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Abstract. We prove that if G is a locally finite group admitting an automorphism
φ of order four such that CG(φ) is Chernikov, then G has a soluble subgroup of finite
index.

1. Introduction. The study of centralizers in locally finite groups is an interesting
direction of group theory. In particular, the situation that a locally finite group G
admits an automorphism φ of finite order (or, equivalenly, contains an element φ)
such that CG(φ) is Chernikov has received some attention in the past. Recall that a
group C is Chernikov if it has a subgroup of finite index that is a direct product of
finitely many groups of type Cp∞ for various primes p (quasicyclic p-groups). By a
deep result obtained independently by Shunkov [22] and also by Kegel and Wehrfritz
[7] Chernikov groups are precisely the locally finite groups satisfying the minimal
condition on subgroups; that is, any non-empty set of subgroups possesses a minimal
subgroup. Hartley proved in 1988 that if φ is of prime-power order, then G has a locally
soluble subgroup of finite index (see [4, Theorem 1]). The case of the theorem where φ

has order two was handled by Asar in [1] and for automorphisms of arbitrary prime
order the theorem was proved by Turau in [25]. Both Hartley’s and Turau’s works
depend on the classification of finite simple groups. We now quote a paragraph from
the introduction in Hartley’s paper.

“It seems likely that much more remains to be said. Possibly Theorem 1 remains
true even if ‘locally soluble’ is replaced by ‘soluble’ and ‘prime power order’ is replaced
by ‘finite order’, and if that is too much to hope for, then at least some progress in that
direction might be feasible”.

In 1992 Hartley did manage to show that if the automorphism φ has arbitrary
finite order and CG(φ) is finite, then indeed G has a locally soluble subgroup of finite
index [5]. Hartley’s question if this is true with φ of arbitrary finite order and CG(φ)
Chernikov remains unanswered, the main difficulty being that the problem does not
reduce to finite groups.

In the present paper we are concerned with the part of Hartley’s implicit question
that deals with possible replacement of ‘locally soluble’ by ‘soluble’. Trying to figure out
a way to handle the question one quickly finds themself faced with the following long-
standing problem. Suppose a finite group G admits a fixed-point-free automorphism
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φ of order n. Is then G soluble with derived length bounded by a function depending
only on n?

The above problem has been open for many years. It is a well-known corollary
of the classification of finite simple groups that any finite group G admitting a fixed-
point-free automorphism is soluble. However existence of a bound on the derived
length of G was established only in the cases that n is a prime or n = 4. Thompson
proved that if n is prime, then G is nilpotent [23] while Higman’s work [6] provides a
bound for the nilpotency class of G. An explicit expression for the bound was given
by Kreknin and Kostrikin [12, 13]. Kovács proved that if a finite group G admits a
fixed-point-free automorphism of order four, then G/Z(G) is metabelian [11]. Kovács’
proof uses the famous Feit-Thompson Theorem that any finite group of odd order is
soluble [2]. Gorenstein’s proof of solubility of a finite group admitting a fixed-point-
free automorphism of order four that does not use the Feit-Thompson Theorem can
be found in [3, Theorem 10.4.2]. Since no further progress with respect to the problem
when n is not a prime or 4 is in sight, it seems at present Hartley’s question can be
effectively addressed only in those two cases.

In [9] Khukhro described the structure of (locally) finite groups G admitting an
automorphism φ of prime order p such that CG(φ) is finite. It turned out that the
groups are nilpotent-by-finite. This result allowed us to handle in [21] locally finite
groups admitting an automorphism of prime order whose centralizer is Chernikov.
Predictably, the groups happen to be nilpotent-by-Chernikov. In particular, it follows
that the groups have a soluble subgroup of finite index. Note however that in general
there is no obvious way to reduce the situation where CG(φ) is Chernikov to that where
CG(φ) is finite.

In a series of papers Khukhro and Makarenko studied Lie rings and (locally)
finite groups admitting an automorphism of order four whose centralizer is finite and
consists of boundedly many, say m, elements [15, 16, 17, 18, 19, 20]. Recently their study
was completed, the main result being that there exist an m-bounded number i = i(m)
and a constant c such that if a (locally) finite group G admits an automorphism of order
four whose centralizer is of finite order m, then G possesses a characteristic subgroup
K with the properties that the index [G : K ] is at most i and γ3(K) is nilpotent of class
at most c (see [10]).

The goal of the present paper is to show how the result of Khukhro and Makarenko
can be used to prove that locally finite groups admitting an automorphism of order
four with Chernikov centralizer have a soluble subgroup of finite index.

THEOREM 1.1. Let G be a locally finite group admitting an automorphism φ of order
four such that CG(φ) is Chernikov. Then G has a soluble subgroup of finite index.

As the reader will see, modulo the Khukhro-Makarenko Theorem the proof of
Theorem 1.1 is rather short and elementary. Since locally finite groups admitting an
automorphism of prime order with Chernikov centralizer are nilpotent-by-Chernikov,
it is natural to conjecture that under the hypothesis of Theorem 1.1 the group G must
be metanilpotent-by-Chernikov. At the moment the author is unable to prove that
conjecture, though.

2. Proof of the Theorem. Let C be a Chernikov group. The subgroup of finite
index that is a direct product of finitely many groups of type Cp∞ possibly for various
primes p is of course unique in C. Suppose it has index i and is a direct product of
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precisely j groups of type Cp∞ . The ordered pair (j, i) is called the size of C. The set of
all pairs (j, i) is endowed with the lexicographic order. It is easy to check that if H is a
proper subgroup of C, the size of H is necessarily strictly smaller than that of C. Also,
if N is an infinite normal subgroup of C, the size of C/N is strictly smaler than that of
C. If N is finite, the size of C/N may be equal to that of C, though.

Given a group G and subsets X, Y ⊆ G, we denote by [X, Y ] the subgroup
generated by all commutators [x, y], where x ∈ X, y ∈ Y . It is well-known that [X, Y ]
is always normal in 〈X, Y〉. We denote [[X, Y ], Y ] by [X, Y, Y ].

If a group G is acted on by a group A, we denote by [G, A] the subgroup of G
generated by the elements of the form g−1ga, where g ∈ G and a ∈ A. It is easy to see
that [G, A] is always an A-invariant normal subgroup of G. The following lemma will
be very helpful. The proof can be easily deduced from the (well-known) corresponding
facts on finite groups.

LEMMA 2.1. Let A be a finite π -group of automorphisms of a locally finite group G.
(a) If N is an A-invariant normal π ′-subgroup of G, then CG/N(A) = CG(A)N/N.
(b) If G is a π ′-group, then [G, A, A] = [G, A].
(c) If G is a π ′-group, then G = [G, A]CG(A).

For a group G let F(G) denote the Hirsch-Plotkin radical of G. This is the product
of all locally nilpotent normal subgroups of G. Of course, F(G) is locally nilpotent, too.
We define F1(G) = F(G) and Fi+1(G)/Fi(G) = F(G/Fi(G)) for i = 1, 2, . . . . The group
G is said to be of finite Hirsch-Plotkin height m if m is the least integer satisfying the
equality G = Fm(G). In this case we write h(G) = m. Of course, if G is a finite group,
the Hirsch-Plotkin radical F(G) is just the Fitting subgroup of G. There are many
results bounding the Fitting height of a finite soluble group. In particular, we will use
the classical result of J. G. Thompson [23] (see also H. Kurzweil [14]) that if G is a
finite soluble group admitting a coprime automorphism φ, then h(G) is bounded by a
function depending only on |φ| and h(CG(φ)). The standard inverse limit argument as
in [8, p. 54] extends this result to periodic locally soluble groups G having no |φ|-torsion.
In particular we have:

PROPOSITION 2.2. If a locally finite 2′-group G admits an automorphism φ of order
four such that CG(φ) is Chernikov, then G has finite Hirsch-Plotkin height.

A locally finite group G is said to satisfy min-p if any non-empty set of p-subgroups
of G possesses a minimal subgroup. We will require the following helpful proposition
[8, Corollary 3.2].

PROPOSITION 2.3. If a locally finite group G contains elements of order p, then
G satisfies min-p if and only if there is a p-element g ∈ G such that CG(g) satisfies
min-p.

Let us say that a group almost has certain property if it has a subgroup of finite
index with that property. Given a locally finite group G, we denote by Op′ (G) the
product of all normal p′-subgroups of G. We write O(G) for O2′ (G). Theorem 3.17
in [8] tells us that if G is a periodic almost locally soluble group satisfying min-p,
then G/Op′ (G) is Chernikov. Therefore, if G is a periodic almost locally soluble group
admitting an automorphism of order four with Chernikov centralizer, then G/O(G) is
Chernikov.

We are now ready to prove our main result.
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THEOREM 2.4. Let G be a locally finite group admitting an automorphism φ of order
four such that CG(φ) is Chernikov. Then G is almost soluble.

Proof. By Hartley’s theorem G is almost locally soluble so without loss of generality
we can assume that G is a locally soluble group. Then G/O(G) is Chernikov so we can
assume that G is a 2′-group. By Proposition 2.2 G has finite Hirsch-Plotkin height.
Hence, a counter-example to the theorem can be found among locally nilpotent sections
of G. Therefore without loss of generality we can additionally assume that G is locally
nilpotent.

Assume further that G is a counter-example such that the size of C = CG(φ) is
as small as possible. In view of the Khukhro-Makarenko Theorem it is clear that C
is infinite. Let G(i) denote the ith term of the derived series of G. Each one of the
groups G(i) provides a counter-example to the theorem. Since the size of C is as small
as possible, it follows that C ≤ G(i) for each i. We deduce from Lemma 2.1(a) that φ

acts fixed-point-freely on the quotient G/G(4). By the Kovács Theorem, G/G(4) has
derived length at most three. Therefore G(3) = G(4). Thus, considering G(3) in place of
G we can make the additional assumption that

(1) G = G′.
Next, we can assume that the following holds.
(2) If N is a proper normal φ-invariant subgroup of G, the centralizer CN(φ) is

finite.
Indeed, suppose that CN(φ) is infinite. Since the size of C is as small as possible,

we deduce that G/N is soluble, a contradiction.
Let A be a quasicyclic p-subgroup of C for some prime p. Let us show that
(3) [G, A] = G.
This is because [G, A]A is a normal φ-invariant subgroup of G having an infinite

intersection with C. Now (2) implies that [G, A]A = G. Putting this together with
G = G′ we conclude that [G, A] = G.

We will use the fact that if x, y ∈ A, then necessarily either 〈x〉 ≤ 〈y〉 or 〈y〉 ≤ 〈x〉.
It follows that

(4) for any finite subset S of A we can choose a ∈ S such that [G, S] = [G, a].
Let T be a finite subset of G. Since G = [G, A], every element of T can be written

as a product of finitely many commutators [gi, ai] with gi ∈ G, ai ∈ A. In turn, each of
the elements gi can be written as a similar product of [hj, bj] with hj ∈ G and bj ∈ A.
Let S be the set of all ai that appear in the commutators [gi, ai] united with the set of
all bj that appear in [hj, bj]. It is obvious that T ⊆ [G, S, S]. Thus, we derive from (4)
that

(5) for any finite subset T of G there exists a ∈ A such that T ⊆ [G, a, a].
Since we deal with the locally nilpotent group G, it follows that the subgroup

[G, a] is proper for each a ∈ A. Obviously it is also φ-invariant so we conclude from (2)
that [G, a] has finite intersection with CG(φ) for any a ∈ A. Thus, by the Khukhro-
Makarenko Theorem, [G, a] contains a characteristic subgroup Ka of finite index
such that γ3(Ka) is nilpotent of class at most c. Since [G, a]/Ka is finite and since
A has no subgroups of finite index, it follows that A centralizes the factor [G, a]/Ka.
Thus,

(6) [[G, a], A] ≤ Ka for every a ∈ A.
Combining this with (5), we deduce that for an arbitrary finite subset T of G there

exists a ∈ A such that T ⊆ Ka. It follows that γ3(G) is nilpotent of class at most c. This
contradicts (1). The proof is complete. �
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