Aims And Scope

Neuron Glia Biology publishes high-quality original research articles focusing on the cellular and molecular bases of the interactions between neurons and glia. The scope of the journal covers all aspects of the neuron-glia relationship, including how they influence each other’s development, communication, and activity. Papers on the developmental origins of glia, mechanisms of their maturation, and their plasticity are of particular interest. The journal also welcomes papers on the interactions of non-neuronal cells with neurons, including immune cells, pericytes, astrocytes, and microglia. These interactions can occur both in the brain and peripheral nervous system, including spinal cord injury, and involve transmitter release, synaptic communication during development, information processing, and disease. Furthermore, research on the maintenance of adult neural circuitry, cell migration, synaptogenesis, channels and transporters, cell adhesion molecules, neuroprotection, neurodegeneration, and neurogenesis is encouraged. Presented in a single continuous series, this journal serves the purpose of providing the principal mapping the area and its aims adapted for the purposes of the journal. The Editor may require papers that provide unambiguous evidence of their conclusions. No abstracts will be accepted.

RESULTS

The section may contain subheadings. Authors should avoid using multiple figures with the results. The results should be summarized to have a meaningful function and to be consistent with the conclusions. The results section should include a minimum of five words for the purposes of indexing, which may sometimes be their main role and may not justify right margins. Numbers should be spelled out unless they are in a table or in the text context of a number. For example, one should spell out five, but use 5 in the text. Figures and tables should be placed in the document where they are discussed. The captions should be placed immediately below the figure or table. The captions should be self-contained and provide all necessary information to understand the figure or table. The figure or table should be placed at the end of the manuscript, after the main text.

Originality and Copyright

In accordance with the Neuron Glia Biology manuscript style, all manuscripts must be original and have not been previously published or submitted for publication elsewhere. Authors who publish in Neuron Glia Biology must agree to assign copyright to the publisher. The publisher reserves the right to open access to the Neuron Glia Biology content. No manuscript will be accepted until a signed copyright form is submitted. The copyright form can be found on the Neuron Glia Biology website.

Submissions

Neuron Glia Biology accepts original manuscripts, allowing authors to benefit from timely reviews and revise their manuscripts before publication. The peer-review process is managed by the journal's editorial team. All manuscripts submitted for publication will be handled by a single Editor-in-Chief. Manuscripts that do not conform to the style of Neuron Glia Biology can be rejected without review. Manuscripts that are not original or have been previously published or submitted for publication elsewhere will be rejected. Manuscripts that do not conform to the style of Neuron Glia Biology can be rejected without review. Manuscripts that do not conform to the style of Neuron Glia Biology can be rejected without review.

Manuscript Preparation and Style

Neuron Glia Biology manuscript style is based on the Harvard (author-date) system, which allows authors to cite sources directly in the text. All manuscripts submitted for publication will be handled by a single Editor-in-Chief. Manuscripts that do not conform to the style of Neuron Glia Biology can be rejected without review. Manuscripts that do not conform to the style of Neuron Glia Biology can be rejected without review. Manuscripts that do not conform to the style of Neuron Glia Biology can be rejected without review.

COPYRIGHT NOTICE

Copying

This is a copyrighted document and is protected by national and international copyright laws. The Neuron Glia Biology website and electronic version of this publication are protected by copyright laws. All rights are reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Publisher. Permission for the reproduction of articles in this publication is available from permission@cambridge.org. The publisher reserves the right to open access to the Neuron Glia Biology content. No manuscript will be accepted until a signed copyright form is submitted. The copyright form can be found on the Neuron Glia Biology website.

Copyright

The publisher and the authors of this document are protected by copyright laws. All rights are reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Publisher. Permission for the reproduction of articles in this publication is available from permission@cambridge.org. The publisher reserves the right to open access to the Neuron Glia Biology content. No manuscript will be accepted until a signed copyright form is submitted. The copyright form can be found on the Neuron Glia Biology website.

References

References should be organized alphabetically by the authors’ last names. Examples of references are given below. References should be cited in the text, which should be formatted in the Neuron Glia Biology style. The reference list should be placed immediately after the text, which should be formatted in the Neuron Glia Biology style. The reference list should be placed immediately after the text, which should be formatted in the Neuron Glia Biology style.
CONTENTS

209 Glutamate receptors: the cause or cure in perinatal white matter injury? 
R. Douglas Fields

213 A dominant connexin43 mutant does not have dominant effects on gap junction coupling in astrocytes 
Sarah Vasquevičiūtė, Charles K. Abrams and Steven S. Scherer

NEUROTECHNIQUES

225 Non-viral genetic transfection of rat Schwann cells with FuGENE HD® lipofection and AMAXA® nucleofection is feasible but impairs cell viability 
Armin Kraus, Joachim Täger, Konrad Kohler, Max Haerle, Frank Werdin, Hans-Eberhard Schaller and Nektarios Sinis

231 The role of enteric glia in gut inflammation 
Georg Von Reynen and Martin Steinkamp

237 Phenotypic changes in satellite glial cells in cultured trigeminal ganglia 
Vithal Balasubramaniam, Nithin superintendent and Manufactures Hanum

245 Development of a glial network in the olfactory nerve: role of calcium and neuronal activity 
Mounir A. Koussa, Leslie J. Tolbert and Lynne A. Oland

263 Roles of glutamine in neurotransmission 
Jan Albrecht, Marta Sidoryk-We˛grzynowicz, Magdalena Zielinska and Michael Aschner

277 Developmental regulation of group I metabotropic glutamate receptors in the premature brain and their protective role in a rodent model of periventricular leukomalacia 
Lauren L. Jantzie, Delta M. Talbot, Dennis S. Selip, Li An, Michele C. Jackson, Rebecca D. Folkert, Wenbing Deng and Francisco E. Jensen