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Abstract

We use the exterior and composition products of double forms together with the alternating operator
to reformulate Pontrjagin classes and all Pontrjagin numbers in terms of the Riemannian curvature. We
show that the alternating operator is obtained by a succession of applications of the first Bianchi sum and
we prove some useful identities relating the previous four operations on double forms. As an application,
we prove that for a k-conformally flat manifold of dimension n ≥ 4k, the Pontrjagin classes Pi vanish
for any i ≥ k. Finally, we study the equality case in an inequality of Thorpe between the Euler–Poincaré
characteristic and the kth Pontrjagin number of a 4k-dimensional Thorpe manifold.
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1. Introduction

Let (M, g) be a compact oriented Riemannian smooth manifold of dimension n and k
a positive integer such that 4k ≤ n. We denote by R the Riemann curvature tensor of
(M, g) seen as a (2, 2) double form. It results from a theorem of Chern [4] that the
object (which is written using double form operations)

Pk(R) =
1

(k!)2(2π)2k Alt(Rk ◦ Rk)

is a closed differential form of degree 4k that represents the kth Pontrjagin class of M.
In particular, if n = 4k, the integral over M of Pk(R) is a topological invariant, namely
it is the kth Pontrjagin number of M.

In this paper, we first study in some detail the double form operations that were used
to define the above differential form, namely the Alt operator, the exterior product of
double forms that were used to define the kth power of R and finally the composition
product ◦.
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In particular, we show that the Alt operator is obtained by a succession of
applications of the first Bianchi sum S in the algebra of double forms; more precisely,
we prove the following result.

Proposition 1.1. Let ω be a (p, q) double form; then

Alt(ω) = (−1)pq+(q(q−1)/2) p!
(p + q)!

S
qω,

where Sq = S ◦ · · · ◦S, q times. In particular, if ω satisfies the first Bianchi identity,
then Alt(ω) = 0.

We also prove another useful identity.

Proposition 1.2. Let q, s ≥ 1 and p ≥ 0. If ω1 is a (p, q) double form and ω2 is a
(q − 1, s − 1) double form, then

Alt(gω2 ◦ ω1) = (−1)p p + 1
s

Alt(ω2 ◦S(ω1)),

where g is the Riemannian metric. In particular, ifω1 satisfies the first Bianchi identity,
then Alt(gω2 ◦ ω1) = 0.

As a direct consequence of the previous proposition, we show that Pontrjagin
classes depend only on the Weyl part of the Riemann curvature tensor R. In particular,
all the Pontrjagin classes of a conformally flat manifold vanish.

More generally, for n ≥ 4k, following Kulkarni we shall say that a Riemannian
n-manifold (M, g) is k-conformally flat if its Riemann curvature tensor R satisfies
Rk = gH. In other words, the kth exterior power of R is divisible by g in the exterior
algebra of double forms. We recover the usual conformally flat manifolds for k = 1.

Another consequence of the above formula is the following result.

Theorem 1.3. If (M, g) is a k-conformally flat Riemannian manifold of dimension
n ≥ 4k, then the Pontrjagin classes Pi of M vanish for i ≥ k.

In Section 5, we study a generalization of four-dimensional Einstein manifolds,
namely Thorpe manifolds. An oriented compact Riemannian manifold (M, g) of
dimension n = 4k is said to be a Thorpe manifold if ∗Rk = Rk, where R is the Riemann
curvature tensor seen as a (2, 2) double form, Rk its exterior power and ∗ the double
Hodge star operator acting on double forms. The usual Einstein 4-manifolds are
obtained for k = 1.

The following theorem provides topological obstructions to the existence of a
Thorpe metric.

Theorem 1.4. Let (M, g) be a compact orientable 4k-dimensional Thorpe manifold.
Then

χ(M) ≥
k!k!
(2k)!

|pk(M)|.
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Here pk(M) is the kth Pontrjagin number of M and χ(M) is the Euler–Poincaré
characteristic of M. Furthermore, if equality holds, then M is k-Ricci flat, that is,
cRk = 0.

The first part of the previous theorem is originally due to Thorpe [16]; however, the
second part is a new result. Both parts of the theorem will be proved in the last section
using the double form formalism.

In dimension four, the second part of the previous theorem tell us that a compact
orientable Einstein manifold M that satisfies 2χ(M) = |p1(M)| must be Ricci flat. We
note that Hitchin [7] showed that such a metric must then be either a flat or a Ricci-flat
Kahler metric on the K3 surface (Calabi–Yau metric) or a quotient of it.

In dimension eight, Kim [9] showed if equality holds in the previous theorem (that
is, 6χ(M) = |p2(M)|) and if we assume also that the metric is Einstein, then the metric
must be flat. We prove the following generalization of Kim’s result.

Theorem 1.5. A compact orientable manifold M of dimension 8k that is at the same
time hyper 2k-Einstein and Thorpe and satisfies ((4k)!/(2k)!(2k)!)χ(M) = |p2k(M)|
must be k-flat, that is, Rk = 0.

Recall that a metric is said to be hyper 2k-Einstein if its Riemann curvature tensor
satisfies cRk = λg2k−1 for some constant real number λ. We recover the usual Einstein
metrics for k = 1.

In the final section, we prove a Stehney-type formula for all the (mixed) Pontrjagin
numbers pk1

1 pk2
2 · · · p

km
m . Recall that these numbers are important topological invariants

for a manifold, they are oriented cobordism invariant and, together with Stiefel–
Whitney numbers, they determine an oriented manifold’s oriented cobordism class.
Furthermore, the signature and the Â genus can be expressed explicitly through linear
combinations of Pontrjagin numbers.

Theorem 1.6. Let (M, g) be a compact 4k-dimensional Riemannian oriented manifold
with Riemann curvature tensor R, seen as a (2, 2) double form, and let k1, k2, . . . , km be
a collection of natural numbers such that k1 + 2k2 + · · · + mkm = k. Then the Pontrjagin
number pk1

1 pk2
2 · · · p

km
m of M is given by the integral over M of the following 4k-form:

Pk1
1 Pk2

2 · · ·P
km
m =

(4k)!
[(2k)!]2(2π)2k

( m∏
i=1

[(2i)!]2

(i!)2ki (4i)!

)
Alt[(R ◦ R)k1 (R2 ◦ R2)k2 · · · (Rm ◦ Rm)km ],

where all the powers over double forms are taken with respect to the exterior product
of double forms.

2. The exterior and composition algebras of double forms

2.1. The exterior algebra of double forms. Let (V, g) be a Euclidean real vector
space of finite dimension n. Let ΛV∗ =

⊕
p≥0 ΛpV∗ (respectively ΛV =

⊕
p≥0 ΛpV)

denote the exterior algebra of the dual space V∗ (respectively V). We define the space
of exterior double forms of V (respectively the space of exterior double vectors) as
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D(V∗) = ΛV∗ ⊗ ΛV∗ =
⊕
p,q≥0

Dp,q(V∗)

(respectivelyD(V) = ΛV ⊗ ΛV =
⊕
p,q≥0

Dp,q(V)),

whereDp,q(V∗) = ΛpV∗ ⊗ ΛqV∗ (respectivelyDp,q(V) = ΛpV ⊗ ΛqV).
The spaceD(V∗) is naturally a bigraded associative algebra, called a double exterior

algebra of V∗, where for simple elements ω1 = θ1 ⊗ θ2 ∈ D
p,q(V∗) and ω2 = θ3 ⊗ θ4 ∈

Dr,s(V∗), the multiplication is given by
ω1ω2 = (θ1 ⊗ θ2)(θ3 ⊗ θ4) = (θ1 ∧ θ3) ⊗ (θ2 ∧ θ4) ∈ Dp+r,q+s(V∗),

where ∧ denotes the standard exterior product on the exterior algebra ΛV∗. A double
form of degree (p, q) is by definition an element of the tensor product Dp,q(V∗) =

ΛpV∗ ⊗ ΛqV∗.
The above multiplication inD(V∗) is called the exterior product of double forms.

2.2. The composition algebra of double forms. We define a second product in the
space of double exterior vectors D(V) (respectively in the space of double exterior
formsD(V∗)), which will be denoted by ◦ and will be called the composition product;
see [5, 13]. Given ω1 = θ1 ⊗ θ2 ∈ D

p,q and ω2 = θ3 ⊗ θ4 ∈ D
r,s, two simple double

exterior forms (or double exterior vectors), we set
ω1 ◦ ω2 = (θ1 ⊗ θ2) ◦ (θ3 ⊗ θ4) = 〈θ1, θ4〉θ3 ⊗ θ2 ∈ D

r,q.

It is clear that ω1 ◦ ω2 = 0 unless p = s. Then one can extend the definition to all
double forms using linearity. We emphasize that, in contrast with the exterior product
of double forms, the composition product clearly depends on the metric g.

It turns out that the space of double forms endowed with the composition product ◦
is an associative algebra.

For a double form (or vector) ω ∈ Dp,q, we denote by ωt ∈ Dq,p the transpose of ω.
For a simple double form, it is defined by

(θ1 ⊗ θ2)t = θ2 ⊗ θ1.

Using linearity, the previous definition can be extended to all double forms. Note that
a double form ω is a symmetric double form if and only if ωt = ω.

3. Basic maps in the space of double forms
Let (e1, . . . , en) be an orthonormal basis of V and (e∗1, . . . , e

∗
n) its dual basis of

1-forms.
Let h = e∗i ⊗ e∗j ∈ D

(1,1)(V∗) be a simple double form. We define four basic linear
mapsD(V∗)→D(V∗) as follows. For ω = θ1 ⊗ θ2 ∈ D(V∗), we set

L1,1
h (ω) = e∗i ∧ θ1 ⊗ e∗j ∧ θ2,

L−1,−1
h (ω) = ieiθ1 ⊗ ie jθ2,

L1,−1
h (ω) = e∗i ∧ θ1 ⊗ ie jθ2,

L−1,1
h (ω) = ieiθ1 ⊗ e∗j ∧ θ2,
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where ie j denotes the usual interior product. We then use linearity to extend first the
previous maps La,b

h toD(V∗) and secondly to define them for any h =∈ D(1,1)(V∗). For
instance, for the inner product g =

∑n
i=1 e∗i ⊗ e∗i ∈ D

(1,1)(V∗),

La,b
g (ω) =

n∑
i=1

La,b
e∗i ⊗e∗i

(ω).

Recall that the exterior algebra ΛV∗ inherits naturally an inner product, denoted 〈. , .〉,
from the inner product g of V . This inner product can be canonically extended to
an inner product, denoted also by 〈. , .〉, on the space of double forms D(V∗). More
precisely, for simple double forms inD(p,q)(V∗), we set

〈θ1 ⊗ θ2, θ3 ⊗ θ4〉 = 〈θ1, θ3〉〈θ2, θ4〉.

With respect to the previous canonical inner product, we have the following result.

Proposition 3.1. For any h ∈ D(1,1)(V∗):

(1) the map L−1,−1
h is the adjoint map of L1,1

h ;
(2) the map L−1,1

h is the adjoint map of L1,−1
h .

Proof. The proof is straightforward; it results directly from the fact that the interior
product by a vector v is the adjoint of the exterior multiplication by v∗. �

The following proposition shows that the previous maps are the basic maps of the
algebra of curvature structures as defined in [10].

Proposition 3.2. Let (V, g) be a Euclidean vector space and ω ∈ D(V∗) an arbitrary
double form. Then:

(1) L1,1
g (ω) = gω is the left multiplication map by g;

(2) L−1,−1
g (ω) = cω is the contraction map of double forms;

(3) L1,−1
g (ω) = Sω is the first Bianchi sum;

(4) L−1,1
g (ω) = S̃ω is the first adjoint Bianchi sum.

Proof. The proof of (1) is straightforward; (2) results from the fact that the contraction
map is the adjoint of the multiplication map by g; see [11]. To prove (3), we proceed
as follows.

Let ω = e∗i1 ∧ · · · ∧ e∗ip
⊗ e∗j1 ∧ · · · ∧ e∗jq be a simple (p, q) double form; then

L1,−1
g (ω) =

n∑
i=1

e∗i ∧ e∗i1 ∧ · · · ∧ e∗ip
⊗ iei e

∗
j1 ∧ · · · ∧ e∗jq

=

n∑
i=1

e∗i ∧ e∗i1 ∧ · · · ∧ e∗ip
⊗

q∑
k=1

(−1)q−1〈e∗i , e
∗
jk〉e
∗
j1 ∧ · · · ê jk · · · ∧ e∗jq
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=

n∑
i=1

q∑
k=1

(−1)q−1〈e∗i , e
∗
jk〉e
∗
i ∧ e∗i1 ∧ · · · ∧ e∗ip

⊗ e∗j1 ∧ · · · ê jk · · · ∧ e∗jq

=

q∑
k=1

(−1)q−1e∗jk ∧ e∗i1 ∧ · · · ∧ e∗ip
⊗ e∗j1 ∧ · · · ê jk · · · ∧ e∗jq

= Sω.

In the same way, one can prove that

L−1,1
g (ω) =

q∑
k=1

(−1)q−1e∗i1 ∧ · · · êik · · · ∧ e∗ip
⊗ e∗ik ∧ e∗j1 ∧ · · · ∧ e∗jp

= S̃ω.

This completes the proof of the proposition. �

Remark 3.3. We remark that the first Bianchi sum and its adjoint are related by the
formula (which can be easily checked)

S̃(ω) = (S(ωt))t.

As a first direct application of the previous proposition, we show that the Bianchi
sum is an antiderivation, as was observed in [10].

Proposition 3.4. Let ω1 ∈ D
(p,q)(V∗) and ω2 =∈ D(r,s)(V∗); then

S(ω1ω2) = (Sω1)ω2 + (−1)p+qω1Sω2. (3.1)

Proof. Without loss of generality, we may assume that ω1 = θ1 ⊗ θ2 ∈ D
(p,q)(V∗) and

ω2 = θ3 ⊗ θ4 ∈ D
(r,s)(V∗) . Then

S(ω1ω2) = S(θ1 ∧ θ3 ⊗ θ2 ∧ θ4)

=

n∑
i=1

ei ∧ θ1 ∧ θ3 ⊗ iei (θ2 ∧ θ4)

=

n∑
i=1

ei ∧ θ1 ∧ θ3 ⊗ (iei (θ2) ∧ θ4) + (−1)qθ2 ∧ iei (θ4)

=

n∑
i=1

(ei ∧ θ1 ⊗ ieiθ2)(θ3 ⊗ θ4) +

n∑
i=1

(−1)pθ1 ∧ ei ∧ θ3 ⊗ (−1)qθ2 ∧ iei (θ4)

=

n∑
i=1

(ei ∧ θ1 ⊗ ieiθ2)(θ3 ⊗ θ4) + (θ1 ⊗ θ2)(−1)p+q
n∑

i=1

ei ∧ θ3 ⊗ iei (θ4)

= (Sω1)ω2 + (−1)p+qω1Sω2. �
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Recall that the alternating operator is a linear map D(V∗)→ Λ(V∗) defined as
follows:

Alt(θ1 ⊗ θ2) =
p!q!

(p + q)!
θ1 ∧ θ2, (3.2)

where θ1 ⊗ θ2 ∈ D
p,q(V∗). It is clear that Alt is a surjective map. However, it is far

from being injective. The next proposition shows in particular that the kernel of Alt
contains all double forms satisfying the first Bianchi identity.

Proposition 3.5. Let ω be a (p, q) double form. Then

Altω = (−1)pq+(q(q−1)/2) p!
(p + q)!

S
qω,

where Sq = S ◦ · · · ◦S, q times.

Proof. By linearity, we may assume that ω = θ1 ⊗ θ2 is a decomposed (p, q) double
form. Using Proposition 3.2,

S
qω = (L1,−1

g )q(ω)

=

n∑
i1,...,iq=1

e∗i1 ∧ · · · ∧ e∗iq ∧ θ1 ⊗ ieiq∧···∧ei1
θ2

=

n∑
i1,...,iq=1

e∗i1 ∧ · · · ∧ e∗iq ∧ θ1 ⊗ 〈e∗iq ∧ · · · ∧ e∗i1 , θ2〉

=

n∑
i1,...,iq=1

〈e∗iq ∧ · · · ∧ e∗i1 , θ2〉e∗i1 ∧ · · · ∧ e∗iq ∧ θ1

= (−1)(q(q−1)/2)
n∑

i1,...,iq=1

〈e∗i1 ∧ · · · ∧ e∗iq , θ2〉e∗i1 ∧ · · · ∧ e∗iq ∧ θ1

= q!(−1)(q(q−1)/2)θ2 ∧ θ1 = q!(−1)pq+(q(q−1)/2)θ1 ∧ θ2

= (−1)pq+(q(q−1)/2) (p + q)!
p!

Alt(ω). �

The next proposition shows that the operator Alt defines an exterior algebra
endomorphism.

Proposition 3.6. Let ω1 ∈ D
(p,q)(V∗) and ω2 ∈ D

(r,s)(V∗); then ω1ω2 ∈ D
(p+r,q+s)(V∗)

and

(p + r + q + s)!
(p + r)!(q + s)!

Alt(ω1ω2) = (−1)qr
( (p + q)!

p!q!
Altω1

)
∧

( (r + s)!
r!s!

Altω2

)
.

In particular, if Alt(ω1) = 0 for some double form ω1, then Alt(ω1ω2) = 0 for any
double form ω2.
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Proof. Without loss of generality, we may assume that ω1 = θ1 ⊗ θ2 ∈ D
(p,q)(V∗) and

ω2 = θ3 ⊗ θ4 ∈ D
(r,s)(V∗). Then

Alt(ω1ω2) = Alt(θ1 ∧ θ3 ⊗ θ2 ∧ θ4)

=
(p + r)!(q + s)!
(p + r + q + s)!

θ1 ∧ θ3 ∧ θ2 ∧ θ4

=
(p + r)!(q + s)!
(p + r + q + s)!

(−1)qrθ1 ∧ θ2 ∧ θ3 ∧ θ4

= (−1)qr (p + r)!(q + s)!
(p + r + q + s)!

(p + q)!(r + s)!
p!q!r!s!

Altω1 ∧ Altω2. �

We shall say that a double form ω satisfies the first Bianchi identity if Sω = 0. In
the next proposition, we use the Bianchi first sum to reformulate the classical Plücker
relations, also called the Grassmann quadratic p-relations.

Proposition 3.7. A p-form α ∈ ΛV∗ is decomposable if and only if the double form
α ⊗ α ∈ Dp,p(V∗) satisfies the first Bianchi identity.

Recall that a p-form α is said to be decomposable if there exist p 1-forms αi such
that α = α1 ∧ · · · ∧ αp.

Proof. Let (e1, . . . , en) be an orthonormal basis of V . We look at double forms as
multilinear forms on V and we use an alternative form of the first Bianchi sum as
follows:

S(α ⊗ α)(ei1 , . . . , eip+1 ; e j1 , . . . , e jp−1 )

=

p+1∑
k=1

(−1)k(α ⊗ α)(ei1 , . . . , êik , . . . , eip+1 ; eik , e j1 , . . . , e jp−1 )

=

p+1∑
k=1

(−1)kα(ei1 , . . . , êik , . . . , eip+1 )α(eik , e j1 , . . . , e jp−1 ). �

The following lemma will be useful in proving some results of the next section.

Lemma 3.8. (1) Let r, p ≥ 1, q ≥ 0 and ω1 ∈ D
p,q(V∗), ω2 ∈ D

r−1,p−1(V∗) be two
double forms; then

Alt(ω1 ◦ gω2) = (−1)r−1 q + 1
r

Alt(S̃(ω1) ◦ ω2).

In particular, if ωt
1 satisfies the first Bianchi identity, then Alt(ω1 ◦ gω2) = 0.

(2) Let q, s ≥ 1, p ≥ 0 and ω1 ∈ D
p,q(V∗), ω2 ∈ D

q−1,s−1(V∗) be two double forms;
then

Alt(gω2 ◦ ω1) = (−1)p p + 1
s

Alt(ω2 ◦S(ω1)).

In particular, if ω1 satisfies the first Bianchi identity, then Alt(gω2 ◦ ω1) = 0.
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Proof. Let ω1 = θ1 ⊗ θ2 ∈ D
p,q(V∗) and ω2 = θ3 ⊗ θ4 ∈ D

r−1,p−1(V∗).
On one hand, using the definition of the composition product of double forms,

ω1 ◦ gω2 = (θ1 ⊗ θ2) ◦
n∑

i=1

e∗i ∧ θ3 ⊗ e∗i ∧ θ4 =

n∑
i=1

〈θ1, e∗i ∧ θ4〉e∗i ∧ θ3 ⊗ θ2.

On the other hand, recall that the first adjoint Bianchi sum is given by

S̃(ω1) =

n∑
i=1

ieiθ1 ⊗ e∗i ∧ θ2;

therefore,

S̃(ω1) ◦ ω2 =

n∑
i=1

〈θ1, e∗i ∧ θ4〉θ3 ⊗ e∗i ∧ θ2.

To complete the proof, it is enough to check that

Alt(θ3 ⊗ e∗i ∧ θ2) = (−1)r−1 q + 1
r

Alt(e∗i ∧ θ3 ⊗ θ2).

The proof of the second statement is identical. �

4. Pontrjagin forms and scalars

4.1. Pontrjagin forms.

Definition 4.1. Let R be a (2, 2) double form on the Euclidean vector space (V, g). The
kth Pontrjagin form of R, denoted Pk(R), is the 4k-form defined by

Pk(R) =
1

(k!)2(2π)2k Alt(Rk ◦ Rk) ∈ Λ4k(V∗). (4.1)

Remark 4.2. The previous definition is motivated by Riemannian geometry. If (M, g)
is a Riemannian manifold of dimension n and k is a positive integer such that 4k ≤ n,
let R be the Riemann curvature tensor seen as a (2, 2) double form. In Stehney [15],
it is shown that the differential form Pk(R) is a closed differential form of degree 4k
that represents the kth Pontrjagin class of M. Let us note that the previous result of
Stehney is a reformulation of a result originally due to Chern [4].

Proposition 4.3. Let W denote the Weyl part of the (2, 2) double form R; then

Pk(R) = Pk(W) =
1

(k!)2(2π)2k Alt(Wk ◦Wk).

In other words, the Pontrjagin forms depend only on the Weyl part of R.

This result was first proved by Avez [1], Bivens [2], Greub [6] and Branson and
Gover [3].
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Proof. Recall that we have the decomposition R = W + gh, where h is the Schouten
tensor. Then Rk = Wk + gH for some double form H and therefore

Rk ◦ Rk = (Wk + gH) ◦ (Wk + gH) = Wk ◦Wk + Wk ◦ gH + gH ◦Wk + gH ◦ gH.

Since Wk and gH are both symmetric double forms and both satisfy the first Bianchi
identity, Lemma 3.8 shows that

Alt(Wk ◦ gH) = Alt(gH ◦Wk) = Alt(gH ◦ gH) = 0.

The proposition then follows immediately. �

As a direct consequence of the previous proposition, all the Pontrjagin classes of a
conformally flat manifold vanish. In the next theorem, we are going to generalize this
to more general q-conformally flat manifolds.

First, recall that for n ≥ 4k − 1, the kth Gauss–Kronecker curvature Rk of a
Riemannian n-manifold (M, g) admits a unique decomposition [10, 14]

Rk = con Rk + gH,

where con Rk is a trace-free (2k, 2k) double form and H is a (2k − 1, 2k − 1) double
form. This is somehow like a Euclidean division by the metric g. Note that for k = 1,
con R is just the Weyl tensor of the Riemann curvature tensor R.

For n ≥ 4k, following [10, 14], we say that a Riemannian n-manifold (M, g) is k-
conformally flat if con Rk = 0 or, equivalently, Rk is divisible by the metric g, that is,
Rk = gH for some (2k − 1, 2k − 1) double form H.

We recover the usual conformally flat manifolds for k = 1. Using Lemma 3.8, one
can easily prove the following result.

Theorem 4.4. Let (M, g) be a k-conformally flat Riemannian manifold of dimension
n ≥ 4k. Then the Pontrjagin classes Pi of M vanish for i ≥ k.

Proof. Let Rk = gH for some (2k − 1, 2k − 1) double form H. Then, using Lemma 3.8,

Alt(Rk ◦ Rk) = Alt(gH ◦ Rk) = 0.

This completes the proof. �

Remark 4.5. Let us remark here that if Rk = gH for some (2k − 1, 2k − 1) double form
H, then H automatically satisfies the first Bianchi identity, for Proposition 3.1 shows
that

0 = S(Rk) = S(gH) = gS(H).

Recall that if S(H) is a (2k, 2k − 2) double form, then, by [10, Proposition 2.5], we
have S(H) = 0, as 2k + 2k − 2 is less than n.
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4.2. Pontrjagin–Chern scalars of double forms.
4.2.1. The volume double form. Let (V, g) be a Euclidean vector space of even

dimension n = 4k. Fix a volume form ωg on V , that is, choose ωg ∈ Λn(V∗) with
norm 1. In other words, we choose an orientation on V . Using the inclusion
Λ4k(V∗) ⊂ D(2k,2k)(V∗), one can look at ωg as a (2k, 2k) double form. The so-obtained
double form, which we continue to denote by ωg, shall be called the volume double
form of (V, g).

It is easy to check that the operator Λ2k(V∗)→ Λ2k(V∗) that is canonically associated
to ωg is nothing but the Hodge star operator ∗. In particular, for any two 2k-vectors
α, β, one has

ωg(α, β) = 〈∗α, β〉 = 〈α, ∗β〉 = ∗(α ∧ β).
We list below some useful properties of this volume double form.

Proposition 4.6. (1) In the composition algebra of double forms D(V∗), the volume
double form ωg is a square root of unity, that is,

ωg ◦ ωg =
g2k

(2k)!
.

(2) For any two (2k, 2k) double forms ω1 and ω2,
〈ωg ◦ ω1, ωg ◦ ω2〉 = 〈ω1, ω2〉 = 〈ω1 ◦ ωg, ω2 ◦ ωg〉.

(3) If ∗ denotes the double Hodge star operating on double forms and ψ is an arbitrary
(2k, 2k) double form, then

(∗ψ) ◦ ωg = ωg ◦ ψ and ψ ◦ ωg = ωg ◦ (∗ψ).
In particular,

∗ψ = ωg ◦ ψ ◦ ωg.

Proof. Let (ei) be a positive orthonormal basis of V; then it is easy to show that

ωg =
∑

I

e∗I ⊗ ∗e
∗
I ,

where the index I runs over all multi-indices i1, . . . , i2k such that 1 ≤ i1 < · · · < i2k ≤ n
and the star power denotes duals as usual. Consequently,

ωg ◦ ωg =
∑
I,J

〈e∗I , ∗e
∗
J〉e
∗
J ⊗ ∗e

∗
I =

∑
I

e∗I ⊗ e∗I =
g2k

(2k)!
.

This completes the proof of (1).
Next, note that

(ωg ◦ ω1)t ◦ (ωg ◦ ω2) = ωt
1 ◦ ωg ◦ ωg ◦ ω2 = ωt

1 ◦ ω2,

where we used the fact that ωg is a symmetric double form. After taking full
contractions of both sides, one gets the relation in (2).

To prove (3), without loss of generality let ω = e∗I ⊗ e∗J , where I and J are multi-
indices as above. Then ∗ω = ∗e∗I ⊗ ∗e

∗
J and

(∗ω) ◦ ωg =
∑

K

〈∗e∗I , ∗e
∗
K〉e

∗
K ⊗ ∗e

∗
J = e∗I ⊗ ∗e

∗
J .
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On the other hand,

ωg ◦ ω =
∑

K

〈e∗K , e
∗
J〉e
∗
I ⊗ ∗e

∗
K = e∗I ⊗ ∗e

∗
J .

This completes the proof of the proposition. �

The proof of the following properties is straightforward.

Proposition 4.7. If ωg is the (2k, 2k) volume double form, then

∗ωg = ωg, cωg = 0, gωg = 0 and 〈ωg, ωg〉 = 1.

4.2.2. Pontrjagin–Chern scalars of double forms.

Definition 4.8. Let R be a (2, 2) double form on an oriented Euclidean vector space
(V, g) of dimension n = 4k. The kth Pontrjagin–Chern scalar of R, denoted pk(R), is
the real number defined by

pk(R) =
1

(k!)2(2π)2k 〈R
k ◦ Rk, ωg〉,

where ωg is the volume double form of V .

It is easy to show that

pk(R) =
1

(k!)2(2π)2k 〈Alt(Rk ◦ Rk), ωg〉 = 〈Pk(R), ωg〉,

where the previous inner product is the one of 4k-forms, ωg is the volume form of
(V, g) and Pk(R) is the kth Pontrjagin form of R. In particular, since dim Λ4kV∗ = 1,

Pk(R) = 〈Pk(R), ωg〉ωg = pk(R)ωg.

The following proposition provides an alternative definition of the previous scalars.

Proposition 4.9. The kth Pontrjagin–Chern scalar pk(R) is given by a full contraction
as follows:

pk(R) =
1

(k!)2(2π)2k(2k)!
c2k(Rk ◦ Rk ◦ ωg).

Proof. It results from Proposition 4.6 that

pk(R) =
1

(k!)2(2π)2k 〈R
k ◦ Rk, ωg〉

=
1

(k!)2(2π)2k 〈R
k ◦ Rk ◦ ωg, ωg ◦ ωg〉

=
1

(k!)2(2π)2k

〈
Rk ◦ Rk ◦ ωg,

g2k

(2k)!

〉
=

1
(k!)2(2π)2k(2k)!

c2k(Rk ◦ Rk ◦ ωg),

where in the last step we used the fact that the contraction map c is the adjoint of the
multiplication map by g; see [11]. �
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Remark 4.10. We remark that if (ei) is an orthonormal basis of (V, g) and Rk is seen as
a bilinear form on Λ2k, then

c2k(Rk ◦ Rk ◦ ωg) =

n∑
i1,...,i2k=1

Rk ◦ Rk(ei1 ∧ · · · ∧ ei2k , ∗(ei1 ∧ · · · ∧ ei2k )).

For a Riemannian oriented manifold of dimension n = 4k, let R be its Riemann
curvature tensor seen as a (2, 2) double form. The integral over M of the function
pk(R) is a topological invariant called the kth Pontryagin number of M and is denoted
by pk(M).

Proposition 4.11. Let R be a (2, 2) double form on an oriented Euclidean vector space
(V, g) of dimension n = 4k. Then

|pk(R)| ≤
1

(k!)2(2π)2k ‖R
k‖2.

Furthermore, if equality occurs, then the contraction cRk = 0.

Proof. As the double form Rq is symmetric,

pk(R) =
1

(k!)2(2π)2k 〈R
k ◦ Rk, ωg〉 =

1
(k!)2(2π)2k 〈R

k,Rk ◦ ωg〉.

The Cauchy–Schwartz inequality shows that

(k!)2(2π)2k|pk(R)| = |〈Rk,Rk ◦ ωg〉| ≤ ‖Rk‖ ‖Rk ◦ ωg‖.

Next, we apply Proposition 4.6 to show that ‖Rk ◦ ωg‖ = ‖Rk‖, as follows:

‖Rk ◦ ωg‖
2 = 〈Rk ◦ ωg,Rk ◦ ωg〉 = 〈Rk,Rk〉.

This completes the proof of the first part of the proposition. To prove the second part,
first we use Lemma 4.12 below to show that

c(Rk ◦ ωg) = SRk ◦ ωg = 0.

Finally, if equality holds, then Rk must be proportional to Rk ◦ ωg and therefore
cRk = c(Rk ◦ ωg) = 0. �

Lemma 4.12. Let n = 2p and ω be a (p, p) double form. Then

c(ω ◦ ωg) = Sω ◦ ωg,

where the last ωg is the volume double form seen as a (p − 1, p + 1) double form.

Proof. Let (e1, . . . , en) be an orthonormal basis of V . By linearity, we may assume that
ω = e∗I ⊗ e∗J , where I, J are two multi-indices of length p. Then

ω ◦ ωg = e∗I ⊗ ∗e
∗
J .
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Therefore,

c(ω ◦ ωg) =

n∑
i=1

iei e
∗
I ⊗ iei (∗e

∗
J).

A straightforward computation shows that iei (∗e
∗
J) = ∗(e∗i e∗J); therefore,

c(ω ◦ ωg) =

n∑
i=1

iei e
∗
I ⊗ ∗(e

∗
i e∗J) =

n∑
i=1

(iei e
∗
I ⊗ e∗i e∗J) ◦ ωg = Sω ◦ ωg. �

Remark 4.13. If W denotes the Weyl part of R, then in a similar way one can prove
that

|pk(R)| ≤
1

(k!)2(2π)2k ‖W
k‖2.

5. Thorpe manifolds

An oriented compact Riemannian manifold (M, g) of dimension n = 4k is said to
be a Thorpe manifold if ∗Rk = Rk, where R is the Riemann curvature tensor seen as a
(2, 2) double form, R2k its exterior power and ∗ the double Hodge star operator acting
on double forms.

For k = 1, we recover four-dimensional Einstein manifolds. For n > 4, Thorpe
manifolds are in general not Einstein and vice versa; see for instance [8].

Recall that the Gauss–Bonnet theorem asserts that∫
M

h4kωg = (2π)2k(2k)!χ(M),

where h4k is the 4k-Gauss–Bonnet curvature of (M, g), which is given by (see for
instance [11])

h4k = ∗R2k = ∗(RkRk) = 〈∗Rk,Rk〉.

In particular, for a Thorpe manifold,

h4k = ‖Rk‖2 ≥ 0.

Therefore, the Euler–Poincaré characteristic of a compact Thorpe manifold of
dimension n = 4k is always nonnegative, and it is zero if and only if the manifold
is q-flat. This remark can be refined as follows.

Theorem 5.1. Let (M, g) be a compact orientable 4k-dimensional Thorpe manifold;
then

χ(M) ≥
k!k!
(2k)!

|pk(M)|,

where pk(M) is the kth Pontrjagin number of M. Furthermore, if equality holds, then
M is k-Ricci flat, that is, cRq = 0.
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Proof. Using Proposition 4.11, we get

|pk(M)| ≤
∫

M
|pk(R)|ωg

≤
1

(k!)2(2π)2k

∫
M
‖Rk‖2ωg

=
1

(k!)2(2π)2k

∫
M

h4kωg

=
(2k)!
k!k!

χ(M).

Furthermore, if equality holds, then |pk(R)| = (1/(k!)2(2π)2k)‖Rk‖2. Again, by
Proposition 4.11, the metric must then be k-Ricci flat. This completes the proof of
the theorem. �

We note that the first part of the theorem was first proved by Thorpe [16]. As
a consequence of the second part of the theorem, we get the following main result
of [9].

Corollary 5.2. A compact orientable manifold M of dimension eight that is at the
same time Einstein and Thorpe and satisfies 6χ(M) = |p2(M)| must be flat.

Proof. On one hand, Theorem 5.1, once applied to the case k = 2, shows that cR2 =

0. Consequently, the second Gauss–Bonnet curvature satisfies h4 = 1
4! c

4R2 = 1
4! c

3

(cR2) = 0.
On the other hand, an Einstein manifold with identically zero h4 must be flat [11].

This completes the proof of the corollary. �

Next, we are going to generalize the above corollary to higher dimensions. First,
we start with a definition.

Definition 5.3 [12]. Let 0 < 2q < n. We shall say that a Riemannian n-manifold is
hyper (2q)-Einstein if the first contraction of the tensor Rq is proportional to the metric
g2q−1, that is,

cRq = λg2q−1.

We recover the usual Einstein metrics for q = 1. The following theorem generalizes
a well-known result about four-dimensional Einstein manifolds.

Theorem 5.4 [11, 12]. Let k ≥ 1 and (M, g) be a hyper (2k)-Einstein manifold of
dimension n ≥ 4k. Then the Gauss–Bonnet curvature h4k of (M, g) is nonnegative.
Furthermore, h4k ≡ 0 if and only if (M, g) is k-flat.

Recall that k-flat means that the sectional curvature of Rk is identically zero.
Now we are ready to state and prove a generalization of Corollary 5.2.
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Theorem 5.5. A compact orientable manifold M of dimension 8k that is at the same
time hyper 2k-Einstein and Thorpe and satisfies ((4k)!/(2k)!(2k)!)χ(M) = |p2k(M)|
must be k-flat.

We recover Corollary 5.2 for k = 1.

Proof. Theorem 5.1 shows that cR2k = 0. Consequently, the (4k)th Gauss–Bonnet
curvature satisfies h4k = (1/(4k)!)c4kR2k = (1/(4k)!)c4k−1(cR2k) = 0. Then Theorem 5.4
shows that the manifold must be k-flat. �

6. Final remarks

6.1. Mixed Pontrjagin numbers. Let (M, g) be a compact 4k-dimensional
Riemannian oriented manifold with Riemann curvature tensor R, seen as a (2, 2)
double form, and k1, k2, . . . , km a collection of natural numbers such that k1 + 2k2 +

· · · + mkm = k.
The Pontrjagin number pk1

1 pk2
2 · · · p

km
m of M is defined by the integral over M of the

following 4k-form:

Pk1
1 Pk2

2 · · · P
km
m := (P1 ∧ · · · ∧ P1︸          ︷︷          ︸

k1 times

) ∧ (P2 ∧ · · · ∧ P2︸          ︷︷          ︸
k2 times

) ∧ · · · ∧ (Pm ∧ · · · ∧ Pm︸           ︷︷           ︸
km times

),

where, for each i, Pi = Pi(R) denotes the ith Pontrjagin form of R as defined in
Section 4.1.

The above Pontrjagin numbers are important topological invariants for a manifold,
they are oriented cobordism invariant and, together with Stiefel–Whitney numbers,
they determine an oriented manifold’s oriented cobordism class. Furthermore, the
signature and the Â genus can be expressed explicitly through linear combinations of
the above Pontrjagin numbers.

We are now going to prove a Stehney-type formula for all these numbers.

Theorem 6.1. With the above notation,

Pk1
1 Pk2

2 · · ·P
km
m =

(4k)!
[(2k)!]2(2π)2k

( m∏
i=1

[(2i)!]2

(i!)2ki (4i)!

)
Alt[(R ◦ R)k1 (R2 ◦ R2)k2 · · · (Rm ◦ Rm)km ],

where all the powers over double forms are taken with respect to the exterior product
of double forms. In particular, the Pontrjagin numbers are given by the integral

pk1
1 pk2

2 · · · p
km
m =

(4k)!
[(2k)!]2(2π)2k

( m∏
i=1

[(2i)!]2

(i!)2ki (4i)!

)
×

∫
M

c2k

(2k)!
[((R ◦ R)k1 (R2 ◦ R2)k2 · · · (Rm ◦ Rm)km ) ◦ ωg]ωg,

where c is the contraction map of double forms and ωg is the volume form as above.
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Proof. Let ωi, for i = 1, 2, . . . , k, be a collection of arbitrary (2pi, 2pi) double forms.
Then successive applications of Proposition 3.6 show that

(
∑k

i=1 4pi)!

[(
∑k

i=1 2pi)!]2
Alt(ω1ω2 · · ·ωk) =

( k∏
i=1

(4pi)![
(2pi)!

]2

)
Alt(ω1) ∧ Alt(ω2) ∧ · · · ∧ Alt(ωk).

In particular, if ω is an arbitrary (2p, 2p) double form,
(4pk)!

[(2pk)!]2 Alt(ωk) =

[ (4p)!
[(2p)!]2

]k
Alt(ω) ∧ · · · ∧ Alt(ω)︸                     ︷︷                     ︸

k times

.

Using the previous two formulas, one can directly and without difficulties complete
the proof of the theorem. The second part can be easily proved by imitating the proof
of Proposition 4.9. �

6.2. Stehney’s formula for Pontrjagin forms. For the sake of completeness, we
include here the derivation of Stehney’s formula (4.1) from Chern’s theorem [4].

Let (M, g) be a Riemannian n-manifold with Riemann curvature tensor R, m ∈ M
and (ei) an orthonormal basis of the tangent space at m. Chern’s theorem [4] shows
that at m,

Pk(R) =
[(2k)!]2

(4k)!(2π)2k(2kk!)2

∑
I

ΩI ∧ΩI ,

where the sum runs over all multi-indices I = (i1, . . . , i2k) such that 1 ≤ i1 < · · · < i2k
≤ n, and

ΩI(v1, . . . , v2k) = 2kRk(v1 ∧ · · · ∧ v2k; eI).
We used the notation eI = ei1 ∧ · · · ∧ ei2k . We emphasize that our convention for the
wedge product is as defined by formula (3.2). Next, let J, K in the sums below run
over all multi-indices of length 2k, as was the case for I in the previous sum. Then

1
22k

∑
I

ΩI ∧ΩI =
1

22k

∑
I,J,K

ΩI(eJ)e∗J ∧ΩI(eK)e∗K

=
∑
I,J,K

Rk(eJ , eI)Rk(eK , eI)e∗J ∧ e∗K

=
∑
J,K

Rk ◦ Rk(eJ , eK)e∗J ∧ e∗K

=
(4k)!

(2k)!(2k)!
Alt

(∑
J,K

Rk ◦ Rk(eJ , eK)e∗J ⊗ e∗K
)

=
(4k)!

(2k)!(2k)!
Alt(Rk ◦ Rk).

Finally,

Pk(R) =
[(2k)!]2

(4k)!(2π)2k(2kk!)2

∑
I

ΩI ∧ΩI =
22kAlt(Rk ◦ Rk)
(2π)2k(2kk!)2 =

1
(2π)2k(k!)2 Alt(Rk ◦ Rk).
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