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The response of an axisymmetric jet placed at
various positions in a standing wave
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The hydrodynamic response of an axisymmetric jet placed at various positions in a
standing wave oriented normally to the jet is investigated. At the velocity and pressure
nodes the axisymmetric (m = 0) and first azimuthal (m = ±1) modes are excited,
respectively, through manipulation of the jet exit boundary conditions. At positions
between the nodes, both the m = 0 and m = ±1 modes are simultaneously excited
resulting in asymmetric forcing due to the phase difference between the transverse and
longitudinal acoustic fluctuations. This leads to the asymmetric formation of vortices in the
near field and bifurcation into two or more momentum streams further downstream. The
dominant momentum stream is deflected in the direction of the velocity node. It is shown
that the asymmetric response can be well approximated by a superposition of the boundary
conditions at the pressure and velocity nodes where the contributions from each mode are
proportional to the acoustic pressure and velocity. A method is proposed to characterize
the bifurcation behaviour statistically via moments of the probability density functions
constructed from profiles of streamwise momentum. The jet symmetry and momentum
spreading are shown to be proportional to the magnitude of the transverse acoustic velocity.
Finally, the streamwise velocity is reconstructed as a superposition of Gaussian profiles
providing a robust method to characterize the number of individual momentum streams
which also shows that each of the streams behave self-similarly.

Key words: jets, vortex dynamics

1. Introduction

Over the years there has been an extensive scientific effort to understand and control the
behaviour of turbulent jets (e.g. Batchelor & Gill 1962; Becker & Massaro 1968; Crow &
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Champagne 1971; Brown & Roshko 1974; Winant & Browand 1974; Hussein, Capp &
George 1994 among others). In a free axisymmetric jet, characteristics such as mixing,
spreading and decay rates are uniquely described by the momentum flux at the jet exit
(Wygnanski & Fiedler 1969; Panchapakesan & Lumley 1993; Hussein et al. 1994; Pope
2001). However, altering the boundary conditions through control methods can be used to
significantly alter the behaviour of the jet (Reynolds et al. 2003).

Early studies focused on the preferred mode of jets identified through axial perturbations
of the mean flow typically generated by loudspeakers far upstream of the nozzle. Crow
& Champagne (1971) showed that axisymmetric coherent structures are formed along
the developing shear layer in the near field at a preferred normalized frequency giving
a Strouhal number of St = fD/ū0 ≈ 0.3, where f , D and ū0 are the forcing frequency,
nozzle diameter and mean jet exit velocity, respectively. Other studies have found that
the frequency of the preferred mode lies in the range St ≈ [0.24 to 0.64] (Bechert &
Pfizenmaier 1975; Moore 1977; Hussain & Zaman 1981; Gutmark & Ho 1983). The
preferred mode normally refers to excitation of the axisymmetric mode (m = 0) (Crow &
Champagne 1971), which together with the first azimuthal modes (m = ±1), corresponds
to the most dominant linear modes originally derived by Batchelor & Gill (1962) and
Michalke & Hermann (1982) and later confirmed experimentally by Cohen & Wygnanski
(1987) and Corke & Kusek (1993). Other observed modes can be interpreted as a
superposition of the m = 0 and m = ±1 modes. For example, the flapping mode caused by
transverse forcing in the numerical simulations of Danaila & Boersma (2000) and Gohil
& Saha (2019) and the experimental studies of Corke & Kusek (1993) and Worth et al.
(2020) is a combination of two counter-rotating azimuthal modes, m = ±1, that induce
transverse motions along a plane leading to asymmetric vortex formation in the near field
followed by bifurcation of the far field. These studies have shown that the jet response is
most amplified when forced at or near the preferred mode.

Fewer studies have focused on the combined excitation of these modes through
active forcing or a combination of active and passive forcing (Lee & Reynolds 1985;
Parekh, Reynolds & Mungal 1987; Hussain & Husain 1989; Kusek, Corke & Reisenthel
1990; Longmire, Eaton & Elkins 1992; Longmire & Duong 1996; Reynolds et al.
2003; Suzuki, Kasagi & Suzuki 2004). For specific forcing conditions, this leads to
the phenomena of ‘bifurcating’ and ‘blooming’ jets that split into multiple momentum
streams that increase the spreading rate (see the review by Reynolds et al. (2003)).
A ‘bifurcation’ of the jet into two streams has also been observed in elliptical (Hussain
& Husain 1989) and sawtooth (Longmire & Duong 1996) shaped nozzles combined with
symmetric forcing. Others have used different combinations of active forcing to excite
combinations of modes in both experiments (Lee & Reynolds 1985; Parekh et al. 1987;
Suzuki et al. 2004; Kasagi 2006; Worth et al. 2020) and numerical simulations (Urbin
& Métais 1997; Danaila & Boersma 2000; da Silva & Métais 2002; Tyliszczak & Geurts
2014; Gohil, Saha & Muralidhar 2015; Tyliszczak 2015; Gohil & Saha 2019).

These complex forcing methods usually combine two or more frequencies to excite
multiple modes. For example, Lee & Reynolds (1985) applied axisymmetric forcing at
a frequency fl simultaneously with azimuthal forcing at a frequency fh and explored
different forcing ratios rf = fh/fl. It was found that forcing with rf = 2 led to a ‘bifurcated’
jet whereas non-integer values, e.g. rf = 1.6 and rf = 3.2, led to a ‘blooming’ jet. The
blooming jet is characterized by a so-called shower of vortex rings which propagate in all
angular directions normal to the nozzle centreline. Tyliszczak (2015) showed numerically
that ‘bifurcated’, ‘trifurcated’ and ‘multi-armed’ jets occur when rf is chosen such that the
two fluctuations (symmetric and azimuthal) act in phase at an integer number of angles
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corresponding to the directions of the momentum streams. This gives rise to a ‘blooming’
jet with the formation of vortex rings along a fixed number of preferred directions.

As mentioned earlier, the complex jet response observed typically requires combined
forcing rf /= 1 to excite multiple modes of the jet. To the best of the authors’ knowledge,
the effect of different levels of combined forcing when rf = 1 has not been investigated.
Yet, this case is directly relevant to the practical problem of self-excited thermoacoustic
instabilities in annular combustor geometries typical of jet engines and gas turbines for
power generation (Staffelbach et al. 2009; Worth & Dawson 2013; Bourgouin et al. 2013;
Dawson & Worth 2014; O’Connor, Acharya & Lieuwen 2015). We consider the general
case of an annular combustor that has a rotationally symmetric geometry with a number
of equally spaced burners/jets immersed in a self-excited thermoacoustic resonance in
the form of a standing wave at the first azimuthal acoustic mode of the annulus. A jet
located at a pressure anti-node will be subjected to axisymmetric forcing resulting in the
m = 0 mode, whereas a jet located at the pressure node will be subjected to anti-symmetric
(transverse) forcing resulting in the m = ±1 mode. Both modes are excited at the same
resonant frequency corresponding to the azimuthal mode of the geometry. However, at
all locations in between each jet is subjected to combined forcing from both m = 0 and
m = ±1 modes simultaneously but with a frequency ratio of rf = 1.

This paper presents the results of a parametric study where different combinations
of symmetric and anti-symmetric forcing are applied to an axisymmetric turbulent jet
where rf = 1 by placing the jet at different locations in a standing wave. A second
aspect addressed in the paper is how to characterize these jets. Normally, forced jets
are characterized as ‘bifurcated’, ‘trifurcated’, ‘Ψ ’-shaped, ‘Y’-shaped, ‘blooming’ or
‘multi-armed’ based on two criteria first suggested by Parekh, Leonard & Reynolds (1988)
which are as follows:

(i) The jet should be considered ‘bifurcated’ by visual inspection.
(ii) The velocity profile should contain several ‘peaks’ persisting towards the far field.

Although useful, this definition is somewhat subjective.
Based on the many results presented herein, we propose a statistical method based on

probability density functions (p.d.f.s) constructed from profiles of streamwise momentum.
Statistical moments of the p.d.f.s characterize the centre of momentum, spreading rate and
symmetry which are used to provide a more quantitative measure of bifurcation. We also
address the unanswered question of whether the different momentum streams resulting
from bifurcation are self-similar. In the last section of this paper, a method is proposed to
decompose the streamwise velocity field into separate momentum streams. Each stream of
the forced jet is then analysed separately and compared with the unforced jet indicating
that they are self-similar. The method also introduces for the first time a quantitative way
to determine the number of individual momentum streams.

The paper layout is as follows. In § 2 we describe the experimental set-up detailing the
acoustic forcing and measurement methods followed by a thorough characterization of the
unforced jet in § 3 which serves as a reference for the forced cases presented afterwards.
A characterization of the acoustic forcing system is described in § 4. Flow visualizations
of the forced jet at various locations in the standing wave are then presented in § 5 to
illustrate the jet response. This is followed by the dynamics of coherent structures formed
in the jet near field by the various combinations of symmetric and anti-symmetric forcing
in § 6. Section 7 provides an analysis of the Fourier modes and the modification of the
base flow by the forcing conditions. Then §§ 8–10 present the time-averaged effects of
forcing towards the jet far field, a statistical analysis of the streamwise momentum and
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a simple method which can be used to empirically identify the individual momentum
streams. Finally, we present the conclusions in § 11.

2. Experiments and methods

2.1. Experimental set-up
A schematic of the experimental set-up is shown in figure 1 and is similar to the set-up
reported in Worth et al. (2020). An axisymmetric jet of exit diameter D = 10 mm was
placed at the base of a long rectangular box with side-mounted speakers designed to
produce approximately one-dimensional plane waves which propagate normally to the
streamwise flow direction of the jet. For all cases, the jet can be considered acoustically
compact such that D � λy, where λy is the wavelength of the transverse acoustic wave. The
box dimensions were [Lx, Ly, Lz] = [590, 1520, 220] mm with the top open and exposed
to atmospheric conditions. A large ratio of box width to jet diameter, Lz/D = 22, was
employed to minimize confinement effects in the near field and developing region of the
jet. The air flow rate for the jet was controlled by an Alicat MCR 500SLPM D mass
flow controller (MFC) which ensures less than 2 % variation of the flow rate throughout
the experiments. The flow enters the bottom of a plenum where it is expanded passing
through a set of grids and honeycomb. The flow then enters a 35 mm diameter tube
before entering the nozzle which has a contraction ratio of 12.25 which ensures <0.3 %
fluctuations of the velocity at the centre of the jet exit. The jet exit was knife-edged. The
Reynolds number, ReD = ū0D/ν = 9500 ∼ 104, was held constant and corresponds to a
mean jet exit velocity of ū0 = 14.8 m s−1, where ν is the kinematic viscosity. Throughout
the paper, a Cartesian coordinate system (x, y, z) is used with the origin placed at the
nozzle exit with mean and fluctuating velocities (u, v, w) corresponding to the streamwise
x-direction of the jet, the y-direction parallel with the base of the box and the z-direction
along the depth axis of the box.

Each side of the box is equipped with a Monacor KU-516 (75 W, 16 �) horn driver
powered by PRO1000 power amplifiers and controlled by an Aim-TTi TGA1244 40 MHz
signal generator for transverse acoustic forcing. To characterize the acoustic fluctuations
pressure time series are measured in the box (p1−4) and the injector pipe (p5−6) using
six Brüel and Kjær free-field 1/4′′ condenser microphones flush-mounted to the pipe and
box walls. During the forced jet experiments the two speakers in the box are driven in
phase. Two frequencies: f = 476 Hz and f = 696 Hz, were investigated corresponding to
the frequencies of the fourth and sixth transverse half-modes of the box computed using

f = c
√

(nx/Lx)2 + (ny/Ly)2 + (nz/Lz)2, where c is the speed of sound. Here, nx = 1/4,
ny = 4/2, nz = 0 give f = 476 Hz and nx = 1/4, ny = 6/2, nz = 0 give f = 696 Hz.
These produce standing acoustic waves with transverse wavelength λy = Ly/ny. In figure 1
the acoustic mode at f = 476 Hz is indicated schematically by the dashed lines showing
the pressure in red and the velocity in grey. This mode has four pressure nodes and four
velocity nodes along the transverse direction of the box. The two frequencies correspond
to jet Strouhal numbers St = 0.32 and St = 0.47 which are in the range of the ‘preferred
mode’ of the jet (Crow & Champagne 1971; Bechert & Pfizenmaier 1975; Moore 1977;
Hussain & Zaman 1981; Gutmark & Ho 1983). The relative position between the nozzle
and centre of the box is changed by moving both side walls of the box. A non-dimensional
distance, Y = (Ln − Ly/2)/(λy/4), describes the position of the nozzle relative to the
velocity node at the centre, normalized by a quarter of the acoustic wavelength in the
transverse direction. Hence, Y = 0 and Y = ±1 correspond to the velocity and pressure
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Figure 1. Schematic of the experimental set-up showing the horn drivers used for forcing, the camera set-up
and the nozzle position relative to the acoustic standing wave. (a) Front view and (b) top view.
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Figure 2. Pressure (microphones (black bullet)) and velocity (PIV (red lozenge)) measurements in the box for
(a) f = 476 Hz and (b) f = 696 Hz corresponding to the fourth (ny = 4/2) and sixth (ny = 6/2) transverse
half-modes of the box indicated by the solid lines | cos (2π(ny/Ly)y)| (red solid line) and | sin (2π(ny/Ly)y)|
(grey solid line). All the measurements are normalized by the corresponding maximum pressure in the box p̂T .

nodes, respectively. Measurements of the velocity fields are carried out at seven positions
in the range Y = [−1 to 1] for St = 0.32 and five positions in the range Y = [0 to 1]
for St = 0.47. In this way the jet is subject to different combinations of transverse and
longitudinal acoustic velocity fluctuations, from the symmetric and anti-symmetric modes.
Figure 2 shows the pressure modulus |p̂| measured by the four microphones (p1−4) in the
box and velocity modulus |û| measured by particle image velocimetry (PIV) at the nozzle
centreline at x/D = 10 for all operating points, normalized by the maximum pressure
in the box p̂T . The data collapse on the lines, showing that the mode is approximately
one-dimensional in the transverse direction. The acoustic measurements are described in
detail in § 4.
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2.2. Velocity measurements
The effect of the transverse forcing on the jet was investigated using high-speed planar
PIV carried out in the x–y plane. A time-series of 5000 images were obtained at a
fixed sampling rate of 2 kHz. During the forced experiments the images are sampled
simultaneously with the acoustic pressure measurements and the excitation signal psig. The
pressure and reference signals are sampled at 51.2 kHz for 2.5 s. The signal psig was used to
synchronize the acoustic and PIV measurements. Two Photron SA1.1 1024 pixel2 cameras
equipped with 50 mm lenses with roughly 30 % overlapping fields of view cover a total
area corresponding to y/D = [−8 to 8] and x/D = [0 to 24]. A Litron LDY303HE-PIV
dual-cavity green laser was collimated to a 1 mm thick light sheet illuminating oil droplets
generated by a Laskin nozzle seeder. All velocity vectors were calculated using a recursive
window size algorithm with a final size of 24 pixel2 with 75 % overlap. This corresponds
to a spatial resolution of 0.70 mm. An average uncertainty �u, due to various sources,
such as measurement uncertainties for all experimental and processing parameters, seeding
density, out-of-plane-motion, interrogation window size, etc., was estimated from 1000
vector fields using the method outlined by Wieneke (2015). Within the field of view, an
average value �u ≈ ±0.27 m s−1 is obtained. This corresponds to an uncertainty of 1.8 %
relative to ū0, and 5.7 % relative to an average velocity within the jet field of view.

The velocity fields were decomposed into mean (ū, v̄) and fluctuating (u′, v′)
components noting that the fluctuations contain both the turbulent fluctuations and
harmonic components from the acoustic forcing. The harmonic components are recovered
by conditional averaging, via phase averaging and Fourier analysis. Phase-averaged
velocity fields were obtained by sorting the vector fields into b = 20 bins synchronized
with the phase φb of the external forcing signal psig and are denoted 〈u〉b(x, y, φb) =
1/N

∑N
n=1 un, where un are the binned velocity fields at phase φb.

The jet modes excited by the acoustic forcing conditions were identified using spectral
analysis. Fourier modes denoted by a tilde (∼) were computed using the discrete Fourier
transform as follows:

ũ(x, y) = 2
N

N−1∑
n=0

u′(x, y) exp
(

−j2πn
f
fs

)
, (2.1)

where fs is the sampling frequency and f is the forcing frequency. Each pixel of ũ provides
the magnitude and phase of the Fourier mode of the velocity components represented
as complex numbers. To estimate an uncertainty related to spectral convergence of the
modes, an additional computation using 90 % of the samples produces differences of less
than 2 %. The harmonic time evolution of the flow field is then given by the addition of
the mean fields and the real value of the Fourier mode:

〈u〉F(x, y, φ) = ū + Re (ũ exp (j2πφ)) , (2.2)

which are used in § 7 to examine the modal response of the base flow and near field.

3. Characterization of the unforced jet

To identify the preferred mode of the unforced jet, hot wire anemometer (HWA)
measurements are taken along the jet centreline, y/D = 0 from x/D = [0 to 20].
Figure 3(a) shows contours of the power spectral density (PSD) of the magnitude of
velocity compensated by f , plotted against St. Figure 3(b) shows the spectra at x/D = 7,
after the end of the potential core corresponding to the dashed line in figure 3(a).
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Figure 3. Compensated energy spectra (PSD) of u′ measured along the jet centreline by the HWA.
(a) Contours of streamwise development of the energy spectra and corresponding frequencies/scales. (b) A
cut through (a) at x/D = 7 and y/D = 0. The inset shows urms and is obtained by taking the square root of the
integrated spectra.

Close to the nozzle exit the energy is contained in a band of frequencies being St =
[0.4 to 0.6] due to the growth of instability modes in the developing shear layer through
the Kelvin–Helmholtz instability (Ho & Huerre 1984). Figure 3(b) shows the expected
energy spectra at x/D = 7 similar to previous measurements of the preferred mode of the
jet found to be in the range St = [0.24 to 0.64] (Crow & Champagne 1971; Bechert &
Pfizenmaier 1975; Moore 1977; Hussain & Zaman 1981; Gutmark & Ho 1983). The inset
in figure 3(b) shows the development of urms obtained by taking the square root of the total
energy, which, in turn, is obtained by integrating the energy spectra (u2

rms = ∫
PSD dSt).

As the shear layer develops, the total energy increases due to the growth of the coherent
structures and peaks at x/D ≈ 8. After this location, most of the coherent structures break
down into turbulence and for x/D > 8 the total energy decays exponentially. It can be seen
that the preferred mode varies along the potential core ranging from St ≈ [0.3 to 0.5].

The velocity exit profile at x/D ≈ 0 is shown in figure 4(a). The HWA was traversed
in increments of 0.1 mm across the shear layer. The jet exhibits an approximately tophat
velocity profile shown for y/D = [0 to 0.75] in the top plot. The bottom plot shows a
zoomed view of the region y/D = [0.45 to 0.55] which corresponds to the shear layer.
The momentum thickness θ is computed by

θ =
∫ ∞

0

ū
ū0

(
1 − ū

ū0

)
dy, (3.1)

and gives a value θ/D = 0.012, which corresponds to approximately 1 % of the nozzle
diameter.

Beyond x/D > 10, the unforced jet starts to exhibit self-similar behaviour (Wygnanski
& Fiedler 1969; Panchapakesan & Lumley 1993; Hussein et al. 1994; Pope 2001).
Figure 4(b,c) shows the normalized profiles and the centreline decay of streamwise
velocity. The profiles in figure 4(b) collapse on the self-similar Gaussian profile
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Figure 4. Measurements of the unforced jet providing characteristics summarized in table 1. (a) Jet exit profile
measured at x/D ≈ 0. The lower panel shows a zoomed view of the shear layer indicated by the shaded region
in the upper panel. (b) Profiles of ū plotted against y/x in the far field, x/D > 10, normalized by the centreline
velocity ūmax. (c) Centreline decay of velocity measured by PIV and the Pitot probe.

W & F P & L H Present

ReD ∼105 ∼104 ∼105 ∼104

θ/D — — ∼0.03 0.012
y0 0.086 0.096 0.094 0.094
B 5.4 6.1 5.9 6.0
M/M0 0.62 1.00 1.05 0.93

Table 1. Summary and comparison of jet parameters with Wygnanski & Fiedler (1969) Panchapakesan &
Lumley (1993) and Hussein et al. (1994).

given by

ū/ūmax = exp

(
ln (0.5)

(
y

xy0

)2
)

, (3.2)

where y0 is the jet half-width and ūmax is the centreline velocity. The fitted value y0 =
0.095 ± 0.002 is consistent with previous measurements (see table 1 for a comparison).

Figure 4(c) shows the decay of the centreline velocity measured by PIV and a Pitot
probe. The two measurements are in good agreement and show that the potential core with
constant velocity extends to x/D ≈ 5 before the velocity starts to decay exponentially as
indicated by the self-similar linear decay rate. The decay rate is given by

ū0/ūmax = 1
B

(
x − x0

D

)
, (3.3)

where B is the velocity decay rate and x0 is the virtual origin. The fitted values of
PIV and the Pitot probe give B = 5.98 ± 0.01 and B = 6.04 ± 0.02, respectively, which
are similar to previous measurements (see table 1). The ratio M/M0 is the momentum
in the jet relative to that at the nozzle exit. Inserting the fitted values for B and
y0 gives M/M0 = 2.89y2

0B2 = 0.93 ± 0.01 demonstrating momentum conservation and
self-similarity within the measurement domain (up to 25D).
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Response of an axisymmetric jet in a standing wave

4. Acoustic characterization

The experimental apparatus described in § 2 provides a novel way to simultaneously excite
the symmetric and anti-symmetric modes. In this section, a thorough characterization of
the forcing method is presented together with some comments on how the different nozzle
locations correspond to, or differ from, conditions previously reported.

The pressure time series p5−6 are used to reconstruct the acoustic mode in the pipe
using the multiple microphone method (MMM) (Seybert & Ross 1977). Assuming
one-dimensional acoustic waves and a negligible influence by the mean flow, the acoustic
mode is given by

p̂l(x) = A+e−jkx + A−e jkx, û(x)ρc = A+e−jkx − A−e jkx, (4.1a,b)

where p̂l are the acoustic pressure and û the longitudinal acoustic velocity fluctuations.
The circumflex (∧) denotes complex amplitudes and is reserved for acoustic quantities.
The complex-valued variables A+ and A−, estimated using the MMM, give the amplitude
and phase of the upstream and the downstream propagating acoustic waves, k = 2πf /c is
the wavenumber and ρ is the density. Similarly, using the pressure time series p1−4 the
acoustic mode in the box is reconstructed. For this case in (4.1a,b) the x coordinate is
substituted by y, the wavenumber k = 2πny/Ly and v̂ and p̂t are used instead of û and p̂l to
represent the transverse velocity and pressure fluctuations. With both modes reconstructed,
the values of the longitudinal and transverse velocity fluctuations at the nozzle exit
(x/D = 0, y/D = 0) together with the maximum pressure in the box, p̂T = max(|p̂t|), and
the maximum pressure in the pipe, p̂L = max(|p̂l|), can be evaluated.

For calibration, the HWA is placed at the nozzle exit while longitudinal forcing is
applied by the horn drivers in the upstream plenum at a range of Strouhal numbers St =
[0.27 to 0.54] with a constant peak-to-peak voltage of 2 V. Figure 5(a) shows the magnitude
and phase of û measured by the MMM and HWA which are in excellent agreement.
Two resonances of the jet plenum are observed at St = 0.37 and St = 0.43 corresponding
to f = 550 Hz and f = 640 Hz, respectively. These frequencies are avoided to obtain
transverse and longitudinal oscillations of the same order of magnitude simultaneously.

To verify that similar pressure levels p̂T and p̂L are obtained simultaneously in the box
and in the pipe, transverse forcing is applied by the horn drivers in the box at the same
range of frequencies with constant voltage. Figure 5(b) shows p̂T and p̂L normalized by the
maximum pressure observed at St = 0.32. Hence the plot shows the relative pressure level
in the box and pipe. The two peaks at St = 0.32 and St = 0.47 correspond to the fourth
and sixth transverse modes of the box shown in figure 2. At these Strouhal numbers, the
pressure level in the pipe is also amplified and the relative magnitudes between p̂T and p̂L
are similar.

To characterize the levels of v̂ and û at the nozzle exit and how they change relative
to the standing wave, the nozzle is first placed at the centre of the box corresponding
to the velocity node at Y = 0. The pressure level p̂T is then tuned such that three
forcing levels defined as A = |û|/ū0 = [0.05, 0.15, 0.25] are achieved. The pressure level
in the box p̂T is then kept approximately constant and the nozzle is moved to seven
locations, Y = [−1, −0.5, 0, 0.25, 0.5, 0.75, 1], when St = 0.32 and five locations, Y =
[0, 0.25, 0.5, 0.75, 1], when St = 0.47. At these locations the velocity field u is measured,
in the x–y plane by PIV, simultaneously with the acoustic pressure. The MMM is then used
to obtain û and v̂ at the nozzle. These are presented next.

Figure 6 shows the magnitude of û, v̂ and the phase �ϕ/π = ∠(û/v̂)/π at the different
values of Y , A and St. In figure 6(a,c) û is indicated by the solid lines and v̂ by the dashed
lines. In figure 6(b,d) all the measurements are normalized by p̂T . Normalizing by p̂T
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Figure 5. Acoustic characterization of the rig for Strouhal numbers corresponding to f = [400 to 800] Hz.
(a) Measurements of û using the MMM and HWA at the nozzle exit subject to longitudinal forcing with
constant voltage applied to the speakers in the plenum. (b) Measurements of p̂T and p̂L using the MMM subject
to transverse forcing with constant voltage applied to the speakers in the box.

collapses all the data into the standing wave pattern where the magnitude of û and v̂ follows
the modulus of pressure and velocity in the transverse standing acoustic wave, respectively:∣∣û∣∣ ∝ ∣∣p̂t

∣∣ ∝ |cos (π/2Y)| , ∣∣v̂∣∣ ∝ |sin (π/2Y)| . (4.2a,b)

The relative phase �ϕ/π also follows the standing wave solution where �ϕ/π changes
by half a cycle on each side of Y = 0. At all intermediate positions the two fluctuations
are in anti-phase where �ϕ/π = 1 if Y > 0 and in phase where �ϕ/π = 0 if Y < 0.
The level of û is proportional to the pressure level |p̂t| at the nozzle. As indicated by
the solid lines in figure 6(b,d), û is 3.5 times larger than v̂ at St = 0.32 and 4.3 times
larger at St = 0.47. These different ratios lead to ≈ 20 % larger values of û relative to
v̂ for St = 0.47 as compared to St = 0.32. This difference is an acoustic feature of the
set-up and needs to be distinguished from the differences in the maximum response due to
the ‘preferred’ mode of the jet (Crow & Champagne 1971; Bechert & Pfizenmaier 1975;
Moore 1977; Hussain & Zaman 1981; Gutmark & Ho 1983).

Having characterized the acoustic velocities, we briefly discuss their effects in terms of
body forces acting on the jet column. An acoustic field produces a body force proportional
to the acoustic pressure gradient. In the streamwise direction we find the equivalent body
force is proportional to ∂ p̂l/∂x. This body force is composed only of the m = 0 mode,
and its strength depends on Y . In the experiment, at Y = 0, ∂ p̂l/∂x reaches its maximum,
and at Y = 1, ∂ p̂l/∂x is almost zero. Similarly, the transverse wave produces a body
force proportional to ∂ p̂t/∂y. As shown in O’Connor et al. (2015) and in Appendix A,
a transformation of this body force into a cylindrical coordinate system fixed at the jet
centre shows that its components vary with Y . At Y = 0 the force has contributions of the
m = 0 mode and, with a smaller amplitude, the m = ±2 mode, while the m = 1 mode is
negligible. As one moves towards Y = 0.5 the mode m = ±1 gains strength and dominates
over the other modes. Finally at Y = 1 the force is composed mainly of the m = ±1 mode,
with the others being negligible. This decomposition explains the dominant response
observed in the experiments.

In what follows, the forcing conditions at the various nozzle positions are compared and
contrasted against available studies in the literature. At the velocity node, Y = 0, û is at a
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Figure 6. Longitudinal and transverse acoustic fluctuations (û and v̂) measured using the MMM at the nozzle
exit at different locations relative to the standing wave. Measurements (a,b) at St = 0.32 and (c,d) at St = 0.47.
(a,c) The magnitude of the velocity fluctuations normalized by ū0 and (b,d) the same but normalized by p̂T
making the data collapse to the standing wave solution indicated by the solid lines (|û| (black solid line) and
|v̂| (grey solid line)) as described in (4.2a,b).

local maximum and v̂ is approximately zero. This condition corresponds to axisymmetric
forcing similar to what is used in Crow & Champagne (1971), exciting the axisymmetric
(m = 0) mode of the jet column. At this location, the jet can be considered to be submitted
to longitudinal perturbations and experiences maximum pressure fluctuations at the nozzle
exit. As the nozzle is moved towards either pressure node |Y| = 1, v̂ increases and û
decreases. At the intermediate locations the jet is forced by a combination of symmetric
(û) and anti-symmetric (v̂) excitation with the same frequency. To the best of the authors’
knowledge this type of combined forcing at rf = 1 has only been studied numerically by
Tyliszczak & Geurts (2014), where the mixed mode is shown for a couple of cases. Parekh
et al. (1987) also used speakers to generate simultaneous transverse and longitudinal
forcing. However, in this particular study rf = 2 and the transverse acoustic wave is not
characterized. Later in this paper it is shown that forcing both m = 0 and m = ±1 at the
same frequency, i.e. rf = 1, leads to significantly different dynamics. At the two pressure
nodes (|Y| = 1) v̂ reaches a local maximum while û is approximately zero. Hence, the jet is
submitted to pure anti-symmetric fluctuations corresponding to a flapping mode excitation
similar to what is reported in Danaila & Boersma (2000), da Silva & Métais (2002), Gohil
& Saha (2019), Suzuki et al. (2004) and Worth et al. (2020).

As mentioned in the introduction, rf = 1 is a particularly relevant condition for a variety
of flows immersed in cavities that are in resonance, such as those that occur during
combustion instabilities in annular geometries. The response of an axisymmetric jet at
Y = 0 and |Y| = 1 for rf = 1 has been, at least partially, explored whereas the coupled
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Figure 7. Mie scattering visualization of the forced jets at three different positions relative to the standing
wave, illustrating the modified jet shapes due to acoustic forcing. The dashed lines indicate the jet boundary
and all coordinates are normalized showing x/D, y/D and z/D.

mode forcing of the jet that occurs between the nodal and anti-nodal positions has not
been investigated.

5. Flow visualization of the forced jet

In the previous section, the coupled longitudinal and transverse acoustic fluctuations at
the nozzle exit due to transverse forcing of the box modes were characterized. To show
the effect of forcing on the jet structure, Mie scattering images were taken to visualize the
flow in the x–y and x–z planes.

Figure 7 shows single snapshots of the flow taken at Y = −1, Y = 0 and Y = −0.5 at
St = 0.32. As discussed in the previous section these locations correspond to symmetric
forcing at Y = 0, anti-symmetric forcing at Y = −1 and a combination of the two at
Y = −0.5. The top row shows the flow in the transverse plane (x–y) and the bottom row
the cross-plane (x–z). The white lines indicate the approximate border of the jet and the
curved arrows indicate the deflection from the nozzle centreline.

At Y = 0 the jet structure is symmetric in both planes corresponding to an axisymmetric
response. As the nozzle is moved away from the velocity node, |Y| > 0, asymmetry is
observed between the two planes. The x–y plane remains symmetric but the x–z plane
shows an increased asymmetric spreading rate to one side of the jet and is indicative of
the separation into more than one momentum stream. At the pressure node (Y = −1) the
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Figure 8. Phase-averaged vorticity (〈ωz〉b) (a–d) and Mie scattering visualization (e–h) illustrating the vortex
dynamics in the near field of the jet at different positions of the nozzle relative to the standing wave for
St = 0.32 at A = 0.15.

spreading rate increases symmetrically in the x–y plane. In the x–z plane, the jet spreads
less than at Y = 0. At Y = 0 and Y = 1 the jet is excited by a single acoustic component,
i.e. either û or v̂ is negligible, leading to plane symmetry across the nozzle centreline in
both planes.

The effect of simultaneous forcing is shown at Y = −0.5. Here, the increased spreading
rate in the x–y plane is asymmetric across the nozzle centreline where the mean jet
structure tilts towards Y = −1. This asymmetry is due to the simultaneous fluctuations
of û and v̂ where �ϕ/π = 0 inducing a preferred direction for the coherent structures.
To the best of the authors’ knowledge this asymmetry has only been reported numerically
in Tyliszczak & Geurts (2014) and experimentally in Longmire & Duong (1996) and is a
feature of an asymmetry introduced by the active or passive forcing, respectively.

6. Vortex dynamics in the near field

In this section, the dynamics of the coherent structures, formed as a result of the forcing,
are investigated in the near field of the jet. The different behaviours are then linked to the
dynamics previously reported in the literature.

Figure 8 shows contours of normalized vorticity 〈ωz〉bD/ū0 and the corresponding
snapshots of the instantaneous Mie scattering images for the same positions shown in
figure 7. To show that the asymmetry is induced by �ϕ/π, the response is also shown at
Y = 0.5. These correspond to planar cuts of a vortex ring wrapped around the nozzle (see
Worth et al. (2020) or Gohil & Saha (2019) for three-dimensional views). The trajectory
of the vortices is indicated schematically by the red arrows in the particle images. At all
nozzle positions, coherent structures form along the shear layer close to the nozzle exit.
The images show how the forcing conditions imposed by û and v̂ induce different patterns
in which the coherent structures roll up and propagate downstream.
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Figure 9. Phase-averaged vorticity (〈ωz〉b) (a–c) and Mie scattering visualization (d–f ) illustrating the vortex
dynamics in the near field of the jet at different positions between the pressure and velocity nodes for St = 0.32
at A = 0.15.

At Y = 0 an axisymmetric vortex ring, seen as a pair in two dimensions, forms once
every forcing cycle at the nozzle exit which grows and breaks down into turbulence at
the end of the potential core (Crow & Champagne 1971). As shown in figure 7 (and,
for example, by Crow & Champagne (1971) and Hussain & Zaman (1981)), this type of
axisymmetric roll-up process does not lead to the separation of the jet into more than one
momentum stream.

At Y = −1, where the spreading rate is preferentially increased in the x–y plane, vortex
structures roll up in an alternating pattern once every cycle. Worth et al. (2020) showed that
the three-dimensional structure provides tilted interconnected vortex rings that resemble
inverted-hairpin/horseshoe vortices. However, their data only covered a small field of view
(x/D = [0 to 4]). Here, it is shown that at x/D ≈ 3, the structure breaks into two smaller
structures each convected along different streams towards the far field as indicated by
the arrows. This leads to the separation of the jet into three momentum streams in the
transverse plane similar to the structures shown by Danaila & Boersma (2000), Tyliszczak
& Geurts (2014) and Gohil & Saha (2019).

At Y = ±0.5, where the mean jet structure is asymmetric in the x–y plane, the vortex
dynamics result from a superposition of the response observed at Y = −1 and Y = 0. The
axisymmetric response induced by û generates a ‘train’ of symmetric vortex rings formed
once every cycle. Simultaneously, the anti-symmetric response induced by v̂ generates
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an alternating vortex pattern. Since both oscillations occur at the same frequency and
�ϕ/π = 1 for Y > 0 and �ϕ/π = 0 for Y < 0, they are superimposed and the transverse
component induces the preferred direction for the axisymmetric vortex ring. This becomes
evident from the vortex pattern observed at Y = −0.5 which is a mirror of that at Y = 0.5.
At Y = −0.5, �ϕ/π = 0, which means that û and v̂ are in phase and thus the vortex
ring has a preferred direction, propagating towards Y = 0. At Y = 0.5, �ϕ/π = 1, which
reverses the preferred direction towards Y = 0 on the other side of the nozzle. This is the
main difference from the study of Parekh et al. (1987) who force the jet longitudinally
twice every transverse cycle, leading to the formation of two pairs of axisymmetric vortex
rings for every transverse cycle resulting in a symmetric jet splitting into two separate
momentum streams. Here, an asymmetric splitting is observed as a result of the acoustic
mode.

The jet response to further combinations of |û| and |v̂| is shown in figure 9 at Y = 0.25,
Y = 0.5 and Y = 0.75. At these positions the preferred direction induced by �ϕ/π results
in a tilted jet where the vortex ring moves towards Y = 0. However, as the nozzle is moved
closer to the velocity node at Y = 0.25 the asymmetry reduces and the vortex dynamics
become more axisymmetric. As the nozzle is moved closer to the pressure node at Y =
0.75 the vortex dynamics are dominated by the anti-symmetric response as demonstrated
by the alternating vortex pattern. This indicates that the response at intermediate nozzle
positions can be approximated as a superposition of the symmetric and the anti-symmetric
modes, depending on the position of the jet relative to Y = 0 and |Y| = 1.

7. Fourier modes and modification of the base flow

To further characterize the modes excited by the acoustic fluctuations û and v̂ the Fourier
modes ũ and ṽ were computed using (2.1). Figure 10 shows the magnitude and phase of
the modes. The top and bottom rows correspond to ũ and ṽ, respectively. The data for
the modes are only shown inside the jet, where ū/ū0 > 0.025, and the region outside is
shaded in grey. The first two columns correspond to the symmetric mode at Y = 0, the
second to the mixed mode at Y = 0.5 and the third to the anti-symmetric mode at Y = 1.
The phase contours indicate the patterns of convective propagation where a quantity, e.g.
ũ, is convected along the gradient of the phase map. The symmetric mode at Y = 0 is
characterized by an anti-symmetric pattern of the phase ∠(ṽ) and a symmetric pattern
of ∠(ũ) with respect to the nozzle centreline. This is a feature of the propagation of the
axisymmetric vortex rings shown in the previous section. The anti-symmetric mode at
Y = 1 is characterized by a symmetric pattern of ∠(ṽ) and an anti-symmetric pattern of
∠(ũ). This is indicative of the alternating vortex pattern shown in the previous section. At
the mixed position Y = 0.5 the structures of ũ and ṽ contain features of both the symmetric
and anti-symmetric modes which are utilized next.

The transverse acoustic velocity |v̂| is estimated by averaging |ṽ| in the region x/D =
[10 to 14] and y/D = [−1 to 1]. The normalized velocity |v̂|ρc/p̂T from the MMM and
PIV was shown to be in good agreement in figure 2 for all values of A, Y and St, showing
that for x/D > 10, ṽ is reduced to the transverse acoustic velocity v̂. However, in the
near field ṽ differs significantly from the one-dimensional acoustic mode shape given by
(4.1a,b). Next, it is demonstrated that the manipulated boundary conditions, i.e. the jet exit
profiles at x/D = 1 of ũ and ṽ, at mixed positions are linear combinations of the symmetric
and anti-symmetric boundary conditions measured at Y = 0 and Y = 1.

The jet exit boundary conditions at x/D = 1 are shown in terms of the r.m.s. (urms
and vrms) and Fourier mode profiles (|ũ| and |ṽ|) in figure 11 for St = 0.32 at all
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Figure 10. Fourier modes ũ and ṽ for St = 0.32 at A = 0.15 showing the symmetric mode at Y = 0, a mixed
mode at Y = 0.5 and the anti-symmetric mode at Y = 1. The black dashed lines indicate the jet boundary
where ū/ū0 = 0.025. All images are shown in the region x/D = [0.5 to 7] and y/D = [−3.5 to 3.5].

nozzle locations for A = 0.15. Figure 11(a,e,i,m) shows the profiles at Y = 0 and Y = 1
corresponding to boundary conditions for the symmetric and anti-symmetric modes. As
a reference, the r.m.s. profiles are shown for the unforced case. All r.m.s. values are
multiplied by a factor

√
2 to compare with the harmonic amplitudes of the modes. The

magnitude of all Fourier mode profiles are similar to the r.m.s. profiles indicating that
most of the energy and thus most of the flow dynamics are captured by the modes. The
discrepancies between the Fourier modes and r.m.s. are mainly observed in the shear layer
and are of the same order of magnitude as the r.m.s. measured in the unforced case. As
mentioned before, at Y = 0 a symmetric pattern is observed for ũ and an anti-symmetric
pattern is observed for ṽ, whereas the opposite is seen at Y = 1. This symmetry and
anti-symmetry in the boundary conditions is not visible in the profiles, since it is contained
in the phase distribution of the modes as shown in figure 10. At Y = 0, |ũ| is increased at
the jet centreline proportional to û measured by the MMM where

√
2urms/ū0 ≈ |ũ|/ū0 ≈

A ≈ 0.15. At Y = 1, |ũ| is similar to the unforced profile and |ṽ| is increased significantly
across the jet. Note that the magnitude of |ṽ|/ū0 is significantly larger than the magnitude
of the transverse acoustic velocity |v̂|. These two sets of boundary conditions induce
different motions of the potential core which are discussed in the last part of this section.

At the intermediate locations all profiles are skewed with respect to the nozzle centreline
where |ũ| and |ṽ| are significantly increased in the direction y/D < 0 for Y > 0. This
is due to a superposition of the boundary conditions at Y = 0 and Y = 1 leading to an
asymmetric profile. This asymmetry is symmetric with respect to the velocity node, and is
shown in figure 11(c,g,k,o) with the profiles for both Y = −0.5 and Y = 0.5. At Y = −0.5
the skewed profiles show increased fluctuations at y/D > 0 caused by a change of the
phase �ϕ/π by half a cycle.

We now consider whether the boundary conditions at 0 < Y < 1 and −1 < Y < 0
can be well approximated by linear combinations of the symmetric and anti-symmetric
boundary conditions at Y = 0 and |Y| = 1. In figure 6 it is shown that the amplitude and
phase of the acoustic fluctuations û and v̂ at a given Y position change as a function of
the pressure and velocity in a standing wave. Hence, the proportionalities in (4.2a,b) can
be utilized as weighting functions where the profiles ũY

p ( y) and ṽY
p ( y) at an intermediate

position Y can be approximated by

ũY
p ( y) = ũY0( y) cos (π/2Y)

p̂Y
T

p̂Y0
T

+ ũY1( y) sin (π/2Y)
p̂Y

T

p̂Y1
T

, (7.1)
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Figure 11. Jet exit boundary conditions in terms of root mean square (r.m.s.) fluctuations (a–d,i–l) and Fourier
mode profiles (e–h,m–p) shown at x/D = 1 for A = 0.15 at St = 0.32. (a,e,i,m) Boundary conditions for
the symmetric (Y = 0) and anti-symmetric (Y = 1) modes, and for the unforced jet. (b, f, j,n,c,g,k,o,d,h,l,p)
Boundary conditions measured at the intermediate positions and the solid lines show reconstructed mixed
modes from superposition of the symmetric and anti-symmetric profiles. All the measured profiles contain
uncertainties of �/ū0 ≈ ±0.02, and the reconstructed profiles contain �/ū0 ≈ ±0.04.

ṽY
p ( y) = ṽY0( y) cos (π/2Y)

p̂Y
T

p̂Y0
T

+ ṽY1( y) sin (π/2Y)
p̂Y

T

p̂Y1
T

, (7.2)

where ũY0( y), ũY1( y), ṽY0( y) and ṽY1( y) are jet exit profiles of the Fourier modes ũ and
ṽ measured at Y = 0 and Y = 1. From these profiles the harmonic time evolution can be
obtained from (2.1). The profiles used for the reconstructions here are the ones shown at
x/D = 1 in figure 11(a,e,i,m). The pressure ratios, p̂Y

T/p̂Y0
T ≈ 1 and p̂Y

T/p̂Y1
T ≈ 1, account

for the differences in the maximum pressure level in the box between measurements.
Ideally these two ratios are one and are only added to the equation to account for
experimental differences in A between the measurements. The weights cos (π/2Y) and
sin (π/2Y) are proportional to the acoustic fluctuations û and v̂ in the standing wave. At
Y = 0, ũY

p becomes ũY0 , at Y = 1, ũY
p becomes ũY1 , and at 0 < Y < 1 and −1 < Y < 0,

ũY
p becomes a superposition of the two whose weights depend on the position in the

standing wave. The magnitudes of the reconstructed boundary conditions |ũY
p | and |ṽY

p | are
overlaid at all intermediate locations in figure 11 as red lines and show good agreement
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Figure 12. Histograms of relative errors ũe and ṽe for all jet exit profiles computed across the nozzle y/D =
[−0.5 to 0.5] at x/D = 1. The mean error and standard deviation are 3 % and 27 % for ũe and 1 % and 14 % for
ṽe respectively.

with the measured ones, |ũ| and |ṽ|. This shows that the jet exit boundary conditions
at 0 < Y < 1 and −1 < Y < 0 are well approximated as a linear combination of the
boundary conditions of the symmetric and anti-symmetric modes measured at Y = 0 and
Y = 1. This also indicates that the acoustic forcing is an inviscid effect primarily altering
the jet exit boundary conditions, which leads to linear amplification of convective modes.
It also shows that when superimposing m = 0 and m = ±1 forcing at rf = 1 the result is
an asymmetry in the base flow that develops into the asymmetric dynamics presented in
the previous section.

The reconstructions in figure 11 are only shown for St = 0.32 and A = 0.15. To quantify
errors of the reconstruction and to demonstrate that it works for all values of St, A and Y ,
we compute relative errors, using

ũe =
|ũ| −

∣∣∣ũY
p

∣∣∣
|ũ| +

∣∣∣ũY
p

∣∣∣ , ṽe =
|ṽ| −

∣∣∣ṽY
p

∣∣∣
|ṽ| +

∣∣∣ṽY
p

∣∣∣ , (7.3a,b)

for all measurements. The relative errors are computed across the nozzle, i.e. y/D =
[−0.5 to 0.5], and are shown as histograms in figure 12. The average errors are 2 % and 1 %
and the standard deviations are 27 % and 14 % for ũY

p and ṽY
p respectively. The errors are

slightly larger for ũY
p due to the influence of the shear layer. However, the procedure works

reasonably well at all operating points and the skewness of the profiles is well captured.
The asymmetric forcing observed at 0 < Y < 1 and −1 < Y < 0 has the effect of

deflecting the jet away from its geometric centre as shown in figures 7, 8 and 9. This can
also be captured by reconstructing the time series of vorticity and velocity using (2.2), as

shown in figure 13. Contours of the velocity magnitude |〈u〉F | =
√

〈u〉2
F + 〈v〉2

F indicating
the potential core (grey) and vorticity |〈ωz〉F|D/ū0 > 1 (red and blue) show the evolution
of the coherent structures.

At Y = 0 the axisymmetric mode, m = 0, occurs with the potential core deforming into
regions of high and low velocity accompanied by the axisymmetric roll-up of coherent
structures. At Y = 1 the potential core is periodically deflected generating a sinuous
shape resulting in an alternating pattern of vortices. These vortices continue to propagate
towards the far field significantly increasing the jet spreading rate which is quantified in
the next sections. As the nozzle is moved from Y = 0 towards Y = 1, the jet transitions
from the symmetric to anti-symmetric modes, m = 0 to m = ±1. At Y = 0.25 significant
asymmetry in the vorticity fields is evident and when placed at Y = 0.75 show a clear
bifurcation. The effect is mirrored if the jet is traversed in the −Y direction as shown at
Y = −0.5 due to the change of �ϕ/π by half a cycle between û and v̂.
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Y = –0.5
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Figure 13. Time series reconstructed from the Fourier modes using (2.2) for St = 0.32 at all nozzle locations
indicating the dynamics of the potential core and the induced vortex dynamics. The black and grey contours
indicate |〈u〉F|/ū0 > 0.8. The red and blue contours indicate |〈ωz〉F|D/ū0 > 1. The data are shown for
A = 0.15 but the dynamics are similar at all A and for both St.

The effect of St is depicted in figure 14 with Mie scattering images, and |〈u〉F | and
|〈ωz〉F| reconstructed from the Fourier modes for both St = 0.32 and St = 0.47. Contours
are added at ū/ū0 = 0.025 to indicate the jet boundary and the streamwise velocity
profiles are included at x/D = 8. The two images in figure 14(a,b) have been processed
to highlight the edges of the potential core in order to show the jet boundary, growth
and relative positioning of the coherent structures. The spreading rate is significantly
greater for St = 0.32 compared with St = 0.47 consistent with the observations by Gohil
& Saha (2019). Increasing spreading rates occur closer to the preferred mode where the
forcing is most amplified. This leads to an optimal spacing between coherent structures.
Compared with St = 0.32, the separation between coherent structures is smaller at
St = 0.47 due to the higher frequency shown by labels A and C. Location A shows
where the primary structure breaks into two smaller structures and C indicates their
downstream trajectories. For St = 0.32, the same event is labelled B and D, respectively,
where the coherent structures split into two smaller structures that propagate downstream
in different directions. These effects are captured by the reconstructed time series in
figure 14(c). The difference in separation and direction leads to significantly different
profiles shown by the velocity profiles at x/D = 8. At 0◦ the events A–D are also labelled
showing that the wider profile is a direct result of the increased angle of the separated
structure as it propagates towards the far field when St = 0.32.

8. Time-averaged jet development

In the previous sections, it was shown that the dynamics in the near field of the jet depends
on the position of the nozzle with respect to the standing wave. Furthermore, the boundary
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Figure 14. Influence of increased forcing frequency at Y = 1 for A = 0.15. (a,b) Processed Mie scattering
images illustrate the separation and growth of coherent structures and indicate the boundary of the potential
core. (c) Contours for |〈u〉F | and |〈ωz〉F|D/ū0 > 1 similar to what is shown in figure 13. Contours of ū/ū0 =
0.025 (black solid line) are added to indicate the spreading rate and the streamwise velocity profile ū/ū0 (grey
solid line) is shown at x/D = 6.

conditions leading to the mixed modes are well approximated by a linear combination
of the boundary conditions for the symmetric and anti-symmetric modes. In this section
the time-averaged flow fields ū, v̄ and ω̄z are presented to show their influence on the
developing region of the jet.

Figure 15 shows the time-averaged flow fields for all positions and forcing levels at
St = 0.32 in the range x/D = [0 to 20]. Normalized vorticity ω̄zD/ū0 is given by the colour
map and the contours of constant streamwise velocity ū/ū0 show how the jet develops
downstream.

At Y = 0 the jet is similar to the unforced case. As the forcing level is increased the
mean shape and structure of the jet remain approximately axisymmetric. The differences
observed at A = 0.25 are due to a small but increasing value of |v̂| due to imperfect
alignment of the nodal line with the centre of the nozzle. This shows that the jet is very
sensitive to transverse oscillations.

The sensitivity to v̂ becomes evident when Y > 0. Already at Y = 0.25 a significant
increase in the spreading rate is observed. The asymmetric dynamics shown in the previous
sections leads to preferential spreading of the jet towards |Y| = 1 whilst the jet centreline is
deflected in the opposite direction towards Y = 0. The same behaviour is observed for all
intermediate positions where the jet centreline is tilted left for Y > 0 and right for Y < 0.
Although the forcing conditions and dynamics at Y = 0.25 and Y = 0.75 are different,
the time-averaged structure of the jets appears similar at the same forcing level. As the
jet is moved towards |Y| = 1 the profiles of ū/ū0 = 0.3 show reduced skewness becoming
symmetric at |Y| = 1. As A is increased the profiles of ū/ū0 = 0.5 split into two or more
streams indicative of a ‘bifurcated’ jet (Reynolds et al. 2003). This separation into two
streams is stronger at St = 0.32 compared to St = 0.47 which is not shown here for brevity.

At |Y| = 1 the spreading rate is significantly increased and is symmetric across the jet
centreline. As A is increased the jet splits into three momentum streams similar to the
‘Ψ ’ jet observed in Danaila & Boersma (2000) and Gohil & Saha (2019). We can also
obtain the bifurcation angles �β at Y = 1 to compare with the numerical simulation of
Gohil & Saha (2019). Using their methodology, we track the jet boundary corresponding
to isocontours of ū/ū0 = 0.1 of the mean fields shown in figure 15 which results in
‘bifurcation angles’ of �β ≈ 65◦ for St = 0.32 and �β ≈ 35◦ for St = 0.47 which are
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Figure 15. Time-averaged flow fields showing the average jet structure at all operating conditions for St =
0.32. The colour map shows normalized vorticity ω̄zD/ū0 indicating the shear layers. The contours correspond
to regions of constant streamwise velocity ū/ū0 indicating the outer boundary of the jet (black dashed line) and
the development of the potential core (black solid line) towards the far field.
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Figure 16. Velocity profiles at x/D = 10 for St = 0.32 at A = 0.15. (a) Streamwise velocity ū/ū0.
(b) Transverse velocity v̄/ū0. The wider profiles indicate an increased spreading rate.

in excellent agreement with the results of Gohil & Saha (2019). However, the use of �β

to characterize the spreading rate is not suitable for asymmetric velocity profiles as shown
in figure 16 and in numerous previous studies (e.g. da Silva & Métais 2002; Tyliszczak
2015; Gohil & Saha 2019) and we therefore propose an alternative approach based on a
statistical analysis of the streamwise momentum presented in the next section.
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Figure 17. Comparison of velocity profiles ū/ū0 against those reported in Gohil & Saha (2019) and Longmire
et al. (1992) for similar conditions. (a,b) Profiles for x/D = [6, 10] at Y = 1 for A = 0.15: (a) St = 0.32
compared against St = 0.3 and (b) St = 0.47 compared against St = 0.5. (c) Profile for x/D = 4 for A = 0.15
at Y = 0.75 compared against the profile produced by the forced step nozzle in Longmire & Duong (1996).

As shown for Y = 1 in figure 14, the structure of the jet is similar for similar positions at
both St. However, the spreading rate and strength of the jet splitting is significantly lower
for St = 0.47 for all positions and forcing levels as they are away from the preferred mode.

To highlight bifurcation or splitting of the jet from a single momentum stream, the
mean streamwise and transverse velocity profiles are shown in figure 16 for A = 0.15 at
x/D = 10. For brevity profiles are only shown for St = 0.32 noting that similar profiles
were observed for St = 0.47 but with a reduced spreading rate. Figure 16(a) shows
profiles of ū/ū0. Figure 16(b) shows profiles of v̄/ū0. At Y = 0 profiles of ū/u0 and
v̄/u0 are similar to the unforced case. At Y = 1 the ū/u0 profile shows a symmetric
distribution characterized by three peaks with maximum velocity at the nozzle centreline.
The corresponding profile v̄/u0 shows that both sides contain a significant v̄ component.
This indicates that the jet has separated into three separate momentum streams and is very
similar to the ‘Ψ ’ jet in Gohil & Saha (2019).

Figure 17 compares the response at Y = 1 with Gohil & Saha (2019) and Y = 0.75 with
Longmire & Duong (1996). Figure 17(a,b) plots velocity profiles at various downstream
locations and Strouhal numbers for the Y = 1 case. Overall, good agreement for both
Strouhal numbers is found indicating the jet response is similar in both instances. Excellent
agreement at Y = 0.75 with Longmire & Duong (1996) is also found in figure 17(c).

Finally, we consider the effect of the jet position and forcing amplitude on the relative
change to the normalized momentum thickness θ/θ0 as plotted in figure 18. These were
evaluated from the PIV data at x/D = 1 as hot wire measurements were not conducted for
all operating conditions investigated. Figure 18(a) shows that the spreading rate increases
with A∗ = A p̂Y

T/p̂Y0
T due to the formation of larger structures. Figure 18(b) shows the effect

of amplitude and jet position on θ/θ0. Increasing A results in an approximately linear
increase in θ/θ0 up to approximately A∗ = 0.25. At Y > 0 it appears that the response
becomes nonlinear at lower amplitudes.

Overall, the results and comparisons in this section illustrate that transverse acoustic
forcing leads to a family of ‘bifurcated’ jets in the transverse plane. This planar splitting of
the jet is very similar to previous ‘bifurcated’ jets produced by active or passive forcing but
with some important differences. The forcing is monochromatic, rf = 1, and the forcing
components are varied by the jet’s relative location within the standing wave which has
not been explored before to the best of the authors’ knowledge.
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Figure 18. Effect of forcing on the momentum thickness θ computed at x/D = 1. (a) The velocity profile at
Y = 0 against A. (b) The momentum thickness θ/θ0 relative to the unforced case against the pressure-corrected
forcing amplitude A∗ = A p̂Y

T/p̂Y0
T .

9. Statistical analysis of the streamwise momentum

In the following sections, two new methods to characterize the degree of bifurcation
are presented. First, the jet is characterized based on the development of the statistical
behaviour of the streamwise momentum downstream. Then, in the next section, a model
is proposed to identify the number of individual momentum streams.

To characterize the modified behaviour of the forced jets statistically, p.d.f.s of
streamwise momentum fM are constructed from profiles of the streamwise velocity field,
where

fM = ρū(x, y)2

ρ

∫ ∞

−∞
ū(x, y)2 dy

. (9.1)

The n(th) statistical moment μn of fM was computed using

μn =
∫ ∞

−∞
(y − CM)n fM dy, (9.2)

where n = 1 gives the centre of momentum, CM , n = 2 gives the variance, VM = σ 2
M ,

indicating the spreading rate, and n = 3 gives the skewness, SM , indicating departure from
symmetry. Figure 19 shows fM at x/D = 10 for Y = [−1, −0.5, 0] for A = 0.15 at St =
0.32. The insets show an image of fM(x, y) which appears as a collection of p.d.f.s in
the region y/D = [−7 to 7] and x/D = [1 to 24]. In the image of fM(x, y) all p.d.f.s are
normalized by the maximum value maxx( fM) to highlight the trajectories of momentum.
In the main figures the profiles of fM are shown at x/D = 10 corresponding to the red lines
in the insets. The dashed lines indicate the centre of momentum, CM , and CM ± 3σM .

At Y = 0 the shape of fM is approximately Gaussian, characterized by SM ≈ 0 and
a 95 % confidence interval of 6σM . At Y = −1 and Y = −0.5, fM is clearly not well
represented by a single Gaussian distribution. At Y = −1, fM contains three distinct
peaks and is approximately symmetric (SM ≈ 0) with respect to CM . At Y = −0.5 the
distribution is asymmetric (SM < 0) and fM contains two peaks. The asymmetry is also
shown by the different lengths between CM ± 3σM and the tails of fM on each side.

The moments CM , σM and SM are computed in the region x/D = [1 to 24] which are
plotted in figure 20. The figure shows the downstream development of the moments for
St = 0.32 and A = 0.05 at different positions Y . The red lines show the unforced case
which is added for reference.
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Figure 19. The p.d.f.s of streamwise momentum fM shown at x/D = 10 (red solid line) for A = 0.15 and
St = 0.32. The dot-dashed lines indicate the location of CM and CM ± 3σM . The insets show
fM(x, y)/ maxx( fM) coloured by magnitude in the region y/D = [−7 to 7] and x/D = [1 to 24] where each p.d.f.
is normalized by the maximum value maxx( fM). (a) Pressure node (Y = −1) characterized by a symmetric
distribution containing three peaks. (b) Intermediate position (Y = −0.5) characterized by an asymmetric
distribution containing two peaks. (c) Velocity node (Y = 0) characterized by a symmetric distribution
containing a single peak.
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Figure 20. Development of statistical moments for St = 0.32 and A = 0.05: (a) CM , (b) σM/σM0 and (c) SM .
The inset in (b) shows 3σM0/D for the unforced jet which has an average spreading angle θM0 = 8.2◦. Moment
SM is normalized by x2 to account for the linear spreading rate.

Figure 20(a) shows that |CM/D| < 1 for all positions. This result indicates that the
centre of momentum is located along the nozzle centreline and shows that introducing
transverse forcing does not alter the location of the average streamwise momentum. The
same observation is made for the other values of A and St, which are not shown for brevity.

Figure 20(b) shows σM normalized by σM0 which is computed for the unforced jet. Here
σM0 develops linearly as shown in the inset and the average spreading angle of momentum
is θM0 = 8.2◦. In § 3 it was verified that the unforced jet is self-similar with a half-width
y0 = 0.095. In this way, the lines in figure 20(b) show the spreading rate of momentum
relative to the unforced case. At Y = 0 the jet develops similarly to the unforced case. For
all cases where |v̂| > 0, σM/σM0 increases rapidly in the region x/D = [2 to 8] before it
levels off and starts to decrease slowly. This indicates that the spreading of momentum
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Figure 21. (a) Average relative momentum spreading rate σ̄M/σ̄M0 and (b) average symmetry S̄M in the far
field x/D > 10 at different nozzle positions. In (a), the black solid lines indicate fits of σ̄M/σ̄M0 to (4.2a,b)
which is proportional to |v̂|. The scatter is indicated by the coloured regions. The variation of σ̄M/σ̄M0 due
to the change in A is significantly smaller than the variation due to the change of St. In (b), the black solid
lines indicate fits of S̄M to the product ûv̂ ∝ sin (π/2Y) cos (π/2Y). The asymmetry increases with A and is
proportional to the product of û and v̂ where S̄M < 0 for Y < 0 and S̄M > 0 for Y > 0.

increases linearly with x albeit at a significantly larger rate than the unforced case. This
rapid increase of the spreading rate for x/D > 2 is consistent with the ‘bifurcation point’
usually reported in the range x/D = [2 to 4], e.g. as reported in Suzuki et al. (2004). The
slow decrease of σM/σM0 at x/D > 10 indicates that after the jet splits, the centreline of
each momentum stream slowly restores itself towards a more streamwise orientation as it
develops. This slow change in orientation is captured by the method proposed in the next
section.

For comparison, the average relative spreading rate σ̄M/σ̄M0 is computed at x/D > 10.
Figure 21(a) shows σ̄M/σ̄M0 at different Y , A, and St. The variation of σ̄M/σ̄M0 with Y
closely follows the variation of |v̂|. Therefore σ̄M/σ̄M0 can also be fitted to (4.2a,b) for each
St and is shown in black lines. The amplitudes of the black lines are obtained by fitting
σ̄M/σ̄M0 to (4.2a,b) for each St separately which includes the variation due to different
forcing levels. The coloured regions indicate 95 % confidence intervals. The fits give
σ̄M/σ̄M0 ≈ 2.7 ± 0.2 for St = 0.32 and σ̄M/σ̄M0 ≈ 1.8 ± 0.1 for St = 0.47. These show
that there is a significant difference between the two frequencies even after including the
variation in forcing amplitude. Furthermore, the increased spreading rate is found to be
more sensitive to the forcing frequency than to the forcing level as would be expected
when the jet is forced closer to the preferred mode. For instance, the spreading rate is
larger for St = 0.32 at A = 0.05 compared with St = 0.47 at A = 0.25 even though the
latter is forced with a magnitude five times larger. Hence, the difference is unlikely to be
due to the 20 % difference in the ratio between |û| and |v̂|, which was shown in § 4 to be
an acoustic feature of the rig.

The skewness SM is shown in figure 20(c) normalized by x2 to compensate for the linear
spreading rate. It is evident that SM/x2 > 0 for Y > 0 and SM/x2 < 0 for Y < 0. The initial
development is similar to σM/σM0 where SM/x2 increases rapidly in the region x/D =
[2 to 8] before it levels off and slowly decreases. At Y = 1 and Y = 0, SM/x2 ≈ 0 and
hence the jet develops symmetrically. This shows that the asymmetry at the intermediate
locations is caused by the asymmetry in forcing across the jet nozzle.
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To compare the symmetry for different forcing levels and positions S̄M is computed
similarly to σ̄M/σ̄M0 by taking the average at x/D > 10. Figure 21(b) shows S̄M at
different Y and A. For brevity data are only shown for St = 0.32. The variation of S̄M
with Y is similar to the product of ûv̂ given by sin (π/2Y) cos (π/2Y) which is fitted
to the data at each value of A and are shown by the solid lines. At |Y| = 1 and Y = 0,
S̄M ≈ 0 for most operating points. However, at this location a significant value of S̄M
is observed at high forcing levels, e.g. at Y = −1 for A = 0.25. This is believed to be
due to imperfect alignment with the nodal line and the jet centreline resulting in small
asymmetries due to the absence of both û and v̂. However, the fits provide amplitudes
S̄M = [0.020 ± 0.004, 0.036 ± 0.016, 0.077 ± 0.047]. Dividing the fitted amplitudes by
A yields S̄M/A = [0.39 ± 0.08, 0.25 ± 0.11, 0.31 ± 0.19] showing that the symmetry is
proportional to A.

In this section the jets are characterized by the development of statistical moments of
the streamwise momentum in terms of the centre of momentum, the spreading rate and
the symmetry. This method provides an alternative way to characterize the jets rather than
labelling the jets based on the number of ‘branches’. However, an interesting question still
remains. The velocity profiles downstream clearly indicate a ‘bifurcation’, i.e. separation
into separate momentum streams. If the jet ‘bifurcates’, do each of these streams behave
like a self-similar jet in the far field? In the next section this question is investigated by
proposing a method to isolate each momentum stream from the measurements. Then each
branch is analysed individually using a similar approach to that taken when studying the
unforced case.

10. Number of momentum streams and self-similarity

To decompose the jet into separate momentum streams, profiles of the streamwise velocity
ū are fitted to a sum of Gaussian profiles given by

ūt(x, y) =
ng∑

i=1

ūi =
ng∑

i=1

ai(x) exp

(
ln (0.5)

(
y − bi(x)

ci(x)

)2
)

. (10.1)

Here ūt is a slice of the total streamwise velocity represented as a sum of ng = 1, ng = 2
or ng = 3 velocity profiles. Each profile represents a momentum stream and is described
by ūi. The parameters ai(x) and ci(x) are similar to ūmax and y0 in (3.2), respectively,
and bi(x) is the centreline position of the profile. Therefore, bi(x) accounts for the
separation between the nozzle centreline y/D = 0 and the jet centreline of each momentum
stream ūi. Equation (10.1) is fitted to ū in the range x/D = [4 to 24]; hence ūt(x, y) is the
reconstructed velocity field in terms of Gaussian profiles.

The result of the method is depicted in figure 22. This corresponds to the jet located
at Y = 0.75, St = 0.32 and A = 0.15 corresponding to a condition where the jet clearly
splits into two momentum streams; hence ng = 2 is chosen. Figure 22(a–c) shows contours
of constant streamwise velocity described by ū1, ū2 and their sum ūt, respectively.
Figure 22(d) shows the jet centrelines b1(x) and b2(x) for both momentum streams where
the dashed line indicates the nozzle centreline. Figure 22(e) shows the profiles along the
lines x/D = 10 in figure 22(a–c), and the PIV measurements ū are shown in red circles.
There is an excellent agreement between the fit and the measurements indicating that the
model captures the velocity field. Notice that |b2(x)| > |b1(x)| and a1(x) > a2(x). The
trajectories of b1(x) and b2(x) shown in figure 22(d) also indicate that the jet centrelines are
starting to restore towards a more streamwise orientation for x/D > 10. This explains the
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Figure 22. Reconstruction of ū at Y = 0.75 and A = 0.15 by superposition of ng = 2 Gaussian profiles.
Contours of constant streamwise velocity for (a) the left-hand momentum stream ū1/ū0, (b) the right-hand
momentum stream ū2/ū0 and (c) the sum of both streams ūt/ū0. (d) Streamwise trajectories of the jet centrelines
b1(x) and b2(x) for the two momentum streams. (e) Profiles of streamwise velocity at x/D = 10. The profiles
are shown along the lines indicated in (a–c).

slowly reducing trends of the momentum spreading rate σM/σM0 shown in figure 20. The
left-hand stream contains a higher centreline velocity when compared with the right-hand
stream which is a result of the preferred direction induced by the acoustic fluctuations.
Their sum results in an asymmetric bifurcation.

The excellent agreement of the expression given by (10.1) with the measurements
provides an alternative method to classify a number of separated momentum streams
which is shown next. The method is used to classify if the jet consists of one, two or
three momentum streams. First, relative errors ūe are computed between the model and
the measurements:

ūe = ūt − ū
ūmax

. (10.2)

The normalization by ūmax is used to avoid amplified errors due to low velocities outside
of the jet where ū/ū0 approaches zero. In this way, lower values of ūe indicate better fits.
The reconstruction of ū shown in figure 22 was computed using ng = 2 and provided
excellent agreement with the measurements. To demonstrate the improvement of using
ng = 2 as compared with ng = 1 for a jet consisting of two momentum streams, ūe is
computed for both cases. Histograms of ūe are shown for both profiles ng = 1 and ng = 2
in figure 23(a). The insets show the spatial distribution of ūe in the region x/D = [4 to 24]
and y/D = [−7 to 7]. The mean value μe gives the average error and σe gives the standard
deviation indicating the scatter of ūe. It is evident that using ng = 2, compared with
ng = 1, reduces the errors by an order of magnitude for the ‘bifurcated’ jet. To show
that this is only the case when the jet consists of more than a single momentum stream,
figure 23(b) shows ūe for the unforced jet. The unforced jet consists of a single momentum
stream which is well approximated by a single Gaussian as was shown in § 3. This is shown
by the similar histograms between ng = 1 in figure 23(b) and ng = 2 in figure 23(a).
Furthermore, introducing a second profile, i.e. ng = 2, does not reduce significantly
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Figure 23. Histograms of relative errors ūe using ng = 1 and ng = 2. The insets show the spatial variation of
ūe. (a) At Y = 0.75 with A = 0.15 where the jet contains two momentum streams. Using ng = 2 reduces the
error by an order of magnitude when compared with using ng = 1. (b) The unforced jet containing a single
momentum stream. Excellent agreement is obtained with ng = 1; using ng = 2 does not reduce the errors
significantly.

the errors. In other words, based on the reduction of fitting errors, the model is able to
distinguish between a jet consisting of a single or several separated momentum streams. A
similar conclusion is made for the jets at |Y| = 1 where ng = 3 is required to reduce the
errors to a sufficient level, which is discussed next.

The method just described can be used to classify the number of momentum streams,
based on the following steps. (i) First ū is fitted to (10.1) with ng = 1, ng = 2 and ng = 3.
(ii) Then ūe is computed using (10.2), and the mean μe and standard deviation σe of the
errors are computed. (iii) Finally μe and σe are then plotted against ng and two threshold
values tol1 = 0.004 and tol2 = 0.02 are obtained from the unforced case using ng = 1. The
value of ng that leads to |μe| < tol1 and |σe| < tol2 determines the number of individual
streams.

Figure 24 plots μe and σe for all operating points including the unforced jet which is
used as the benchmark for a single momentum stream. Grey shaded regions indicate the
threshold values tol1 = 0.004 and tol2 = 0.02 obtained from the unforced case fitted to
ng = 1. To show how the different combinations of forcing generate different jet structures
figure 24 shows groups of cases at Y = 0, intermediate positions and |Y| = 1. The insets
show |ū| for the unforced jet, and at Y = 0.75 and Y = 1 for A = 0.15, where the jet
shows clear characteristics of one, two or three momentum streams. Here μe and σe
corresponding to the insets are highlighted by red lines and circles and their trends are
discussed next.

For the unforced jet using ng = 1 already provides an excellent fit with the
measurements where the values of μe and σe define the thresholds tol1 and tol2. Adding
additional profiles (ng = [2, 3]) does not decrease the errors significantly. For the jet at
Y = 0.75, μe and σe are above the threshold when ng = 1. Setting ng = 2 reduces the
errors by an order of magnitude and thus brings μe and σe below the threshold. Hence,
the number of individual momentum streams can be classified as two. Using ng = 3 does
not significantly decrease the errors further. At Y = 1 the errors are above the threshold
for ng = 1, although the errors are significantly lower when compared with ng = 1 at
Y = 0.75. This shows that a symmetric distribution with three peaks is better captured by
a single Gaussian compared to a skewed distribution containing two peaks. Using ng = 2
reduces the errors, although the reduction is not as large when compared with the reduction
at Y = 0.75. The errors are still above the threshold for σe and thus using ng = 3 is required
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Figure 24. Mean μe and standard deviation σe of the fitting errors ūe plotted against ng. The grey regions are
separated by the thresholds tol1 = μe and tol2 = σe computed for the unforced jet using ng = 1. The insets
show the PIV measurements of |ū| corresponding to the red lines with circle markers. The highlighted cases
shown in the insets indicate cases that are characterized by one, two and three individual momentum streams.
(a) All cases at the velocity node (Y = 0) and the unforced jet. (b) All cases at the intermediate locations.
(c) All cases at the pressure nodes (|Y| = 1).

to reduce the errors below the limit. Note that the reduction of σe is significantly larger
from ng = 2 to ng = 3 than the reduction from ng = 1 to ng = 2. This result shows that
the method is able predict the correct amount of momentum streams by using the correct
amount of profiles, making it a robust method to classify the number of streams. In this
case ng = 3 is required to get a satisfactory representation of the jet at Y = 1 for A = 0.15.

The dependence of μe and σe with respect to ng for the other cases shows very similar
patterns to the ones discussed. It is evident that most cases at the velocity node, Y = 0,
consist of a single momentum stream, most cases at intermediate positions consist of
two and most cases at the pressure nodes |Y| = 1 consist of three. This result shows
that forcing the symmetric and anti-symmetric modes simultaneously leads to skewed
jets separating into two individual momentum streams. At the pressure nodes, |Y| = 1,
strong anti-symmetric forcing leads to three momentum streams. At the velocity node,
the jet remains a single momentum stream. However, there are three cases that need
ng = 2: A = [0.15, 0.25] for St = 0.47 and A = 0.25 for St = 0.32. As discussed before,
this is caused by a small but non-negligible component of |v̂| due to imperfect alignment
between the nozzle centreline and the velocity node, showing that the jet is very sensitive
to transverse forcing. It should be emphasized that this way of classifying the number of
streams is dependent on the threshold level obtained from the unforced jet which ultimately
depends on the accuracy of the measurements. However, it has been shown multiple times
in the literature that the unforced jet is well characterized by the self-similar profile and
thus using the fitting errors tol1 and tol2 as a baseline provides a way of quantifying the
reasonable level of accuracy that the model needs.

The fitted profiles shown in figure 22 are not constrained to behave in a self-similar
manner. However, as shown in figure 25(a,b), the normalized velocity profiles of each
individual stream still behave in a self-similar manner beyond x/D > 10. To separate the
streams ūi is subtracted from ū and the remainder is normalized by ai. The data are then
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Figure 25. Self-similarity of the bifurcated jet at Y = 0.75 and at A = 0.15. (a,b) The normalized streamwise
velocity profiles ū − ū2 and ū − ū1 shifted by b1(x) and b2(x) and normalized by a1(x) and a2(x) in the region
x/D > 10. Both profiles are fitted to (3.2) to obtain the jet half-width y0. (c) Centreline decay of streamwise
velocity. The velocity in both streams decays linearly indicated by the dashed lines which show fits of (3.3).

plotted against the shifted coordinate (( y − bi)/x). Both streams approximately collapse
on the self-similar profile given by (3.2). This indicates that the half-width of both streams
increases linearly with x following classical scaling. The small discrepancies might occur
due to the streams being at an angle with respect to the nozzle centreline. Hence, fitting
the profiles normal to the y–z plane instead of the plane normal to the jet centreline of each
stream is only a good representation for small angles. This explains the large scatter for the
right-hand stream which is more angled when compared with the left-hand stream. The jet
half-width y0 is obtained by fitting the data to (3.2) and shown in the red lines. For the
left-hand stream the half-width is y0 = 0.096 ± 0.000 and for the right-hand stream the
half-width is y0 = 0.106 ± 0.001. Both streams have similar half-widths to the unforced
case, y0 = 0.095.

The centreline decay of streamwise velocity, represented by ū0/ai, is shown for both
streams in figure 25(c). As a reference, the data for the unforced jet are also shown. The
decay rate is linear for all cases. However, the forced jet splits into two streams each
containing a portion of the total streamwise momentum. Thus, the velocity of each stream
decays more rapidly than in the unforced jet. The decay rate B is obtained for both streams
of the forced jet by fitting the data to (3.3). The left-hand stream gives B = 4.8 ± 0.1 and
the right-hand stream gives B = 2.7 ± 0.1, both of which are significantly lower than the
unforced case, B = 6.04 ± 0.01, as expected.

Having characterized the half-width and decay rate of each branch we test
if the momentum of both streams adds up to the total momentum of the
unforced case (M/M0 = 0.93 ± 0.01). Substituting the values gives M1/M0 = 0.62 ±
0.02 and M2/M0 = 0.23 ± 0.02. Adding the contributions of the two streams yields
M1/M0 + M2/M0 = 0.85 ± 0.04, which is reasonably close to the total momentum of
the unforced jet. This result indicates that, as the jet splits into two streams, each stream
behaves in a self-similar manner.

11. Conclusions

The hydrodynamic response of an axisymmetric turbulent jet subjected to transverse
downstream forcing has been investigated in detail. Downstream forcing was achieved
by placing the jet inside a long rectangular box of adjustable length that used speakers
to generate plane acoustic waves that were oriented normal to the streamwise direction
of the jet. The jet was acoustically forced at different Strouhal numbers to measure its
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response when placed at different positions between the pressure anti-node to the pressure
node in a standing wave. When located at the pressure anti-node and pressure node,
respectively, the m = 0 and m = ±1 modes of the jet were excited. This leads to dynamics
similar to that previously reported in the literature, where the m = 0 or preferred mode
results in the axisymmetric formation of coherent structures formed close to the nozzle
exit, whereas the m = ±1 mode results in anti-symmetric vortex patterns that lead to
bifurcation downstream of the potential core.

However, when the jet was placed at any other position in between the pressure node and
anti-node, both the m = 0 and m = ±1 modes of the jet were excited at the same frequency
which amplified both the streamwise and transverse fluctuating components with differing
magnitudes. This leads to distinct asymmetric vortex patterns and bifurcation patterns
which depend on the location of the jet within the standing wave. The observed responses
show important differences from previous bifurcating jet studies where optimal jet
spreading was achieved by simultaneous forcing at different frequencies as summarized by
Reynolds et al. (2003), but show some similar features to the asymmetric mixed patterns
observed in the large-eddy simulations of Tyliszczak & Geurts (2014) and the experiments
of Longmire & Duong (1996).

Furthermore, despite the fact that the jet is acoustically compact (D � λy) transverse
forcing was observed to have a significant effect on the jet boundary conditions resulting
in asymmetric profiles of the component velocity fluctuations at the jet exit. This was
caused by the relative phase �ϕ/π between the acoustic fluctuations û and v̂ leading to
the observed asymmetric formation patterns of the coherent structures and preferential
increase in the spreading rate of the jet on the side closest to the pressure node. The
modified jet exit boundary conditions were shown to be linear combinations of the
symmetric and anti-symmetric boundary conditions measured at the pressure and velocity
nodes of the jet.

The effect of anti-symmetric forcing leads to a significant increase of the spreading
rate of the jet in the transverse plane. At sufficient forcing amplitudes the jet ‘bifurcates’
and separates into several momentum streams. At the pressure nodes the ‘Ψ ’ jet reported
numerically by Danaila & Boersma (2000) and Gohil & Saha (2019) is observed. Away
from the nodal positions the jet splits into two streams which are asymmetric with respect
to the nozzle centreline due to combined longitudinal and transverse forcing at the same
frequency (rf = 1). Again, this is the major difference compared with the measurements
performed by Parekh et al. (1987) where a symmetric ‘bifurcation’ is observed when the
symmetric mode is forced at twice the frequency of the anti-symmetric mode (rf = 2).

A statistical method was proposed to quantify the modified time-averaged jet behaviour
by considering the statistical moments of p.d.f.s of streamwise momentum quantifying the
centre of momentum, spreading rate and symmetry. It is shown that the spreading rate is
proportional to |v̂| and the skewness giving the symmetry is proportional to the product ûv̂.
The increase in spreading rate showed a clear dependence on Strouhal number. Compared
with the unforced jet, the spreading rate at pressure node is approximately 3 times larger
when St = 0.32 and 1.6 times larger when St = 0.47.

Finally a method was proposed to reconstruct the streamwise velocity field of the forced
jets as a sum of Gaussian profiles. The method is used to determine the number of
individual momentum streams which are analysed independently. At the velocity node the
jet contains a single stream, whereas at the pressure node the jet splits into three streams.
Away from the nodal locations, the jet splits into two asymmetric streams due to combined
forcing, breaking the plane symmetry. It was also shown that each momentum stream is
self-similar.
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Figure 26. Coefficients of the Fourier series, with Ay = 1, ky = 4π/L.

Acknowledgements. The authors would like to thank Thomas Indlekofer for invaluable help with the
experiments.

Funding. The authors acknowledge support from the NCCS Centre, funded under the Norwegian research
programme Centres for Environment-friendly Energy Research (FME), grant no. 257579/E20.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Eirik Æsøy https://orcid.org/0000-0001-6185-5633;
José G. Aguilar https://orcid.org/0000-0002-6923-6527;
Nicholas A. Worth https://orcid.org/0000-0002-7084-9304;
James R. Dawson https://orcid.org/0000-0002-3069-6948.

Appendix A. Transverse and longitudinal forcing in a cylindrical coordinate system

In this appendix the azimuthal modes excited by an acoustic field composed of a transverse
pressure wave are discussed. The development is similar to the one found in O’Connor
et al. (2015, § 4.2), and it is only included here for completeness.

The transverse acoustic pressure fluctuations in the box, py, are assumed to be given by

py = Ay sin(kyy + φy) sin(ωt), for − L/2 ≤ y ≤ L/2. (A1)

The body force in the transverse direction is given by fy = ∂py/∂y. Converting it to a
cylindrical coordinate system yields[

fr, fθ , fz
] = [

fy sin(θ), fy cos(θ), 0
]
, (A2)

with y = r sin(θ). Here fr and fθ are functions of r and θ . Decomposing the spatial
component of each of the forces into complex Fourier series in θ gives

fi =
M∑

m=−M

c(i)
m (kyr) exp(imθ). (A3)

917 A16-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

24
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-6185-5633
https://orcid.org/0000-0001-6185-5633
https://orcid.org/0000-0002-6923-6527
https://orcid.org/0000-0002-6923-6527
https://orcid.org/0000-0002-7084-9304
https://orcid.org/0000-0002-7084-9304
https://orcid.org/0000-0002-3069-6948
https://orcid.org/0000-0002-3069-6948
https://doi.org/10.1017/jfm.2021.246


Response of an axisymmetric jet in a standing wave

In figure 26 we plot the coefficients c(i)
m for each forcing component at three different

positions in the standing wave and a fixed value of ky which emulates similar conditions
as in the experimental set-up.

Figures 26(a–c) and 26(d–f ) show the coefficients of the transverse force in terms of its
radial and azimuthal components, respectively. When Y = 1 (pressure node) the |m| = 1
component is the dominant one, and it loses its strength as one moves towards Y = 0
(velocity node). At Y = 0 we observe a small contribution of the m = 0 mode and an even
smaller contribution of the m = 2 mode, which lose their strength as one moves towards
Y = 1. The rest of the modes only become relevant far away from the jet centre.

It is evident that within the potential core of the jet, a transverse wave is composed
mainly of the m = ±1 modes, except at the velocity node where the m = 0 mode has the
largest amplitude.
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