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1. Introduction

The aim of this paper is, briefly, an axiomatization of relativistic
kinematics. Before stating the aims in more precise terms, a few words about
the origins of the paper will be necessary. The idea of a revision of the
axiomatic foundations of relativistic kinematics came up in discussions
with the late M. L. Urquhart at the 1963 (3rd) Summer Research In-
stitute of the Australian Mathematical Society, and it was a suggestion
by Urquhart which started off the present investigation. Following his
suggestion I prepared a preliminary draft containing the outlines of an
axiomatic system for Minkowski space-time and passed it on to him.
Shortly before his death Urquhart asked Professor D. Elliott to send the
manuscript back to me and it was this manuscript which formed the nucleus
of the present paper.

It would be rather difficult to pinpoint Urquhart's actual contribution
to the paper as the material and the form of presentation have changed
considerably since these preliminary discussions; there is however one
particular result, Theorem 14, which is entirely his. It tells us that if the
observer A has relative speed v with respect to observer B then B has the
same speed v with respect to A. I owe to Urquhart the observation that this
is not a hypothesis but it can be deduced from more primitive assumptions.
The proof of Theorem 14 is modelled after his original reasoning.

The deductive structure of relativistic kinematics (or its geometrical
model, Minkowski space -time) has of course been examined before. The
traditional approach, initiated by Hermann Weyl [2] and followed also in
a recent axiomatization by Walter Noll [1], is to regard Minkowski space-
time as an inner product space with appropriate signature, essentially an
extension of the Euclidean system by "Minkowskian chronometry" (Noll's
terminology).

From the epistemological point of view this method of approach leaves
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[2] Kinematic geometry 135

much to be desired. In physical space-time, 3-space is essentially a space of
simultaneity relative to a fixed observer and its properties can only be
inferred indirectly, from kinematic observations relating to observers and
light signals. It seems therefore inappropriate to build up kinematics from
axioms which make use of assumed properties of 3-space, either explicitly
or under the disguise of an inner product space.

An example which goes back to Gauss will illustrate the point. If the
angles of a huge triangle formed for example by three fixed stars were
measured by direct visual observation then according to special relativity
they will add up to two right angles. What is the source of this assertion?
The nature of large-scale optical measurements is vastly different from
the kind of empirical evidence upon which Euclidean geometry was founded
and their outcome can hardly be regarded as "self-evident truth" in the
sense of the ancient Greek geometers, unless one is prepared to accept
the (long discredited) Kantian dogma at its face value that Euclidean
geometry is the only possible form of space perception. In a non-Kantian
approach to relativistic kinematics the Euclidean space structure must
appear as a consequence of the kinematical axioms rather than an a priori
structure built into the system.

After this preamble let us state our aim more definitely. It is to set
up a system of axioms for Minkowski space-time which refer solely to
kinematic notions such as time and motion, but which make no assumptions
about 3-space itself.

The natural primary objects of such a "kinematic" geometry are events,
world lines and time. World lines are classified into time-like and light-like;
the former represent inertial observers or free particles, the latter undeflected
light pulses. For convenience we shall call monochromatic light pulses
photons, to indicate the existence of a natural "clock" which photons carry
along by virtue of their energy or frequency. Similarly we assume that
particles are endowed with a time-keeping device. Space-like world lines
will not appear in the system as they have no immediate connection with
kinematic experience.

Each axiom will be accompanied by a descriptive name and by a
brief indication of the kinematical phenomenon with which it is associated.
The axioms will be formulated in several stages and at each stage the
consequences developed as fully as possible so as to highlight the deductive
structure of the theory.

Questions of consistency and redundancy will not be considered. Con-
sistency of the axioms is almost trivial from the fact that they are valid
for suitable entities in a pseudo-Euclidean geometry with signature 3+1-
Independence is a more subtle question and it is quite possible that some
of the axioms could be replaced by weaker ones or even discarded.
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136 G. Szekeres [3]

The real number line has been adopted throughout as the standard
model for time-ordering of events on world lines. This is merely for con-
venience and for greater flexibility; as long as we are not dealing with
dynamics and the necessity for analysis does not arise, any dense subfield
of the reals such as the rational field could equally well be employed for
the construction of a geometrical model of space-time.

The present treatment has a certain affinity with A. A. Robb's axiomatic
system for space and time [3], and it is necessary to say a few words about
the relative position of the two systems. Robb's guiding principle is mathe-
matical economy; in this he succeeds admirably. All postulates are stated
in terms of a single relation (before-after) between the elements of his set,
and the whole structure of Minkowski space-time is derived from the prop-
erties of this one relation. The justification of his postulates is primarily on
mathematical grounds and not in their relation to direct kinematical expe-
rience which is often quite remote. The following example is characteristic
of the difference in the attitudes of the two treatments. Theorem 3 of the
present paper on the arrow of time, which is the outcome of a long line of
arguments using the first six axioms on configurations of world lines, ap-
pears as Postulate 3 at the very beginning of Robb's system. On the other
hand world lines (the most direct objects of kinematical experience) are de-
rived quantities in Robb's system and they do not appear until Postulate 9
("optical lines") and Postulate 14 ("inertia lines"). Moreover, some of his
postulates refer to space-like pairs of events and space-like world lines,
both of which have been completely avoided in the formulation of the
present axioms.

2. Axioms of incidence and inertia

Minkowski space-time shall consist of the following:
(i) A space 28 whose are called events. Thus p e 28 means: p is an

event.
(ii) A set JV of one to one mappings

N : % -> 28
from the real line

£ = {T; — oo < T < oo}

into 28. Elements of JV are called world lines and T is called local time on
N. Thus

NeJT, re%,=>p = N(r) e 28,

and TX ^ T2 => N{rx) =£ N(r2). The set of events {N(r); — oo < T < oo}
is denoted by |/V|. If p e |W|, we say that the event p lies on the world line
N, or that N goes through p.
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(iii) Two subsets G and & of ^V such that

G

Mappings O eG are called particles, mappings P e ^ are called photons.
Thus each N e J/' is either a particle or a photon, but not both.

(iv) A subset ./T* of JV whose members are called standard world lines;
elements of G* — G n ^V* are called standard particles, elements of
0>* = 0> n ^T* standard photons.

In the present section only the first three entities will be considered.
A substantial portion of space-time relations can be stated without taking
into account the evenness of time flow but merely assuming a time ordering
of events on the world lines. Standard (uniform) local time will only be
introduced in the next section when it comes to the discussion of relative
speeds.

Al (AXIOM OF EXISTENCE)

The set G is not empty. Moreover to every O e G there is a q e 38 such
thatq$ \O\.

The axiom states that there is at least one particle and an event through
which it does not pass. In particular 28 is not empty and by (ii) there are
infinitely many distinct events.

A2 (AXIOM OF TIME ORDERING)

Let <f> : % -> % be a sense-preserving homeomorphism of % onto %, i.e.
(f>(r) a continuous stricdy increasing real valued function of x with

(1) lim^(r) = — oo, lim <J>(T) = oo.
T-» —OO T-»OO

Then O e G => O' = Ooj>eG,Pe^->P'^Poj>e3P.
We say that O' is homographic to O, P' is homographic to P. Clearly

homography is an equivalence relation; a class of homographic particles
is called an observer and a class of homographic photons a light signal
(l.s.). We denote by {O} the observer represented by the particle O, and
by {P} the l.s. represented by the photon P.

Homographic world lines pass through exactly the same events (i.e.
|JV| = \No<f>\) and differ only in their local times. Axiom A2 establishes
a time-ordering of events on an observer or l.s. independently of the rep-
resenting particle or photon, i.e. of the local time used. It also establishes
a real-line topology on world lines, it is in fact consistent with the as-
sumption that N : 2 -*• \N\ is a homeomorphism.

A3 (FIRST AXIOM OF INCIDENCE)

Two non-homographic world lines intersect at most at one event.
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Hence they either do not intersect at all, or they have exactly one event
in common. It follows from the axiom that given two distinct events
pi and p2, there either passes exactly one class of homographic world lines
through them, or there is no world line joining px and p2. In the first case
we call (px, p2) an ordered pair and writepx < p2 if px = N(jx), pz = N(r2),
ri < T2. f° r some Ne^V. In particular the ordered pair (px, p2) is called
time-like iff there is an observer {O} such that px e \O\, p2 e \O\, and light-
like iff. there is a l.s. {P} such that px e \P\, p2 e \P\. A non-ordered pair
of events is called space-like. Axioms A2 and A3 show that these three
possibilities are mutually exclusive. Absence of a world line joining px

and p2 indicates that in the traditional treatment there passes a space-like
world line through these events. We call the distinct events plt p2, p3

collinear iff there is a world line N passing through them.

A4 (AXIOM OF CONNECTEDNESS)

Given an observer {O} and an event q $ \O\, there are exactly two light
signals {Pi}, {P2} through q and intersecting O in the distinct events px, p2.
Furthermore if px < p2 then px < q, q < p2.

The axiom states that an observer receives a light signal from every
event of the Universe and can also send a light signal so as to reach any
given event. Topologically it expresses connectedness of space-time. A4 is
the decisive axiom which distinguishes Einsteinean from Galilean relativity;
it is clearly invalid in a Universe in which light travels at infinite speed or
in which an observer may move faster than light.

Ao (SECOND AXIOM OF INCIDENCE)

If the distinct light signals {Pi}, {P2} intersect at q, and pr e \PX\, p* e |P2I
such that pi < q, q < p2, then there is an observer {O} such that px e \O\,
P*e\O\. _

This in a sense is a converse of Axiom A4. {O} is uniquely determined,
according to A3. In physical terms the axiom states that if a light pulse
is reflected on a mirror then any point on the path of the reflected pulse
can be reached from any point on the path of the incident pulse by a
suitably moving observer. Two intersecting light signals are said to be
conjugate.

A6 (THIRD AXIOM OF INCIDENCE)

Given an observer {O}, a light signal {P} intersecting O, and an event
q not on O but on P, there is a light signal {P1} which passes through q and
intersects P.

This light signal is uniquely determined; for let {P±} be a second light
signal through q, intersecting P in px > p. Then if q < p, there goes an
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[6] Kinematic geometry 139

observer from q to px, if q > px there goes an observer from p to q, and
if q > p, q < px then there goes an observer from p to px, by A4, contrary
to A3.

Axiom A6 splits events not on P into three disjoint classes: those for
which p = \P\ n \P'\ < q, those for which q < p, and those for which P'
does not exist. Thus there is a clear separation into past, future and "simul-
taneity" of world events relative to a light signal. In the first two cases
we say that q is ordered with respect to P (is before or after P).

THEOREM 1. Let px, p2, p3 be distinct events not on the same world line
such that all three pairs (pi,p,), 1 ^ * < / ^ 3 are ordered; then with a
suitable numbering of the events pt we have

Pi < Pa> P2 < Pa, Px < P3>

and one of the following is true:

1. (Pi, p3) is time-like, (px, p2) and (p2, p3) are light-like.
2a. (plt p3), (p2, p3) are time-like, (p1, p2) light-like.
2b. (px, p2), (plt p3) are time-like, (p2, p3) light-like.
3- (Pi. Pi). (Pi. Pz), (Pi. Pz) are time-like.

COROLLARY. If px, p2, p3 are not collinear, (px, p2) and (p2, p3) are light-
like, and px<p2, p3< p2 or p2 < px, p2 < p3, then (px, p3) is space-like.

PROOF. It follows immediately from axiom A6 that at least one of the
pais (pi,pj) is time-like. Axiom A4 supplies an example for case 1 and
rules out all other possibilities in which two of the pairs (pt,p,) is light-
like and one is time-like.

Now suppose that (px,p2) and (p2, p3) are time-like, (px, p3) is light-
like, and px<p3. Let Ox e 0 be through (px,p2), O2e<9 be through
(p2>Pz)> - P e ^ through (px,p3). By A4 there exists an event q on P and
P' e & such that P' joins p2 and q. Suppose first that q is between px and
p3. Then if q < p2, the configuration O2, q conflicts with A4, and if p2 < <?
then Ox, q conflicts with A4. We may suppose therefore that either
Pi < pa < q or q < px < p3. In the first case we have, by A4, q < p2,
Pz < Pz> Pi < Pz> hence case 2a (with p2, p3 interchanged). In the second
case we have similarly p2 < q, p2 < px, p2 < p3, which is case 2b (with
px, p2 interchanged). This settles all cases with two time-like pairs and
one light-like pair.

Finally consider the case when all pairs (pi.pj) are time-like. Let
O e 0 be through (p2, p3) and suppose that px < p2, p2 < p3, pz < Pi-
Let q e \O\ be such that (px, q) is light-like and px<q. If q < p3

 t n e n t n e

triangle (p, q3>px) is prohibited, and if p3 < q then (px, p2, q) is prohibited
by the previous result. Hence case 3 is the only remaining possibility.
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THEOREM 2. Let p1, p2, p3 be non-collinear events such that {pltp2)
and {p2,pz) ate ordered, and p\<pz, p2 < p3. Then {p\,ps) is time-like
andp1 <p3.

PROOF. If both (pi,p2) and (p2, p3) are light-like then the statement
follows from A5. If (plt p2) is light-like, (p2, p3) time-like, then (pltp3)
is not light-like since this would conflict with Theorem 1. Let {P} be the
l.s. through (p1, p2) and {P'} the l.s. through p3, intersecting P at q. Then
Pi < ?» 1 < Pz> f°r otherwise the triangle (q, p2, p3) would conflict with
Theorem 1. But (p1, q), (q, p3) represents the previous case.

If (pltp2) is time-like, (p2, p3) light-like, and {P} a l.s. through (p2, p3),
{P'} a l.s. through p± and intersecting P in q, we find by a similar argument
that the only possibility is px < q, q < p3, and we have again the first
case.

Finally if both (plt p2) and (p2, p3) are time-like and {O} an observer
through (p2, p3) then take the l.s. from p1 to O, intersecting O at q. By
Theorem 1 we must have pt < q, q < p3 which is the second case treated
previously.

The theorem shows that the relation p < q is a partial ordering of 2B.

THEOREM 3. (Arrow of time). Let px, p2, • • -, pk (k > 1) be a sequence
of events such that (pit pi+1) is ordered, p( < piJrl for i = 1, • • •, ^ — 1 . Then
{Pi > Pk) is ordered and pr < pk.

PROOF. If the events p( are collinear then the statement is trivial
(from A2 and A3). Otherwise the theorem is obtained by a repeated ap-
plication of Theorem 2.

Now let {O} be an observer, {P} a l.s. intersecting O in q; let plt p2

be events on P, distinct from q but not necessarily from each other. By A4
there exist unique light signals {P^, {P2} through pt, p%, conjugate to {P},
which intersect O. We denote the configuration so obtained by [O, P;
P1 ( P2]. From Theorem 1 it follows that {Px} and {P2} are either identical
or they do not intersect; they are said to be parallel light signals and denoted
{P^\{Pi}- Thus parallelity of {Pj}, {P2} signifies that there exists some
configuration [O, P; Plt P2] of which Plt P2 are the last two members.
Clearly {P^iPJ for all Px e 0> and {PX\\{P2\ implies {P2}|{P!}. We shall
find later (from other axioms) that parallelity is an equivalence relation.

A7 (AXIOM OF INERTIA)

Given a light signal {Px} and an event q ordered with respect to P 1 ( there
is exactly one light signal {P2} through q which is parallel to {Pi}.

Although the axiom has the form of an axiom of parallelity for photons,
it expresses the first half of the law of inertia, namely that particles and
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photons move on a straight path without torsion. The second half of the law
of inertia, namely that they move with an even speed, will be expressed later.

The following two theorems bring out the law of inertia more ex-
plicitly.

THEOREM 4. (Law of inertia for photons). Let {PJ, {P2} be distinct
parallel light signals derived from the configuration [O, P; Plt P2]. Let
qe IPJI, q$ \O\, and {P1} the unique l.s., conjugate to {P^, which by A4
passes through q and intersects O. Then {P'} also intersects P2.

PROOF. Let q' = \O\ n \P'\, and {P"} the unique l.s. through q' which
by A6 intersects P2. Then both {P'} and {P"} pass through q' and are
parallel to {P}, hence by A7 they are identical, and so {P'} intersects P2.

THEOREM 5. (First law of inertia of particles). Let {Px}, {P2} be distinct
parallel light signals derived from the configuration [O, P; P1 ( P2], and
{O'} an observer which intersects P and Px in the distinct events p and px.
Then {O'} also intersects P2.

PROOF. Let p2 = \P\ n \P2\ and {P2} the unique l.s., conjugate to P,
which by A4 passes through p2 and intersects O'. Then {P^lKPi}, because
of the configuration [O', P; Px, P'2~\, and both {P2} and {P'2} pass through
p2, hence by A7 they are identical. Consequently {P2} intersects O'.

We denote by SS(O, P) the union of all light signals {P'}, P ' &0>, where
P ' intersects O and {P'}\ {P}, and by |S3(O, P) | the union of all sets of events
\P'\ where {P'} e 33 (O, P). By A7 there passes exactly one {P'}e%{O,P)
through every p e \O\ and 23(O, P) = 93 (O, P') for every such P' . If q e \P'\,
q$\O\, and {P*} is the second l.s. through q which intersects O then by Theo-
rem 4, |P*|C|S8(O, P)| and |SS(O, P*)\ = |SS(O, P)\. We call S3* = SS(O, P*)
and SS = S8(O, P) conjugate pseudoplanes; their members go through exactly
the same events. If {O'} is an observer which has two events in common
with [SS(O,P)| then by Theorem 5 |O'| C|SS(O, P) | and SS(O', P) = S8(O, P).
Hence |SJ(O', P') | = |SS(O, P) | for any observer {O'} and l.s. {P'} which
lie in |93(O, P)|. We denote b y ^ ( O ) the set of all pseudoplanes 1 SS(O, P)
where {P} is a l.s. intersecting O.

3. Standard time and synchronization

The local time on world lines has so far only been restricted by the
conditions of Axiom A2. Clearly with such an arbitrary time it is not pos-
sible to formulate significant statements about relative speeds and kinematic
measurements. In order to take account ot the evenness of time flow, we

1 Called inertia planes by Robb.
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introduce now the concept of standard local time (s.l.t.) on world lines.
On each class {JV} of homographic world lines we distinguish a non-

empty subset {/V}* of standard world lines N* e *V* with the following
property:

A8 (AXIOM OF STANDARD TIME)

If Ne^V and /V*, JV* e {/V}* then N* = N* o A where A: 1 ^ 1 is
the linear homeomorphisnt

(2) A{t) = yt+d, y> 0, d real.

Conversely, N* e {TV}* implies N* o A e {N}* for all A(t) of the form (2).
The axiom expresses the basic property of standard time, namely that

two standard local times on a world line (observer or l.s.) differ only in
scale and time origin. In order to make the definition meaningful, it is
necessary to relate the standard times on non-homographic world lines.

Let q be an arbitrary event not on the standard particle O, and
{P}, {P*} the two light signals through q which, by A4, intersect O. Let
O(^) = \O\ n \P\, O(t2) = \O\ n \P*\; by A3, t± ^ i2. We define
t(O, q) = ^(<i+<2) as the synchronized time of the event q relative to O,
and d(O, q) = Jl^—tz\ the synchronized distance of q from O. These
definitions are in agreement with Einstein's definition of time and distance;
the speed of light is taken to be unity.

A9 (AXIOM OF SYNCHRONIZATION)

Let O e (9* and [Pj any light signal. Then there is a unique standard
photon P* e {P}* such that

(3) t(O, P*(r)) = T for every r e l

The axiom asserts two things: first, that the synchronized time of the
events on {P} (relative to a standard particle O) is an admissible local
time on {P}, with the continuity and monotonity properties required by
Axiom A2. Secondly, it connects the s.l.t. on O with the s.l.t. on P in a
manner which reflects the physical picture of universal evenness of time
flow on photons and particles. A photon P* satisfying the condition (3)
of A9 is said to be synchronized with O.

The configuration (O, P) consisting of a standard particle O and a
synchronized photon P which intersects O will be called a base of reference.
It determines uniquely the pseudoplane S3(O, P) elT(O) and two conjugate
families of standard photons P^, P*, [i, v e X, contained in 33 (O, P) and
its conjugate respectively and characterized by the following properties:

(i) P^eSBtO, P) intersects O in O(u), P*e^8*(O,P) intersects O
in O(v).

https://doi.org/10.1017/S1446788700005188 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005188


[10] Kinematic geometry 143

(ii) Pp, P* are both synchronized with O.
(iii) Through every q e |S8(O, P)\ there goes exactly one P^ and exactly

one P*.

(i) follows from A6 which asserts that through each O(fi) there goes
exactly one {PA} which intersects P* (v =£ fi) and hence is in SB(O, P),
and from Theorem 4 which asserts that each P* yields the same {P^}.
(ii) follows from A9, and (iii) from A4. We call the system of photons
[PM, P*] the reference grid determined by O and SB = *B(O, P), and denote
it by r(O, SB). The notation assumes that O is standard and SB e"T[O).
Each ^ e SB is uniquely characterized by its grid coordinates (u, v) relative
to F(O, SB). Note that if SB* is conjugate to SB then the grid coordinates
of the same event q relative to F{O, SB*) are (v, fi). The synchronized time
of q relative to O and its synchronized distance from O are expressed in
terms of the grid coordinates by

(4) t(O, q) = \{p+v), d(O, q) = \\u-v\.

Axiom A9 has several important implications.

THEOREM 6 (Second law of inertia of particles). Let O be a standard
particle, SB = S8(O, P) ei^(O), and O' a standard particle contained in |SB|.
Let fi(t'), v(t') be the coordinate of O'(t') relative to T(O, SB). Then

(5) /t(f) = af + p, v{t') = pt'+o

for suitable real constants a > 0, (j > 0, p, a.
Conversely, the mapping p = O'(t') of % into |SB| where u(t'), v(f) given

by (5) are the coordinates of p relative to F(O, SB), is a standard particle.

PROOF. Suppose that for some fixed fi, Pfl intersects O', at O'(t'0).
For arbitrary v, let \P*\ n \O'\ = O'(t'). Since P^ is synchronized with
O, q = |P^| n \P*\ = P^u+v)). If P'p is homographic with P^ and
synchronized with O' then we have for the same event q = P^(|(t'+t'o)).
It follows from A8 and A9, since fi and t'o are fixed, that v(t) = flt' + o
for suitable /S > 0, a, and the constants are necessarily independent of fx.
The proof of /i(t') = od'+p is obtained similarly, by considering a fixed P*
and variable P^.

Conversely, let fit = a.tt-\-p, vt = fit{+a, i — 1, 2, with tx < t2, then
ui < i«2 an<i "i < J>2. Hence if pt is the event with coordinates
(/*,, vt) and q = |P*| n \P^\ then ? = P * ( i K + « 2 ) ) = P^(i(" i+/ ' 2 ) ) .
^i = P*(2("i+i"i)). A = PA8(i("2+,M2)) b y t h e synchronization condition,
hence p! < q < p2, and there is an observer {O'} through px and >̂2 by
Ad. By the first half of Theorem 6, the equations of a suitable standard
lepresentative O' are given by (5), and the proof of the theorem is complete.

The Theorem expresses the fact that the particle O' moves with
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constant speed relative to O. To verify this and to calculate the speed,
let p t = O'(tt), i = 1, 2, be events on O' with tt < t2 and grid coordinates
(Hit vt); then by (4) and (5).

(Q) \d(O, pt) -d(O,
\*(O, pt) -t(O,

and the relative speed.

(7) v(O',O)
t{O,pz)-t{O,px)

is independent of t, and t2.
Since a > 0, /J > 0, we always have

0 ^v(O', O) < 1;

v(O', O) = 0 if and only if a = /?. In that case either O' is homographic
with O, namely if also p = a, or O and O' have no event in common;
for events on O have grid coordinates v = fi.

We say that {O'} is parallel to {O} and write {O'}|{O} iff O' is in seme
SB eV(O) and a = /? in (5). Necessary and sufficient for a = /S is that
either {O'}={O} or that O' and O do not intersect; therefore {O}|{O},
and {O'}|{O} => {O}|{O'}. We shall find later that also parallelity of ob-
servers is an equivalence relation.

If the local time on O'(t') is transformed by t' = \ja.(t"-\-\(o—p))
then the equation of O"{t") = O'(t') becomes [i(t") = t"+\(p+o),
v(t") = t" — \{p-\-a). Thus every {O'} which is parallel to {O} has a unique
standard representative O'(t') whose equation relative to F(O, SB) is in the
normal form

(8) /i(t') = t'+d, v(t') = t'-S.

We then say that O' is synchronized with O and write O'\\O; in fact
t' = %((i>(t')Jrv(t')) is just the synchronized time of the event (fi(t'), v{t'))
relative to O, and \8\ = \\^{t')— v{t')\ is the synchronized distance of the
event from O. Thus all events of O' are at the same distance \d\ from
O; we denote it by d(O', O).

THEOREM 7. Given O e 0* and q e SB, there is precisely one O' e 0*
such that qe\O'\ and O'\\O.

PROOF. If q e \O\ then we must have O' = O. li q $ \O\ then q is a
uniquely determined pseudoplane |SB|, SB e"^(O) and the statement follows
from the fact that for given u, v, equation (8) can be solved uniquely for d.

We shall need the transformation equations of grid coordinates from
r(O, SB) to r(O', SB) where |O'| C |SB| and O' is given by (5). They are

https://doi.org/10.1017/S1446788700005188 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005188


[12] Kinematic geometry 145

obtained from (5) by writing t' = u' in the first equation and t' = v' in the
second:

(9 ) ft = OLfl'

If in particular O'||O then the equations are

(10) ii = fi'+d, r = v'—d.

It follows from here that

(11) \d\=d(O',O) = d(O,O').

THEOREM 8. For every O e 6*, O\\O. Furthermore O'\\O => O\\O'.

PROOF. The first statement is trivial. The second statement follows
from the fact, seen from (10), that the event O(t) has coordinates p' = t—6,
„' = t+d relative to T(O', 33).

A10 (AXIOM OF INERTIAL SYSTEMS)

Let O'\\O. Then t(O', q) = t(O, q) for every q e SB.
The axiom expresses the fact that two observers who are at relative

rest and who have synchronized their clocks are in agreement when they
extend their time reckoning to the whole of the Universe. It is due to this
axiom, which seems to be independent of the others and which is the
relativistic equivalent of Newton's principle of "absolute time", that we
are allowed to speak of an inertial system relative to a standard observer.

An important consequence of the axiom is

THEOREM 9. O\\O' is an equivalence relation.
We have already seen that the relation is reflexive and symmetric

(Theorem 8). We have to show that O\\O', O\O\" imply O'\\O". Now
the first two conditions imply, by A10, that t(O', q) = t(O", q) for every
q e 23. The theorem therefore follows from the following converse of A10:

THEOREM 10. / / t(O, q) = t(O', q) for every q e SB then O\\O'.

PROOF. Let q1e\O'\ and O"\\O, q1e \O"\. If O' = O" then we are
finished, otherwise \O"\ C |2J'| for some SS' eSS(O'). ByA 10, t(O, q)=t(O", q)
for all q e SB, hence t(O', q) = t(O", q) for every q e |SS'|. But from trans-
formation equations (9) (with /J,", v" replacing p, v) it is seen that
! ( / + „ ' ) = W+v") for all u,', v' if and only if a = fi = 1 and p+a = 0
in (9), hence O'\\O". But q1 e \O'\ n \O"\, therefore O' = O", O'\\O.

All (AXIOM OF PARALLELITY)

Let (O, P) and (O', P') be bases of reference such that {O}\{O'}, {P}\{P'}.
Let {P*} be a l.s. in 93(O, P), conjugate to P, and {P1*} a l.s. in 33(O', P'},
conjugate to P'. Then {P*}\{P'*}.
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The axiom is in a sense a dual of AlO for photons, as seen from Theorem
11 below. It attributes an objective meaning to the notion that two light
signals emitted by observers at relative rest travel in the same direction.

THEOREM 11. {P}|{P'} is an equivalence relation.
We have to show that {P}\{P'}, {P}\{P"} imply {P'}\{P"}. Now if

{P}j{P'} then there is an O' e 0, P'* e 0> such that both P and P' are in
%*(O',P'*) and are conjugate to P'*. Let {P}\{P'}, qe\P"\, and let
{O"}\{O'}, qe\O"\ such that (O",P") is a base of reference. Let {P*}
be conjugate to {P"} in 33(O", P") then by All , {P*}|{P'*} and since
{P"} is conjugate to {P*} and {P'} is conjugate to {P'*}, again by All we
have {P'}|{P"}.

A class of parallel light signals is called a direction. Two pseudo planes
S3(O, P) and 33(O', P') are called parallel and denoted 33(O, P)|33(O', P')
iff {O}|{O'} and {P{|{P'}. Axiom All asserts that the definition is in-
dependent of the bases of reference selected in 33 (O, P) or 33(O', P').
From Theorems 9 and 11 it follows that

THEOREM 12. 23(O, P)|33(O', P') is aw equivalence relation.
From Axiom A7 and Theorem 7 it follows that

THEOREM 13. Given 53 (O, P) and an event q there is exactly one 35 (O', P')
through q which is parallel to 33 (O, P).

If 93 (O, P)|33*(O', P') then we call 33(O, P) and 33(O', P') antiparallel.

4. Relativistic kinematics

We are now in a position to derive the laws of relativistic kinematics
when motion is restricted to one space direction. We have already obtained
(formula (7)) an expression for the relative speeds of observers in terms
of the grid coordinates. We now prove

THEOREM 14. The relative speed v(O', O) is independent of the local
time on O and O'. Furthermore

(12) v(O, O') = v{O', O).

This is Urquhart's theorem mentioned in the introduction. Speed of
course is always expressed as a fraction of the speed of light.

First, it is clear that expression (7) only depends on the events through
which O' passes, but not on the local time on O'. If the s.l.t. is changed
on O by a linear transformation (2) then both a and /? receive the same
factor y, and (7) remains unchanged. Thus we only have to verify (12).

But we have already seen in (9) that the transformation to grid coor-
dinates relative to O', are given by fi = a.fi' -\-p, v = fiv'-\-o, hence
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p' = n'ft + p', V' = p'v+o
with

(13) a' = I/a, p' = 1//?, p' = -p /a , a' = -o//9,

and

as required.
Next we derive the composition rule of relative speeds. Let {Ox}, {O2}

be observers in |SS(O, P) | and (A, ft) the coordinates reltive to F(O, SS),

the equations of Oif i = 1, 2. Transforming to coordinates {X', )JL') relative
to r{Olt SB), we obtain from (9)

f l =

and substituting into (14) with t = 2 we obtain

' - - ( * • • ' 1 • •

hence

v{Olt O2) =

Hence if we set

so that v(O, Oj) = 1^1, v(O, O2) = \v2\, we obtain

(15) v ^ , O2) =—?—^-,
1 — V| Vo

which is the relativistic composition rule of relative speeds.
To derive the formula for the Lorentz-Fitzgeiald contraction, we have

to generalize the definition of distance. The proof proceeds on familiar lines.
Given O sO*, let px, p2 be distinct events in 28, Olt O2 particles such that

l, pte\Ot\, O.WO, O2\\O.

Then the distance d(O;p1>p2) of px and p2 relative to O is defined
by the formula

(16)

The definition is in accordance with Einstein's definition of distance by
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means of reflected light signals. The particles Ox, O2 themselves represent
the endpoints of a "rigid" measuring rod.

Let 93 be the pseudoplane determined by Olt O2 and {O'} any ob-
server in 93. Suppose the events px e \O1\, p2 e |O2j are simultaneous relative
to O', i.e.

t(O',p1)=t(O',p2).

If (A, ft) are grid coordinates relative to Ox, (h'.p1) relative to O' then
we have

[i = att' + p, v = p

for the equation of O' relative to r(Olt 33), and

H = a./u'-\-p, v = fiv'-\-o

for the transformation equations of the grid coordinates.
Let pi have coordinates (^./i-i), pi have coordinates [p-2-\-b, u2—<5)

relative to r(Olt 93) where |<5| = d{Ox, O2). Hence if («-, v\) are the coor-
dinates of pi relative to F(O'', 93) then we get

JUJ. = a/4+p = flv^+o, [i2+d = <x/4+p> v2—d = /Svg+cr,

and from the conditions of simultaneity ^i+v^ = u'2-\-v'2. These together
give

and

This is defined as the distance of Ox and O2 relative to O'; we denote it
by d(O'; Olt O2). Its value is independent of the choice of px and p2

on Ox and O2 provided that they are simultaneous relative to O', but
depends on the standard local time on O'.

To obtain an objective measure of distance, it is necessary to syn-
chronize the times on O and O'. This is accomplished as follows: Let
O;[|O', O2||O' such that

(17) d(O\, O2) = d(Olt O2) = \d\.

We say that O and O' are synchronized iff

(18) d(O'; Ox, O2) - d(O; O\, O2)

for any pair of observers O^O, O2||O, O'^O', O'2\\O' satisfying the con-
dition (17). This is so if and only if
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for every <5,

i.e.

(19) a/3 = 1

in the transformation equations from O to O'. The condition can always
be enforced by a suitable change of the standard local time on O or O'.
The definition is in accordance with our previous convention regarding the
synchronization of parallel particles.

By using condition (19) we find for the speed of O' relative to O

2/3

hence

(20) d(O'; O,, O2) =

The formula expresses the distance of a pair of parallel particles (end-
points of a rigid rod) relative to a moving observer, provided that all relevant
times are synchronized; it is the well-known formula for the Lorentz-
Fitzgerald contraction.

The reference grid we have been using so far to locate events in a
pseudoplane 33 consisted of a system of photons [P^, P*]. We pass now to
the more conventional method of describing events by time and distance
coordinates, given by

x = \{p-v), t = \(}i+v).

If O' is a standard particle on 33, intersecting O at q, and if the origin
of the local time on O and O' is chosen so that q = O(0) = O'(0), then
the transformation equations to F(O', 33) are JX = a.fi', v = flv' where
H' = x'+t', v' = t'—x'. This gives

x =

t =

If moreover O' is synchronized with O and v is the relative speed of O'
and O so that a = 1//3, \{x+P) = i(/J+l//S) = 1/Vl— v2, then we obtain
the usual form of the Lorentz transformations

x = y{x'±vt'), t = y(±vx'+t'),

with y = l/Vl—v2. The validity of these equations depends very essentially
on the assumption that the local times on O and O' are synchronized.
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5. Axioms of dimension, symmetry and isotropy

All axioms formulated so far were compatible with a Universe con-
sisting of a single pseudoplane 33 (O, P). We need further axioms to extend
the geometry to four dimensions.

A12 (AXIOM OF DIMENSION)

Let (O, P) be a base of reference. Then there is an event q not in 33(O, P).
The axion asserts that SB is at least three dimensional.
A one to one mapping <p of SB onto SB is called an automorphism iff

it preserves standard particles and photons:

Oe<9* => <f>oOe@*, P e 0>* => <f> o P e 0>*.

Clearly the automorphisms of 933 form a group 91, with identity

e : e(q) — q for all q e SB.

THEOREM 15. An automorphism carries pseudoplanes into pseudoplanes
and preserves parallelity of world lines and pseudoplanes. More specifically,
ifj,e%and Ox||Oa, {Px}\{P^then (<£o Ox)\\(j>o O2), { ^ o P J ^ o P , } .

For let (O, P) be a base of reference, 33 = 23(O, P), r{O, 33) = [7%, P*].
Then <f> o P* is a photon, intersecting <f> o O and <f> o P hence contained in
<£($) =33(<£o O, <j>oP). It intersects <f>o O at <f>oO(v) from which follows
that {<f>oPM, <f>o P*} is the grid determined by the base of reference (<f> o O,
(f) o P), and coordinates of q e 33(O, P) with respect to T(O, 33) are the same
as the coordinates of </>(<?) with respect to r(<f> o O, <£(33)). All statements of
Theorem 15 now follow trivially.

Translations are examples of non-trivial automorphisms. Let O e 0*
and A be a fixed real number. We define roK: 3B->SB as follows: Given
q 6 SB let q = O'(t0), O'\\O. Then

*O.A(?) = O'
In particular

so that ro A maps every O'\\O into a standard particle, homographic
with O'.

Suppose now that {OJ is not parallel to {O} and q e [O^. By Theorem
7 there is a unique particle O'||O through q and Ox lies in a pseudoplane
33 e-^(O'). Let the equation of Ox(t) relative to T(O', 33) be

Then by an easy calculation the equation of ro>A o O^t) is fi = «.t-\-p-\-A
v = (Jt+o+A, hence a standard particle (by Theorem 6), parallel to O1
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Similarly the photons of the corresponding grid {P^, P*} are mapped
into

ro,x o P*(t) = P*

We call TO A a time translation by A, in the direction of O.
UOeG*, Pe 0>*, and A is a fixed positive real number we define the

space translation a0 p x and the light translation vorx as follows: Given
q e SB, let (O', P') be the unique base of reference such that q=\O'\n\P'\,
O'\\O, {P'}\{P}. Let OJIO, \Oj\ C |SS(O', P')\ with equation

= t-X, v{t) = t+X.

Then if q = O'(t0) we define

Thus by (4) and (10), t(O, q) = t(O, aor>x(q)). Clearly

To show therefore that <r0PyX carries standard particles and photons into
standard particles and photons respectively, it is sufficient to prove that
vOtPiX has this property.

Let Ox be a given standard particle, ^ = %$(Olt P±) e^(Oj) such that
{ P J K n By Theorem 11, {PA}|{P} for every P„ in r\Olt %,) = [P, , P,*].
By A9 we can choose the s.l.t. on {Ox}* so that each P^ should be syn-
chronized with P. Then with respect to this grid of reference the equation
of vo r x o O] (t) is given by

H{t) = t, v(t) = t+2X,

hence it is a particle parallel to Ox.
Next consider a standard photon Pt. If {P!}|{P} then vo p x trivially

carries Pj into a homographic standard photon. If {Px} is not parallel to
{P} then there is a l.s. {P*}|{P} intersecting P1 and they determine a pseu-
doplane 9S(O1( P J in which every {P*} intersecting {Pt} is parallel to
{P*} hence (by Theorem 11) to {P}. By selecting the s.l.t. on Px as before,
we find that vorx carries Px unto a standard photon in ^8(O1,P1), parallel
to Pj.

Since both time and space transalations have inverses (T~\ = xo,-i>
ao,p,x — ao,r;x where P* is a conjugate of P in %$(O, P)), they are auto-
morphisms.

We say that the automorphism <f> e 91 admits O iff {<f> o O}|{O}; in
that case we define y = y(<f>, O) by O'(yt+0) = <f> o O(t) where O'\\O.
Hence the symbol y(<f>, O) is only defined when <f> admits O.
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THEOREM 16. Suppose that the automorphism <f> e 91 admits O e G*
and let OX\\O. Then <f> also admits Oj and y(<j>, Ox) = y{<f>, O).

PROOF. Let Ox = O ^ ) be in SSe-^fO), its equation in r(O, 93) =
17%, P*] being

Since <£ is an automorphism. [<f>oPM, <f>oP*] is a grid in 33'= <̂  (93) eVtyo O),
by Theorem 15. Let O'(t') = ^ o O ( l ) where O'\\O, hence *' = yt+fi, y > 0.

Let ye |Ojl have coordinates /*&), v{t^ in /"(O, 33). Then q' = <j>{q)
has the same coordinates (ft, v) in F(<j> o O, 33') and its coordinates in

', S3') are given by ft' = yfi+fi, v' = yv+/9. Hence the equation of
relative to /"(O', S3') is

which proves the theorem. It shows furthermore that

d(O', q') =, y\d\ = yd(O, q).

Since q was an arbitrary event on O1( we conclude:

COROLLARY. Suppose that <f> e 91 admits O, and OX\\O. Let O' be homo-
graphic with <f> o O, Oj homographic with <f>o O1 ( O' | |O, OiHOi. rAm

rf(O', OJ) = W(O, OJ.
For this reason we call the positive number y(<f>, O) the dilatation ratio

of <£ (relative to O).
We say that the automorphism <f> reflects the base of reference (O, P)

iff the following is true: <f> o O = O (i.e. all events of O are fixed points
of (f>) and (f> o P = P* where P* is the (unique) conjugate of P in 33(O, P),
synchronized with O and passing through \P\ n \O\.

THEOREM 17. / / <f> reflects (O, P) and T(0,33) = [P, , P*], 93 = 8(O, P),
/Aew <j> o Pp = P*, <f> o P* = Pp for every /i, v.

Hence if <£ reflects (O, P) then it reflects every (O, P^) and every
(O, P*). Thus the concept of reflection refers to O and a pair of conjugate
pseudoplanes 93, 93* e"V{O), and we can more appropriately speak of <f>
reflecting 93 (or 93*) with respect to O. Clearly <f> admits O and the dilatation
ratio is 1; furthermore, <f> o <f> is the identity on 93.

For the proof we may assume that P = Po. Now P*, v # 0 intersects
Po at P0{\v) = P*(Jv) and O at O(v) = P » . But <j>oP0{\v) = P*{\v),
<f,o O(v) = O(v) therefore <f> o P* is a standard photon P'(t) with
P'(\v) = P*(\v), P'(v) = O(v), i.e. identical with Pv. By replacing Po with
say P* in the argument we find similarly that (/> o P/l = P* for all [i ^ 1.
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The missing equations <f> o P* = Po and <f> o Px = P* are found by con-
sidering photons intersecting P j and O, and P? and O, respectively.

It follows from the theorem that if q e 93 has coordinate (fi, v) relative
to r(O, 93) then <f>(q) has coordinates (v, /i) in r(O, 93). In particular if
O^IO, |Oil C |S3|, and its equation in T(O, S3) is

= t+8, v(t) = t—8.

Hence O* is obtained from O1 by reflecting it with respect to O.

A13 (AXIOM OF CENTROSYMMETRY)

Given O e <S* there exists an automorphism Co which reflects every
33 6T^(O) with respect to O.

The mapping £o : 93 -> SB is uniquely determined by the above con-
dition. In fact Co(p) = p for every p e |O|, and if q e SB, q $ \O\ then 'Qo{q)
is determined as follows: Let 93 eT^(O) be the unique pseudoplane which
contains q, and (fi, v) the grid coordinates of q in F(O, 93). Then Co(?) is
in 93 and has grid coordinates (v, u). The point in the statement of A13 is
that the mapping so obtained is in fact an automorphism of SB, i.e. carries
world lines into world lines. Clearly Qo o Co is the identity automorphism.

A14 (AXIOM OF REFLECTION SYMMETRY)

Given O e 0* and S3 eT^O), there exists a unique automorphism p = p0 s

of SB with the following property: p is a reflection of S3 with respect to O and
is a reflection of every S3'|S3 with respect to some O'\\O, |O'| C 93'.

Axioms A13 and A14 are the precise kinematic expressions of what
is understood by the centrosymmetry and reflection symmetry of space.
We call po s a reflection of SB. It determines in every pseudoplane S3'|9J
a unique particle O'||O with the property

(22) PofioO'=O', Po.i9 = po,n.

It follows from the second equation (22) that po s o po a is the identity
on every S3'|S3, hence on the whole of SB,

(23) Po.fi ° Po.ti — e-

We denote by 9io s the set of all particles O'||O with the property
(22) and by |3Joa| the union of all sets of events \O'\, O ' e 3 t a s . Thus
with each reflection po s we associate a "plane of reflection" 9to s con-
sisting of all particles O'||O invariant under pov. Because of A12, 3f{o s

consists of at least two particles.

THEOREM 18. Let 93 = 93(O, P) e^(O), X > 0. Then

(24) ao,r,2i ° Po,» = POl>»
 where °i = °O,F,X ° °
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By direct calculation one can verify that the automorphism on the left
hand side of (24), has the properties required by A14, with OL replacing
O. Because of the uniqueness postulated in A14, it must be equal to pOl,s .

The theorem shows that the space translation ao r x transfers 9t0 s

into another plane of reflection 9to ffl where O^IO and jfRoa,| n |5RO 9 | = 0.
We say that 3ftas and 5RO s are parallel planes of reflection and write
3fto s|9?o 8 ; their distance is defined

(25) d(mOt<B, $tOiV) = |A| where O1 = aOPjL o O, ® = » ( O , P).

Clearly parallelity of planes of reflection is an equivalence relation and 28
is the union of all dio s which are parallel to a fixed 9tOi8.

THEOREM 19. / / N e^V* and \N\ has two distinct events in common with
the hyperplane of reflection |SRO s | then \N\ C |9JO 8 j .

For Nx = Po s o N e Jr*' since po s e 91, and Nx(ti) = TV(̂ ), i = 1, 2
for some tx^ t2, hence Nt = N, all events of V̂ are left unchanged by po?SJ.

Now given O' e 6*, q e SB, ^ £ |O'|, let {Px} be the unique l.s. from
O' to q and let >̂ == \O'\ n IPJI. Then there is a uniquely determined local
time t on {O'} and a particle O(*) = O'(^) such that p = O(0), ? = P'(l)
where {P'} = {P^ and P ' is synchronized with O.

With these specifications let 33' = 33 (O, P') and 9fOiiB< the corresponding
plane of reflection. Given any O1 e $RO 9- Ox ^ O, let P be the photon
from p to Olt synchronized with O. Since P has two distinct events in
common with |9JOiB-|, \P\ C |9tOi8'| by Theorem 19. We call the configuration
[q, O, P] with the above specifications a cross of reference.

A15 (AXIOM OF ISOTROPY)

Given two crosses of reference [qit Oit Pt], i = 1, 2 there are precisely
two automorphisms <f>o i = 1, 2 swcA that

(26) «k(?1) = ? 2 , <f>ioO1= O2, <£, o P , = P 2 .

Moreover

(27) <Ai o ^ = ^ o &"1 = Po2,s

/or sowe ^8e1^(O2), |V|C3tO j S, | wAere S3'6T^(O2) is the pseudoplane
determined by q2 and O2.

This is the last of our axioms; it expresses the complete isotropy of
observers and light signals with respect to space positions and directions.
The fact that there are exactly two automorphisms of the required kind
which only differ by a reflection, ensures that 28 is exactly four dimensional.

It follows from (26) and (27) that

(28) Pos>»(?2) = ft. Po8,» oP2 = P2
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hence ft. e |9fto s | , |P2| C \?RO _8|. If in particular we take ft = q2, Ox = O2,
Px = P2

 m A15, then one of the <f>t is the identity automorphism. By
setting 0X = £, <£2 = p we obtain

THEOREM 20. Given a cross of reference [q, O, P] there is a unique
reflection p = po% with the following properties:

(i) ?6 |» o > , 0 | , |P | C |9ftOji8J.

(ii) |33O| C |9fta!B,| where ? € |» ' | .

We denote this reflection by po(q, O, P); the pseudoplane SS0 is said
to be orthogonal to the cross [q, O, P]. Thus with every cross of reference
[q, O, P] we associate uniquely three reflections:

Po = Po(?> O, P) = po So,

Pi = Pi(q, O, P) = POiSBi where ^ = SS(O, P)

Pi = ft(?, O, P) = Po^ where « 2 = »(O, P'), ? = P '( l ) .

Let 3S0 = SS(O, P") and set q0 = P"( l ) , ft = P(l) . Then Co o p0 o p2

is an automorphism which leaves q and ^0 invariant and carries ft into its
reflection with respect to O. But [q, O, P"] is a cross of reference and
therefore by Theorem 20 the unique automorphism ^ e which leaves the
cross invariant is the reflection po(q, O, P"). Since it carries ft into its
reflection with respect to O, it must be identical with po s = p1. The
same is true of Co ° P2 ° Po a n d m fact O I a n y permutation of these three
automorphisms. Hence ; o , Po, Pi, P2 mutually commute and p0op1op2 = Co.
Thus we have

THEOREM 21. With every cross of reference [q, O, P] there are uniquely
associated three reflections pt — po „., i = 0, 1, 2, satisfying

(29) Pi°P, = Pt°P<.
Po ° Pi ° P2 = Co

having the following property:
If $ . = SS(O, P<) where P^O) = 0(0), and qt = Pt(l), then each

[ft, O, Pj], i ^ j , i, j — 0, 1, 2 is a cross of reference with ^k, k ^ i, k ^ j
orthogonal to [ft, O, P,] and [ft, O, P2] = [?, O, P] .

6. Properties of 3-space

We have seen (Theorem 9) that O\\O' is an equivalence relation; we
denote by 9ft(O) the equivalence class represented by O. 9ft(O) is the space
of simultaneity relative to O; thus O' is a point of 9ft(O), O' e$R(O), iff
O' e C* and O'\\O. Clearly 9ft(O') = 9ft(O) for every O'\\O. From Theorem
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7 it follows that through every q e SB there passes exactly one O' e 9?(O)
so that SB is the set union of all \O'\, O' e 9?(O). We shall now study the
geometry of 5R(O).

A straight line (or simply a line) in 9f(O) consists of the set of points
O' which intersect (in 28) a given photon P. All photons in 93 (O', P) define
the same line, by Axiom A7 (and its corollaries Theorems 4 and 5), so that
there is a one to one correspondence between lines in 9l(O) and pairs of
conjugate pseudoplanes [93,93*], both in 93(O') where O'e9l(O). We
denote by &{O) the set of lines in 9t(O), and by S£(O) the set of directed
lines, i.e. lines together with a sense of ordering of the points on the lines,
induced by the ordering on P in 93 (O', P). Hence there is a one to one
correspondence between directed lines in 9t(O) and pseudoplanes 93 eT^(O'),
O' e 9?(O). Identifying these two we write 93 e -£?(O). As before, |93| denotes
the set of events contained in the corresponding %S(O', P).

The ordering of points on a directed line is isomorphic to the ordering
on the real line via the parameter d in (10). Hence the usual properties of
betweenness of points on a line hold, also the Archimedean axiom. Clearly
this ordering is independent of the standard local time on O, and is reversed
for the conjugate line 93* in which the roles of P and P* are interchanged.

Distance of the points O', O" e 9^(0) is also defined through the para-
meter d, namely by d(O', O") = \d\, in accordance with our earlier notation.
The unit in which the distance is expressed depends of course on the local
time on O.

THEOREM 22. Through any two distinct points O', O" e 9t(O) there goes
exactly one line.

The theorem follows from the fact that two distinct parallel observers
uniquely determine the pseudoplane |93| in which they are contained. For
if q e \O"\ and {P} is a l.s. through q which meets O' then by the definition
of parallelity O" must lie in |93(O', P)\ and by Theorems 4 and 5 the same
|93| is obtained from every q e \O"\.

COROLLARY. TWO distinct lines meet in at most one point.

THEOREM 23. Given distinct points O1( O2e${(O) there exists a point
O3 not on the line through Olt O2- Furthermore

(30) d(Ot, O3) < d(Olt Oz)+d(Olt O3).

PROOF. By A12 there is an event q not in the pseudoplane |93| through
O1 and O2, and by Theorem 7 there is an O3 e 3i(O) through q. This proves
our first statement.

By A4 there is a l.s. {P} from Ox to q (hence not in |93|). Let
px = \P\ n IOJ, {PJ a l.s. from O2 to P1 ( p2 = \Pt\ n |O2|, O' a particle

https://doi.org/10.1017/S1446788700005188 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005188


[24] Kinematic geometry 157

from/>2 to q (which exists by A5), {P2} a l.s. from^>2 to O3, q' = \Oa\ n |P2j.
We have p2<plt p\< q, p2 < ?> As < <t'> i' < 1 b v Theorem 1.

Furthermore we have the equations

t{O,px) =

t(O, A)+^(O1( O3) = t(O, q) > t(O, q') = *(O, p2)+d(O2, O3

which give the triangle inequality (30). Thus 9t(O) is endowed with a metric
topology, derived from the distance function d{Olt O2).

Two directed lines SS1; 332 are called parallel and denoted SS1|SS2 iff
the corresponding pseudoplanes in 23 are parallel, antiparallel iff SS^SS*.
Theorem 12 shows that 33]JSS2 is an equivalence relation. Theorem 13 gives

THEOREM 24. Given 3SeJ?(O) and O'e9?(O), there is exactly one
directed line W e £P(O) such that O' e SS' and 3S'|SS.

This of course is the well known Euclidean parallel postulate which
appears here as a theorem.

A one to one mapping rp of 9?(O) onto 9?(O) is called a similarity iff
it carries lines into lines and preserves the ratio of distances. Hence

and

(31) % ( O i ) . V(OS))/^(O,, O2) = y > 0

for all Oj, O2e9f{(O), OX^O2, where y is independent of Ox and O2.
If in particular y = 1, i.e. >̂ preserves distances, then it is called a congruence.
Clearly a similarity is a homeomorphism 9t(O) ->- 9{(O) under the metric
topology.

Suppose now that <f> is an automorphism of 3B, admitting O. By
Theorem 16 it admits Ox for all Ox e 3t(O) and maps Ox into a particle
<f>oOt which by Theorem 15 is homographic to an O'1e'Si(O). Thus it
defines uniquely a one to one mapping <f>* of di(O) onto 91(0), through
<f>* o Ox = O[. Since by Theorem 15 <j> maps pseudoplanes into pseudoplanes,
<f>* maps lines of 5?(O) onto lines. Furthermore it follows from the corollary
of Theorem 16 that d{$*{Ox), <f>*{O2)) = yd(Ox, O2) for all O1( O2 e «R(O)
and a fixed positive constant y. Hence we obtain

THEOREM 25. / / <f> is an automorphism of SS admitting O, and <£* is
the associated mapping 9J(O) -»• 9t(O) ttew ^* is a similarity.

Conversely, given a similarity y> of 3ft(O), we can extend it to an
automorphism <f> of 333 by the rule: If q = O^tf), Ox| [O, then <f>{q) =rpo Ox{yt).
It is easy to verify (by reverting the proof of Theorem 16) that <f> is in fact
an automorphism and that y> = <f>*.

The congruence a* corresponding to a space translation oo> r k, O' e 91 (O)
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is a vector translation characterized by the direction 33 (O', P) and magnitude
X. Similarly to fo, O' edt(O) and p o , s , 33 e-f{O)', there corresponds a
central reflection £*, and space reflection p*, s of $R(O). The first one is a
congruence which leaves O' invariant and carries Ox e SR(O), Ox ^ O'
into O2 = ££, (Ox) ^ Or with the property that Oly O', O2 are collinear
and d(O1, O') = d(O2, O'). The second is a congruence which leaves all
point of the plane of reflection 9to, s invariant. According to Axiom A14
there is exactly one space reflection p* = p*, „ which leaves O' invariant
and carries the directed line 33 through O' into its conjugate, reverting its
direction.

If Oi e 33, Ox =£ O', then d{Olt O") > d{Olt O') for every O" ^ O',
O" E3f?o,s; for P*(O") = O", d{Ox, O") = d{O2, O") where O2 = p*(Ox) e58
since p* is a congruence, and

^ O') = d{Olt O2) < ifOj, O")+ i (O a , O") = 2d(O!, O")

by the triangle inequality. Thus d(Olt O') is the shortest distance of Oa

from points of 5RO'S. We say that the line S3 is perpendicular to the plane

If O L O2 e 3fJO'S, Ox ^ O2 then all points of the line S3' joining Ox

and O2 lie in 9fJ0< „. This follows from the fact that p* (being a congruence)
carries S3' into a line S3", but leaves two distinct points of S3' invariant;
hence S3" = S3' by Theorem 22, and since distances are preserved, it must
leave all points of S3' invariant. If in particular O1 = O' then S3 is said
to be perpendicular to S3' at O'.

From Theorems 20 and 21 it follows that if S3 is perpendicular to S3'
at O' then also S3' is perpendicular to S3 at O' and there is a unique (non-
directed) line [S3", S3"*] through O' such that S3" is perpendicular to both
93 and S3'. From here the two-dimensionality of 9fto, 9 and the three-dimen-
sionality of 9?(O) follows immediately.

It would lead us too far to develop the whole of the Euclidean system
in a systematic fashion; we only mention the most essential points. From
Theorem 18 it follows that all planes of symmetry 9to s where Ox is on S3,
can be obtained from 9JO<>SB by a vector displacement along S3; and in
particular, every O2e?ft(O) is contained in exactly one 9ftOiiffl. It follows
that from every O2 not on S3 one can drop a unique perpendicular S3' upon
S3. The reflection of O2 with respect to S3 is then obtained as the unique
point O2 on S3', O2 ^ O2, such that d{Ox> O2) == d{Ox, O2); the mapping
vZiOi) — ®2 is called a half-turn about 33. It can be identified as

Vt = & o pl-i9 = p*<>s o £*,

where O' is any point on S3. Hence a half-turn is a congruence which carries
lines in ?RO'>S into their (parallel) reflection in 9JO'jS with respect to O'.
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From here all the laws of alternate, opposite and complementary
angles can be derived, and hence the usual properties of similar triangles,
including the angle-sum. As a result we obtain Pythagoras and the whole
of coordinate geometry. A detailed discussion is omitted.

Appendix

The following remarkable theorem is due to M. L. Urquhart; he gave
an account of it in a symposium on relativity at the 1964 meeting of the
Australian Mathematical Society in Adelaide.

THEOREM OF URQUHART. Let OeO, y e | O | , {P} a l.s. through q,
?i e 1̂ *1. ?i > <7- CM a l-s- through qx hut not lying in SSX = SS(O, P),
q2 e IPJ, q2 > qlt {P2} a l.s. from q2 to O.

Let {O} be an observer through q2 in $82 = SS(O, P2), {P*} the l.s. from
q to O', p2 = \O'\ n \P*\, {P?} the l.s. through p2 intersecting Pt. Then

(i) Pf intersects %1.
(ii) If <px = \P*\ n ISSJ and {P*} is the l.s. from px to O then

\P*\ n \O\ - \P*\ n \O\.

The essential part of Urquhart's theorem is in the second statement;
the first statement is merely a kinematic formulation of Euclid's main
incidence axiom of the plane. The significance of the theorem is that it
can be formulated (though not proved) from the existence and incidence
axioms alone (Al—A6 and A12) without assuming standard time, syn-
chronization and symmetry. Urquhart himself took the view that it should
be taken as one of the kinematic axioms.2 At any rate it seems likely that
any part of the Euclidean system which cannot be derived from axioms
Al—A12 and this theorem, cannot be obtained from purely kinematical
observations.

In Euclidean terms the theorem states the following:

URQUHART'S THEOREM, GEOMETRICAL FORM. If in the configuration
shown (Fig. 1)

(Al) AE+EB = AF+FB

then

(A2) AC+CF+FA = AE+ED+DA.

The following is Urquhart's proof, as reconstructed and simplified by
Professor B. C. Rennie. The proof rests on the following Lemma:

» A trivial form of the theorem (assuming O' to be parallel to O) appears as a postulate
in Robb's system [3, p. 167].
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Given a circle and given two points A and C outside the circle, the line AC
will be a tangent if the distance AC equals the difference between (or the sum
of) the length of a tangent from A and the length of a tangent from C.

To prove the Lemma, draw a tangent AT. On it take S such that
AS = AC. By assumption ST = the length of tangent from C. It follows
therefore that if 0 is the centre of the circle, SO = CO, the triangles OAS
and OAC are congruent and angle OAS = angle OAC. Hence AC is a tangent.

Fig. 2

Now suppose that (Al) holds; then the four sides of the complete
quadrilateral (marked A, B, C, D, E, F in Fig. 2) all touch a circle. For
draw a circle touching the three sides AFD (at U), EBD (at V) and FBC
(at W). Then AU-EV = AE+FW- {EB+BW) =AF+FB-EB = AE
hence by the Lemma AE is tangent to the circle. Consequently

AC+CB = {AU-CW)+CB = AU+BV = AD+DV+BV - AD+DB

and (A2) follows.
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