions
Let f : R2

→ R be smooth. The mixed partial derivatives of order k of f at any point x ∈ R2

can be computed from directional derivatives of order k of f at x by means of the identity

dkvf(x) =

k∑
j=0

(
k

j

)
vj1v

k−j
2 ∂j1∂

k−j
2 f(x), v = (v1, v2) ∈ R2. (7.1)

The next lemma guarantees that the constants which appear in the process of solving these linear
equations grow at most exponentially in k and hence the class CM is preserved; a similar lemma
was proved in [Nee99].
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Lemma 7.1. Let −1 6 t0 < t1 < · · · < tk 6 1 be equidistant points such that tk − t0 = a. If
x0, x1, . . . , xk is a solution of the linear system of equations

k∑
j=0

(
k

j

)
tjixj = yi, i = 0, 1, . . . , k, (7.2)

then we have

max
j
|xj | 6

(
16e2

a

)k
max
m
|ym|. (7.3)

Proof. Let P (t) = a0 + a1t+ · · ·+ akt
k be the polynomial with coefficients aj =

(
k
j

)
xj . Then the

system (7.2) reads

P (ti) = yi, i = 0, 1, . . . , k.

By Lagrange’s interpolation formula (e.g. [RS02, (1.2.5)]),

P (t) =

k∑
i=0

yi

k∏
j=0
j 6=i

t− tj
ti − tj

,

and therefore

am = (−1)k−m
k∑
i=0

yiσ
i
k−m

k∏
j=0
j 6=i

1

ti − tj
,

where σij is the jth elementary symmetric polynomial in (t`)`6=i. We have

|ti − tj | =
a|i− j|
k

, |tj | =
∣∣∣∣t0 + a

j

k

∣∣∣∣ 6 2
k + j

k
,

and hence, using e−kkk 6 k! 6 kk,

k∏
j=0
j 6=i

1

|ti − tj |
=

kk

aki!(k − i)!
6

(
2e

a

)k
,

and

|σik−m| 6
(
k

m

)(
2

k

)k−m (2k)!

(k +m)!
6

(
k

m

)(
2

k

)k−m
4k(k −m)! 6

(
k

m

)
8k.

It follows that

|xm| 6
(

16e

a

)k k∑
i=0

|yi| 6
(

16e2

a

)k
max
i
|yi|,

which is (7.3). 2

Proposition 7.2. Let f : Rd → R be smooth. Let K ⊆ Rd be compact and let M = (Mk) be a
positive sequence. The following assertions are equivalent:

(1) ∃C, ρ > 0 ∀k ∈ N ∀x ∈ K ∀v ∈ Sd−1 : |dkvf(x)| 6 Cρkk!Mk;
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(2) there exist v0 ∈ Sd−1 and r > 0 such that

∃C, ρ > 0 ∀k ∈ N ∀x ∈ K ∀v ∈ B(v0, r)∩Sd−1 : |dkvf(x)| 6 Cρkk!Mk;

(3) ∃C, ρ > 0 ∀x ∈ K ∀α ∈ Nd : |∂αf(x)| 6 Cρ|α||α|!M|α|.

The constants C, ρ may differ from item to item, but they change in a uniform way which
depends only on r.

Proof. Let us first consider the case d = 2. In this case B := B(v0, r)∩Sd−1 is an open arc
I ⊆ S1; let `(I) denote the length of I.

(1) ⇒ (2) is trivial and (3) ⇒ (1) follows easily from (7.1).
(2) ⇒ (3) By a linear change of coordinates, we may assume that the arc I is symmetric

about the y-axis and, by shrinking I, we may also assume that its projection to the y-axis is
contained in {(0, y) : 1/2 6 y 6 1} and that the estimates in (2) hold also at the endpoints of I.
Let (−a/2, a/2) be the projection of I to the x-axis and let −a/2 = t0 < t1 < · · · < tk = a/2
be an equidistant partition. Apply Lemma 7.1 to the system (7.1) with the k + 1 directions
vi = (ti, si), i = 0, . . . , k, in I; then 1/2 6 si 6 1. The statement about the uniform change of
the constants follows from (7.3).

Now we consider the general case.
(1) ⇔ (2) The statement follows by applying the two-dimensional analogue to every affine

2-plane π containing the affine line x+ Rv0. The change of the constants C, ρ depends only on
the length of the arcs defined by the intersection π ∩B which is independent of π.

(1) ⇔ (3) By the polarization formula [KM97, Lemma 7.13(1)], we have

sup
|v|61
|dkvf(x)| 6 ‖dkf(x)‖Lk 6 (2e)k sup

|v|61
|dkvf(x)|

which entails the assertion. 2

7.2 Proof of Theorem 1.19
LetM = (Mk) be a non-quasianalytic weight sequence. LetX ∈H 1(Rd). The inclusion CM (X)⊆
AM (X) is an easy consequence of Faà di Bruno’s formula and log-convexity of M (cf. [RS14,
Proposition 3.1]).

Let us prove AM (X) ⊆ CM(2)
(X). A function f ∈ AM (X) belongs to C∞(X), by

Theorem 1.13. Suppose for contradiction that f 6∈ CM(2)
(X). Then there is a ∈ X such that

for all δ, C, ρ > 0 there exist x ∈ X ∩B(a, δ), v ∈ Sd−1, and k ∈ N with

|dkvf(x)| > Cρkk!M
(2)
k . (7.4)

We may assume that a ∈ ∂X (if a ∈ int(X) then the arguments in the proof of [KMR09, Theorem
3.9] lead to a contradiction). Since X ∈ H 1(Rd), we may suppose that there exist ε > 0 and a
truncated open cone Γ = Γ1

d(r, h) such that

for all y ∈ X ∩B(a, ε) we have y + Γ ⊆ int(X). (7.5)

By rescaling, we may assume that r = h = 1. Set C(y, r) := y + Γ1
d(r, r) for 0 < r 6 1. There is

a universal constant c > 0 such that C(y1, r1)∩C(y2, r2) 6= ∅ if |y1 − y2| < cmin{r1, r2}.
Let λk ↘ 0 be the sequence associated with the sequence Mk, by Lemma 2.4. By

Proposition 7.2 and (7.4) (using δ := cλn+1/3, C := λ−1n , ρ := λ−3n ), there exist sequences
xn ∈ X ∩B(a, cλn+1/3), vn ∈ Sd−1 ∩R+Γ, kn ∈ N such that

|dknvnf(xn)| > λ−3kn−1n kn!M
(2)
kn

for all n. (7.6)
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Figure 3. The curve c in Cn−1 ∪ Cn ∪ Cn+1.

Let us set Cn := C(xn, λn). Since |xn − xn+1| < cλn+1, there is a sequence un such that un+1 ∈
Cn ∩Cn+1 for all n. Evidently, xn and un are both 1/λn-converging to a. We may assume that

for all n > n0 we have Cn ⊆ int(X), by (7.5).

Without loss of generality assume that a = 0. Let cn(t) = xn + t2λnvn. Let Tn and tn be

chosen as in (2.8), and let ϕ be the function used in the proof of Lemma 2.4. Define

c(t) = ϕ

(
t− tn
Tn

)
cn(t− tn) +

(
1− ϕ

(
t− tn
Tn

))(
un1(−∞,tn](t) + un+11[tn,+∞)(t)

)
for t ∈ [tn − Tn, tn + Tn] (here 1A denotes the characteristic function of the set A); note that

tn + Tn = tn+1 − Tn+1 (see Figure 3).

Extend c by c = 0 on [t∞,∞). Then c is C∞ on [tn0 − Tn0 ,+∞)\{t∞} and c(tn − Tn) = un
and c(tn + Tn) = un+1. By construction, c(t) ∈ Cn if t ∈ [tn − Tn, tn + Tn] and thus c lies in

X. Since the curves cn as well as un satisfy (2.6), the proof of Lemma 2.4 implies that c is a

CM -curve.

Then, since f ∈ A∞(X), for all k,

(f ◦ c)(2k)(tn) =
(2k)!

k!
λknd

k
vnf(xn).

Using (7.6), we may conclude(
|(f ◦ c)(2kn)(tn)|

(2kn)!M2kn

)1/(2kn+1)

=

(
λknn |dknvnf(xn)|
kn!M2kn

)1/(2kn+1)

>
1

λn
→∞,

as n →∞, contradicting the assumption f ∈ AM (X). 2

8. Arc-CM functions on subanalytic sets

Let M = (Mk) be a non-quasianalytic weight sequence. Let X be a simple fat closed subanalytic

set. We will see in this section that AM (X) ⊆ CN (X) for some other non-quasianalytic weight

sequence N which depends only on M and X (in an explicit way).
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8.1 Rectilinearization

We start with some simple observations. For arbitrary sets Y ⊆ Re, X ⊆ Rd, we denote by

C∞(Y,X) the class of mappings ϕ : Y →X such that ϕi ∈ C∞(Y ) for all components ϕi = pri ◦ϕ.

Similarly for CM (Y,X) and Cω(Y,X).

Lemma 8.1. Let X ⊆ Rd and Y ⊆ Re.

(1) If ϕ ∈ C∞(Y,X) and A∞(Y ) = C∞(Y ), then ϕ∗A∞(X) ⊆ C∞(Y ).

(2) If ϕ ∈ Cω(Y,X) and Aω(Y ) = Cω(Y ), then ϕ∗Aω(X) ⊆ Cω(Y ).

(3) If ϕ ∈ CM (Y,X) and AM (Y ) ⊆ CN (Y ), then ϕ∗AM (X) ⊆ CN (Y ).

Proof. We prove (1); (2) and (3) work similarly. Let f ∈ A∞(X). Assume that f ◦ϕ 6∈ C∞(Y ).

Since C∞(Y ) = A∞(Y ), there exists c ∈ C∞(R, Y ) such that f ◦ϕ ◦ c 6∈ C∞(R,R). But ϕ ◦ c is a

C∞-curve in X, contradicting f ∈ A∞(X). 2

Combining this lemma with the rectilinearization of subanalytic sets (see Theorem 5.1), we

conclude the following result.

Theorem 8.2. Let M = (Mk) be a non-quasianalytic weight sequence. Let X ⊆ Rd be a fat
closed subanalytic set. There is a locally finite collection of real analytic mappings ϕα : Uα → Rd,
where the Uα are open sets in Rd, such that, for all α,

ϕ∗αA∞(X) ⊆ C∞(ϕ−1α (X)), (8.1)

ϕ∗αAω(X) ⊆ Cω(ϕ−1α (X)), (8.2)

ϕ∗αAM (X) ⊆ CM(2)
(ϕ−1α (X)). (8.3)

Proof. We use Theorem 5.1. Since X = int(X), we may assume that, for the quadrants Q(I0, I−,

I+) whose union is ϕ−1α (X), we have I0 = ∅. We claim that a union Y of quadrants Q(∅, I−, I+)

is A∞- and Aω-admissible. Furthermore, we claim that Y satisfies AM (Y ) ⊆ CM(2)
(Y ). Then

Lemma 8.1 implies the result.

A∞-admissibility. By Theorem 1.13, each Q = Q(∅, I−, I+) is A∞-admissible. Any two different

quadrants Q1, Q2 have non-empty intersection π which consists of a coordinate sector of

dimension k ∈ {0, . . . , d − 1} (for k = 0, π = {0}). Suppose that π is a coordinate sector of

dimension k. Let v ∈ Q1 ∪Q2 be any vector perpendicular to π. Then σv := π+Rv is a (k+ 1)-

dimensional closed convex set contained in Q1∪Q2. We may conclude that f |σv ∈ C∞(σv). Thus

the directional derivatives dnwf of f of all orders n at points in π with direction w ∈
⋃
v∈Q1∪Q2

σv
exist and are unique. These suffice to compute the partial derivatives of f of all orders at points

in π. This proves that Q1 ∪ Q2 is A∞-admissible. The general case follows by induction. This

also proves that we even have A∞M (Y ) = C∞(Y ).

Aω-admissibility. This follows from Theorem 1.16 and the fact that Y is A∞-admissible.

Finally, we show AM (Y ) ⊆ CM(2)
(Y ). Since we already have A∞M (Y ) = C∞(Y ), it suffices to

check that the estimates (1.1) (for M (2) instead of M) hold for all f ∈ AM (Y ) and for each

compact K ⊆ Y . This is clear, since f |Q ∈ AM (Q) ⊆ CM(2)
(Q), by Theorem 1.19, for each of the

finitely many quadrants Q which make up Y . 2
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8.2 Controlled loss of regularity

Let M = (Mk) be a weight sequence. Recall that, for positive integers a, M (a) denotes the weight

sequence defined by M
(a)
k := Mak.

Proposition 8.3. Let M = (Mk) be a non-quasianalytic weight sequence. Let X ⊆ Rd be a fat
compact subanalytic set. Then there is a positive integer a, independent of M , such that

C∞(X)∩AM (X) ⊆ CM(a)
(X). (8.4)

Proof. Let ϕα be the finitely many mappings provided by Theorem 5.1. We may assume that
the Jacobian determinant of each ϕα is a monomial times a nowhere vanishing factor. Let f ∈
C∞(X)∩AM (X). By Theorem 8.2, f ◦ϕα ∈ CM

(2)
(Yα) where Yα is a union of quadrants in Rd.

By [BBC18, Theorem 1.4], for each α there is a positive integer aα such that f is of class CM(aα)

on ϕα(Yα). It follows that f ∈ CM(a)
(X), where a = maxα aα. 2

For a ∈ R>0 we may define the weight sequence Ma by Ma
k := (Mk)

a. If M = (Mk) has
moderate growth (see (2.4)) and a is an integer, then there exists C = C(a) such that

Ma
k 6Mak 6 CkMa

k for all k,

that is, M (a) and Ma define the same Denjoy–Carleman class. Note also that Ma has moderate
growth whenever M has.

Assume that for each a > 0, the weight sequence Ma is non-quasianalytic and define

ÂM (X) :=
⋂
a>0

AMa
(X) and ĈM (X) :=

⋂
a>0

CMa
(X).

Theorem 8.4. Let M = (Mk) be a weight sequence of moderate growth such that Ma is non-
quasianalytic for all a > 0. Let X ⊆ Rd be a fat closed subanalytic set. Then

C∞(X)∩ ÂM (X) = ĈM (X). (8.5)

If X is simple, then

ÂM (X) = ĈM (X). (8.6)

Proof. The inclusion ĈM (X) ⊆ C∞(X)∩ ÂM (X) is obvious. The converse inclusion follows from
Proposition 8.3. 2

Remark 8.5. Instead of [BBC18, Theorem 1.4] one can also use the results of [CC99].

9. Applications

9.1 Solutions of real analytic equations
Theorem 9.1. Let U ⊆ Rd+1 be open and let H : U → R be a real analytic function (not
identically zero). Let X ⊆ Rd be a closed set such that for all z ∈ ∂X there is a closed fat
subanalytic set Xz such that z ∈ Xz ⊆ X; for example, X itself is fat and subanalytic or a
Hölder set. If f ∈ C∞(X) satisfies H(x, f(x)) = 0 for all x ∈ X, then f extends to a holomorphic
function on a neighborhood of X in Cd.
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Proof. Suppose first that X ⊆ Rd is fat closed subanalytic. As in the proof of Theorem 1.16,
there is a proper real analytic map ϕ : M → Rd with X = ϕ(M). Then (z, y) 7→ H(ϕ(z), y) is
not identically zero. By the classical version of this theorem (cf. [Boc70, Sic70, Mal67]), we may
conclude that z 7→ (f ◦ϕ)(z) is real analytic on M . The proof of Theorem 1.16 (in § 6) then
yields the assertion.

In the general case, fix z ∈ ∂X and a closed fat subanalytic set Xz with z ∈ Xz ⊆ X. Then
f |Xz ∈ C∞(Xz) satisfies H(x, f(x)) = 0 for all x ∈ Xz. Thus, by the first part of the proof, f |Xz
extends to a holomorphic function on a neighborhood of Xz in Cd. That these local extensions
glue to the desired global extension follows from Lemma 6.1 as in the proof of Theorem 1.16. 2

We obtain the following corollary for Nash functions, that is, real analytic functions f : U → R
defined in an open semialgebraic set U ⊆ Rd which satisfy a non-trivial polynomial equation
P (x, f(x)) = 0 for all x ∈ U .

Corollary 9.2. Let X ⊆ Rd be a fat closed semialgebraic set and let f : int(X) → R be a Nash
function whose partial derivatives of all orders extend continuously to the boundary of X. Then
f is the restriction of a Nash function on an open neighborhood of X.

Proof. The extension of f clearly also satisfies the defining polynomial equation. 2

9.2 Composite real analytic functions
Suppose that ϕ : M → Rd is a real analytic map, where M is a real analytic manifold. Assume
that g ∈ C∞(Rd) and f = g ◦ϕ ∈ Cω(M). Let X := ϕ(M). Our results yield a sufficient condition
for g|X to admit a real analytic extension to some open neighborhood of X.

Corollary 9.3. Let ϕ : M → Rd be real analytic and such that:

(i) X := ϕ(M) is a fat closed subanalytic subset of Rd;
(ii) each c ∈ Cω(R, X) admits a lifting c̃ ∈ Cω(R,M), that is, c = ϕ ◦ c̃.

Then, for each g ∈ C∞(Rd) with g ◦ϕ ∈ Cω(M), there exists a holomorphic function G defined
in an open neighborhood of X in Cd such that g|X = G|X .

Proof. Follows from Theorem 1.16. 2

Conditions for the existence of a smooth solution g of the equation f = g ◦ϕ have been
intensively studied; see [BM82, BMP96, BM98].

Remark 9.4. For instance, the conditions of the corollary are satisfied in the following situation.
Let ρ : G → O(V ) be a coregular finite-dimensional orthogonal representation of a compact
Lie group. Let σ = (σ1, . . . , σd) be a minimal system of generators of the algebra R[V ]G of
G-invariant polynomials. Schwarz’s theorem [Sch75] (see also [Mat77]) holds that for each G-
invariant f ∈ C∞(V ) there exists g ∈ C∞(Rd) such that f = g ◦σ. The set X = σ(V ) is closed
semialgebraic and fat, by the assumption that ρ is coregular; cf. [PS85]. Real analytic curves
in X admit real analytic liftings to V , by [AKLM00] and [PR16, Theorem 4]. The corollary
implies that every G-invariant real analytic function f on V is of the form f = g ◦σ, where g
is a holomorphic function defined in an open neighborhood of X in Cd. A more general result
(with a different proof) is due to Luna [Lun76].
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9.3 Division of smooth functions and pseudo-immersions
Statements about smooth functions on open sets can sometimes be reduced to corresponding
statements for functions of one real variable, thanks to Boman’s Theorem 1.4. This principle
extends to A∞-admissible sets. We illustrate this using two selected examples. The first concerns
division of smooth functions.

Theorem 9.5. Suppose that X is a Hölder set or a simple fat closed subanalytic subset of Rd.
If f, g : X → C satisfy

(i) g, fg, fm ∈ C∞(X,C), and

(ii) |f(x)| 6 C|g(x)|α for all x ∈ X,

for some m ∈ N>1 and C,α > 0, then f ∈ C∞(X,C).

Proof. This follows from [JP90, Theorem 1] (which is precisely the case X = R), Theorems 1.13,
and 1.14. 2

In [JP90] this theorem (for X = R) was used to prove that certain maps are pseudo-
immersions. A C∞-map p : N → M between C∞-manifolds is a pseudo-immersion if for each
continuous map f : P → N , where P is a C∞-manifold, p ◦ f ∈ C∞ implies f ∈ C∞; see
also [JP87]. Pseudo-immersivity of a smooth map is a local property. So it is enough to consider
germs of smooth maps p : (Rn, 0) → (Rm, 0). By Boman’s Theorem 1.1, the defining universal
property must be checked only for smooth curves: p is a pseudo-immersion if and only if for each
(continuous) curve c : R → Rn we have the implication p ◦ c ∈ C∞ =⇒ c ∈ C∞.

Theorems 1.13 and 1.14 entail the following result.

Theorem 9.6. Let p : Rn → Rm be a pseudo-immersion. Then the universal property of p
extends to maps f : X → Rn, where X ⊆ Rd is A∞-admissible, in particular, for X a Hölder set
or a simple fat closed subanalytic subset of Rd.

For instance, if f : X → C is continuous and f2, f3 ∈ C∞(X,C), then f ∈ C∞(X,C). In
addition, by Theorem 9.1, if at least one of f2 or f3 is real analytic, then also f is real analytic.

10. Complements and examples

10.1 CM -extensions
Let X ⊆ Rd be a Hölder set or a fat closed subanalytic set. By Lemma 1.10, Proposition 3.8, and
Theorem 5.6, any function f : X → R which satisfies Lemma 1.10(3) extends to a C∞-function on
Rd. Let us investigate this in the ultradifferentiable case. For strongly regular weight sequences
M there is a CM -version of Whitney’s extension theorem [Bru80].

Lemma 10.1. Let X ⊆ Rd be a fat compact set either in H (Rd) or subanalytic. Suppose there
exist a positive integer m and a constant D > 0, such that any two points x, y ∈ X can be joined
by a rectifiable path γ in X and

`(γ)m 6 D|x− y|. (10.1)

Let M be a weight sequence. Then each f ∈ CM (X) defines a Whitney jet on X of class CN
where Nk := Mmk, that is, there exist constants C, ρ > 0 such that

|f (α)(x)| 6 Cρ|α||α|!N|α|, α ∈ Nd, x ∈ X, (10.2)
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|(Rpxf)α(y)| 6 Cρp+1|α|!Np+1|x− y|p+1−|α|, p ∈ N, |α| 6 p, x, y ∈ X, (10.3)

where

(Rpxf)α(y) = f (α)(y)−
∑

|β|6p−|α|

f (α+β)(x)

β!
(y − x)β.

Proof. Let f ∈ CM (X). Now (10.2) is clearly satisfied since we even have

|f (α)(x)| 6 Cρ|α||α|!M|α|, α ∈ Nd, x ∈ X. (10.4)

Since f has a smooth extension to Rd, f defines a Whitney jet of class C∞ on X. We claim that

|(Rpxf)α(y)| 6 (d`(σ))p+1−|α|

(p+ 1− |α|)!
sup
ξ∈σ
|γ|=p+1

|f (γ)(ξ)| (10.5)

for any rectifiable path σ which joins x and y. Then, by (10.1) and (10.4), there are constants
Ci, ρi > 0 such that

|(Rpxf)α(y)| 6 |(Rm(p+1)−1
x f)α(y)|+

∣∣∣∣ ∑
p−|α|<|β|<m(p+1)−|α|

f (α+β)(x)

β!
(y − x)β

∣∣∣∣
6 dm(p+1)−|α|Cρm(p+1)|α|!Mm(p+1)`(σ)m(p+1)−|α|

+C1ρ
m(p+1)
1 |α|!Mm(p+1)|x− y|p−|α|+1

6 C2ρ
m(p+1)
2 |α|!Mm(p+1)|x− y|p−|α|+1,

which is (10.3). To see (10.5) notice that, with T pxf(y) :=
∑
|β|6p ((f (β)(x))/β!)(y − x)β,

(Rpxf)α(y) = f (α)(y)− T p−|α|x f (α)(y) = T p−|α|y f (α)(y)− T p−|α|x f (α)(y).

By choosing a suitable parameterization, we may assume that σ : [0, 1] → Rd is an absolutely
continuous curve from x to y such that |σ′(t)| = `(σ) for almost every t. Then

(Rpxf)α(y) =

∫ 1

0
∂t(T

p−|α|
σ(t) f (α)(y)) dt

=

∫ 1

0

∑
|β|=p−|α|

1

β!

d∑
i=1

f (α+β+ei)(σ(t))(y − σ(t))βσ′i(t) dt.

By the Cauchy–Schwarz inequality,

|
d∑
i=1

f (α+β+ei)(σ(t))(y − σ(t))βσ′i(t)| 6 |∇f (α+β)(σ(t))||σ′(t)||y − σ(t)||β|.

Moreover, |y − σ(t)| = |σ(1)− σ(t)| 6 `(σ)(1− t). Thus

|(Rpxf)α(y)| 6
√
d sup

ξ∈σ
|γ|=p+1

|f (γ)(ξ)|`(σ)p+1−|α|
∫ 1

0

(1− t)p−|α|

(p− |α|)!
dt

∑
|β|=p−|α|

|β|
β!
,

which is (10.5). 2
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Corollary 10.2. Let M = (Mk) be a strongly regular weight sequence. For all X ∈ H 1(Rd),
the functions in CM (X) are precisely the functions which admit a CM -extension to Rd.

Proof. This follows from Lemma 10.1 and the CM -version of Whitney’s extension theorem [Bru80],
since a bounded Lipschitz set is quasiconvex, that is, (10.1) holds with m = 1; cf. Proposition 3.8.

2

Corollary 10.3. Let M = (Mk) be a non-quasianalytic weight sequence of moderate growth
such that Ma is non-quasianalytic for each a > 0. Let X ⊆ Rd be a closed fat subanalytic subset.
Then the functions in ĈM (X) are precisely the functions which admit a ĈM -extension to Rd. If
X is simple, they are precisely the functions in ÂM (X).

Proof. This follows from Theorems 8.4, 5.6, and Lemma 10.1. Indeed, Lemma 10.1 implies that
each f ∈ ĈM (X) defines a Whitney jet of class ĈM on X (the integer m of Lemma 10.1 is local but
it is absorbed by ĈM ). The extension theorem [CC98, Theorem 8] yields the required extension
to Rd. 2

10.2 Examples and counterexamples
The following examples complement the results and indicate their sharpness.

Example 10.4 (Infinitely flat fat cusps are not A∞-admissible). Let p : [0,∞) → [0,∞) be a
strictly increasing C∞-function which is infinitely flat at 0. Consider the set X := {(x, y) ∈
R2 : x > 0, 0 6 y 6 p(x)} and the function f : X → R defined by f(x, y) =

√
x2 + y. Clearly, f

is C∞ in the interior of X but ∂yf does not extend continuously to the origin.
On the other hand, f ∈ A∞(X). Let x, y : R → R be C∞-functions such that (x(t), y(t)) ∈ X

for all t ∈ R. To see that f ∈ A∞(X) it suffices to prove that there is a C∞-function z : R → R
such that y = x2z.

We use the following result due to [JP90, Theorem 7]. Let ϕ,ψ : R → R be such that ψ ∈ C∞,
ϕψ ∈ C∞, and |ϕ| 6 |ψ|α for some positive constant α. Then ϕ ∈ Cb2αc.

We apply this result for ψ = x2 and

ϕ =

{
y(t)/x(t)2 if x(t) 6= 0,

0 if x(t) = 0.

The assumption 0 6 y 6 p(x) implies that for each n ∈ N there is an interval [0, εn) such that for
all x ∈ [0, εn) we have y 6 x2n+2. We may conclude that ϕ is C2n on the set x−1([0, εn)). Clearly,
ϕ is C∞ on the set {t ∈ R : x(t) 6= 0}. Thus ϕ is C∞ everywhere.

Example 10.5 (Necessity of simpleness). Let X1 = {(x, y) ∈ R2 : x > 0, 0 6 y 6 x} and X2 =
{(x, y) ∈ R2 : 0 6 x 6 y/2} and set X = X1 ∪X2. The function f on X defined by f(x, y) = x
if (x, y) ∈ X1 and f(x, y) = y if (x, y) ∈ X2 belongs to A∞(X) but clearly not to C∞(X). This
follows from the fact that a C∞-curve c(t) in X must vanish of infinite order at each t0 with
c(t0) ∈ X1 ∩X2 = {0}. Indeed, suppose that c(t) = tpc̃(t) with (a, b) := c̃(0) 6= 0 and c(t) ∈ X1

if t 6 0 and c(t) ∈ X2 if t > 0. If p is even, it follows that b 6 a 6 b/2 which entails a = b = 0, a
contradiction. If p is odd, we conclude that 0 6 a 6 0, b 6 0, a 6 b/2 hence a = b = 0 again.

A modification of this example shows that the assumption thatX is simple cannot be replaced
by the weaker assumption that each x ∈ X has a neighborhood U such that U ∩ int(X) is
connected: Let 0 < r < R, consider X := X1 ∪X2 ∪X3, where X3 = {(x, y) ∈ R2 : x > 0, y > 0,
x2 + y2 > R2}, and multiply f with a smooth bump function which is 1 on B(0, r) and has
support in B(0, R).
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Nevertheless we have the following example.

Example 10.6. LetX1 = {(x, 0) ∈ R2 : x> 0} andX2 = {(0, y) ∈ R2 : y > 0} and setX =X1∪X2.
Then X isA∞-admissible. Indeed, let f ∈ A∞(X). We may assume without loss of generality that
f(0, 0) = 1 (by multiplying with or adding a constant). Now f |X1 (respectively, f |X2) has a C∞-
extension F1 to R×{0} (respectively, F2 to {0}×R), by Theorem 1.13, and F (x, y) := F1(x)F2(y)
is a C∞-extension of f .

Example 10.7 (There is no analogue for finite differentiability). This is an interesting consequence
of Glaeser’s inequality [Gla63]: for f : R → [0,∞),

f ′(t)2 6 2f(t)‖f ′′‖L∞(R), t ∈ R.

Indeed, consider the closed half-space X = {x ∈ Rd : xd > 0} and the function f : X → R given

by f(x) = x
k+1/2
d . Then all partial derivatives of f up to order k extend continuously by 0 to

∂X, and the partial derivatives of order k are 1/2-Hölder continuous, but not better, near points
of ∂X. On the other hand, for each Ck,1-curve c in X with compact support, the composite
(f ◦ c)(t) = cd(t)

k+1/2 is Ck with

(f ◦ c)(k)(t) = Ck(c
′
d(t))

k
√
cd(t) +Dk(c(t)),

where t 7→ Dk(c(t)) is Lipschitz. Since
√
cd is Lipschitz, by Glaeser’s inequality, we conclude that

f ◦ c is of class Ck,1.

We want to add that the images of pseudo-immersions (which are not immersions) yield
examples of sets X ⊆ Rd which are not A∞-admissible.

Example 10.8. If gcd(p, q) = 1 then the map ϕ : R 3 t 7→ (tp, tq) ∈ R2 is a pseudo-immersion,
by [Jor82]; see also [JP87, JP90, DKP85, AM89]. Now the function f(x, y) = y1/q belongs to
A∞(ϕ(R)) but has no smooth extension to R2.

The following example shows that there are closed fat sets X ⊆ Rd which satisfy

A∞(X) = {f : X → R : f satisfies 1.10(3)} 6= C∞(X). (10.6)

Example 10.9. Let X be the complement in R2 of the set {(x, y) ∈ R2 : x > 0, |y| < e−1/x}. It
is well known (cf. [Bie80, Example 2.18]) that there exist functions f : X → R which satisfy
Lemma 1.10(3), but f 6∈ C∞(X).

Let us show that for this X the identity in (10.6) holds. To this end let h : R → R be defined
by h(x) = 0 if x 6 0 and h(x) = e−1/x if x > 0. Consider

X± := {(x, y) ∈ R2 : ±y > h(x)} ∪ {(x, y) ∈ R2 : x 6 0}.

Then X± are 1-sets and hence are A∞-admissible, by Theorem 1.13.
Suppose f ∈ A∞(X). Then f is smooth on int(X). The restrictions f |X± belong to A∞(X±),

respectively. So all their derivatives extend to the boundary arcs {(x, y) ∈ R2 : x > 0,±y = h(x)},
respectively. It remains to check that the extensions of the derivatives of f |X± coincide at the
origin. But this is clear, since they are uniquely determined by the restriction of f to X+ ∩X−.

For the converse suppose that f : X → R satisfies 1.10(3). We have to show that f ◦ c is
smooth for all smooth curves c : R → X. Since X± are A∞-admissible, this is clear on the
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complement of c−1(0) in R. Assume that c(0) = 0. We claim that f ◦ c is differentiable at 0 and
the chain rule (f ◦ c)′(0) = f ′(0)(c′(0)) holds. The set X is star-shaped with respect to each point
in (−∞, 0].

For each v ∈ X, the curve γ(t) := tv lies in X for 0 6 t 6 1. Moreover, γs(t) := γ(t)+s2(−1−
γ(t)) lies in X for 0 6 t 6 1 and |s| 6 1. If s 6= 0, then γs(t) ∈ int(X) and hence

f(γs(t))− f(γs(0))

t
=

∫ 1

0
(f ◦ γs)′(tu) du = (1− s2)

∫ 1

0
f ′(γs(tu))(v) du.

Letting s → 0 and using that f satisfies Lemma 1.10(3), we get

f(γ(t))− f(γ(0))

t
=

∫ 1

0
f ′(γ(tu))(v) du.

This tends to f ′(γ(0))(v) as t → 0.
Now for 0 6 s 6 1 and t ∈ R we have s · c(t) ∈ X. We may apply the last paragraph for

v = c(t)/t and obtain
f(c(t))− f(0)

t
=

∫ 1

0
f ′(uc(t))

(
c(t)

t

)
du,

which tends to f ′(0)(c′(0)), since f ′(uc(t)) → f ′(0) uniformly on the bounded set {c(t)/t :
t near 0}. This proves the claim.

By iteration we may conclude that f ◦ c is smooth; cf. the proof of [KM97, Theorem 24.5].
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BMP91 E. Bierstone, P. D. Milman and A. Parusiński, A function which is arc-analytic but not
continuous, Proc. Amer. Math. Soc. 113 (1991), 419–423.

BMP96 E. Bierstone, P. D. Milman and W. Paw lucki, Composite differentiable functions, Duke Math.
J. 83 (1996), 607–620.

677

https://doi.org/10.1112/S0010437X19007097 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007097


A. Rainer

Boc70 J. Bochnak, Analytic functions in Banach spaces, Studia Math. 35 (1970), 273–292.

Bom67 J. Boman, Differentiability of a function and of its compositions with functions of one variable,
Math. Scand. 20 (1967), 249–268.

Bru80 J. Bruna, An extension theorem of Whitney type for non-quasi-analytic classes of functions,
J. Lond. Math. Soc. (2) 22 (1980), 495–505.

BS71 J. Bochnak and J. Siciak, Analytic functions in topological vector spaces, Studia Math. 39
(1971), 77–112.

CC98 J. Chaumat and A.-M. Chollet, Propriétés de l’intersection des classes de Gevrey et de
certaines autres classes, Bull. Sci. Math. 122 (1998), 455–485.

CC99 J. Chaumat and A.-M. Chollet, Sur la division et la composition dans des classes
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