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Abstract

Let I1, I2, . . . , In be independent indicator functions on some probability space (�,A,P).
We suppose that these indicators can be observed sequentially. Furthermore, let T be
the set of stopping times on (Ik), k = 1, . . . , n, adapted to the increasing filtration
(Fk), where Fk = σ(I1, . . . , Ik). The odds algorithm solves the problem of finding a
stopping time τ ∈ T which maximises the probability of stopping on the last Ik = 1,
if any. To apply the algorithm, we only need the odds for the events {Ik = 1}, that is,
rk = pk/(1 − pk), where pk = E(Ik), k = 1, 2, . . . , n. The goal of this paper is to
offer tractable solutions for the case where the pk are unknown and must be sequentially
estimated. The motivation is that this case is important for many real-world applications
of optimal stopping. We study several approaches to incorporate sequential information.
Our main result is a new version of the odds algorithm based on online observation and
sequential updating. Questions of speed and performance of the different approaches are
studied in detail, and the conclusiveness of the comparisons allows us to propose always
using this algorithm to tackle selection problems of this kind.
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1. Introduction

Let I1, I2, . . . be independent indicator functions on a probability space (�,A,P) with
pk = E(Ik). Furthermore, let

qk = 1 − pk, rk = pk

qk
,

that is, rk presents the odds of the event {Ik = 1}. We may observe the indicators sequentially
and we may stop on at most one, but only online, that is, at the moment of observation. We win if
we stop on the last Ik = 1 (if any) and lose otherwise (including not stopping at all). Formally,
let T be the set of nonanticipative stopping rules defined by T = {τ : {τ = k} ∈ Fk}, where
Fk is the σ -algebra generated by I1, I2, . . . , Ik . The odds theorem of optimal stopping [2]
determines the rule which maximises the probability of stopping on the last indicator that takes
the value 1 (if any). This solution is conveniently computed via the odds algorithm described
in Algorithm 1.1, below.
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132 F. T. BRUSS AND G. LOUCHARD

Algorithm 1.1. (The odds algorithm.)

• Input. Define
Rk := rn + rn−1 + · · · + rk, k = n, . . . , 1,

Qk := qnqn−1 · · · qk, k = n, . . . , 1,

and precompute

s = s(n) =
{

1 if R1 < 1,

sup{k : Rk ≥ 1} otherwise.
(1.1)

• Output: an optimal stopping rule. The optimal stopping rule to stop on the last ‘1’ is:
stop on the first indicator Ik with Ik = 1 and k ≥ s. If none exists, stop on n and lose.
This strategy is named the odds strategy.

We say that we win with the odds strategy if the first Ik = 1 with k ≥ s is the last 1.
The optimal win probability (as seen at time 1, 2, . . . , s − 1) equals RsQs . The odds

algorithm is very convenient and allows for many interesting applications (e.g. secretary prob-
lems, selection problems for randomly arriving objects, timing problems, buying and selling
problems, clinical trials, automated maintenance problems, and others). See [2], [4], [10], [12],
and [17]. The algorithm can also be adapted to continuous-time decision processes with Poisson
arrivals (see [2]). Related problems have been studied by Hsiau and Yang [11], Suchwalko and
Szajowski [15], and Szajowski [16]. In these problems the odds algorithm is also of partial
help. It would be tempting to try to extend the applicability of the odds algorithm further to
the full-information problem of Kurushima and Ano [13] and Mazalov and Tomaki [14], as
well as to the maximum duration problem of Ferguson et al. [9]. However, in the first case,
the indicator functions expressing the payoff for stopping become dependent, whereas, in the
second case, the payoff is a continuous random variable. Therefore, we see no way to adapt
the use of the odds algorithm to such problems.

A particular feature of the odds algorithm is that the number of computational steps to find the
optimal value of s is (sub)-linear in n. The algorithm is optimal itself, in the sense that clearly
no algorithm can exist which would in general yield the rule with less than O(n) computations.
Since it yields the optimal rule and the optimal win probability at the same time, and is optimal
itself, it is—in colloquial terms of optimal stopping—a rare ‘triple ace’.

A related problem to the problem of stopping on the last event {Ik = 1} is the problem of
stopping with maximum probability on the kth last indicator which equals 1 (see [6]). The
precise solution is more complicated, but a slight modification of the odds algorithm gives a
good approximation. A harder related problem is the problem of stopping on a last specific
pattern in an independent sequence of variables taken from some finite or infinite alphabet, as
studied in [5]. In these problems, the pk are supposed to be known.

1.1. Unknown odds

The applicability of the above odds algorithm is restricted, because in many practical
applications, the decision maker would not know beforehand the valuespk , at least not precisely.
The corresponding optimal stopping problem for unknown pk is now in general much harder.
In some cases, the precise solution can be given, and this also within the framework of the odds
algorithm (see [18]), but these cases are very special. In this paper we study the problem in
more generality.

Note that we cannot give too much freedom to the randomness of the pk , because, if we
allow, as we typically do, the pk to be different from each other, they must still be estimable.
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The odds algorithm based on sequential updating and its performance 133

More precisely, the odds rk+1, rk+2, . . . , rn must be estimable from I1, I2, . . . , Ik . This means
that the number of unknown parameters on which the pk (and, thus, the rk) may depend, must
stay very small compared with n. Since n is, in many important applications, as for instance
the compassionate-use clinical trial example (see [4]), not large (10 or 15, say) we focus our
interest in this paper on only one unknown parameter p. Hence, the pk are thought of as being
deterministic functions of one unknown parameter p.

1.2. The model pk = pfk

This is our main model. The parameter p is unknown, but the factor fk is supposed to
be known. This is an adequate setting for many problems. In the abovementioned clinical
trial example, for instance, p is considered as the unknown success probability for a medical
treatment and fk is a factor (between 0 and 1) which reduces the success probability for the kth
patient according to his or her state of health.

The idea is to combine the convenience of the odds algorithm with the concurrent task of
estimating the ‘future odds’ from preceding observations. We will study both the case of a
Bayesian setting with a prior for the unknown parameter p as well as the case of a completely
unknown p. Both cases are well motivated. If a new type of practical problem is encountered,
we sometimes have so little information that we should not take the risk of introducing a bias
by a prior distribution. However, with some confirmed prior information, the Bayesian setting
typically has the advantage of leading to more efficient estimators.

Let (fk), k = 1, . . . , n, be a sequence of known real nonnegative values. We set

pk = pfk, p ∈ [0, 1], pfk ≤ 1.

Here it is understood that if we suppose a support [a, b] for the distribution of p other than
[0, 1] then the fk may range between 0 and 1/b, that is, fk is not necessarily a reducing factor,
but may also increase the intrinsic success probability.

The paper is organised as follows. In Section 2 we consider the case of fixed p. In Section 3
we assume that p is distributed according to some distribution P(p). In Section 4 we analyse
the algorithm cost. Section 5 is devoted to asymptotics as n → ∞. The Bayesian approach is
developed in Section 6. The particular case fk = 1 is analysed in Section 7, and in Section 8 we
present the conclusion of the paper. A complete version of this paper, including more graphs,
is available at http://www.ulb.ac.be/di/mcs/louchard/genodds.pdf. The code of computations
and algorithms is available upon request.

2. Fixed p

Let pk = pfk, qk := 1 − pfk , and

rk := pfk

1 − pfk
,

that is, rk is the (unknown) odds for {Ik = 1}. If Ik = 1, we say that a success occurs at time k.
Furthermore, let Ik(p) be the indicator of the event that a success occurs at time k when the
success probability equals p. It is easy to see that

E

( s∑
1

Ik(p)

)
= p

s∑
1

fk
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and

V

[ s∑
1

Ik(p)

]
= p

s∑
1

fk(1 − pfk) = V1(s), say,

where V denotes the variance. The odds algorithm gives

s∗ =

⎧⎪⎨⎪⎩sup

{
s :

n∑
s

rk ≥ 1

}
if

{
s :

n∑
s

rk ≥ 1

}
�= ∅,

1 otherwise.

We should write s∗(n), but here and in the sequel we drop the n to simplify the notation when
there is no ambiguity. Hence, s∗ is the time index from which onwards it is optimal to stop
on the first event Ik = 1, and the corresponding optimal win probability equals Rs∗Qs∗ (see
Algorithm 1.1). Here, of course, Rs andQs are functions of p and f1, . . . , fs . We think of the
fk as being fixed and write

s∗ = ϕ(p)

and

ψ(s, p) =
n∏
s

ql

n∑
s

rl .

Hence, the optimal win probability for a given p is given by

ψ∗(p) = ψ(s∗, p). (2.1)

2.1. Sequential estimation

We use

p̂(s, p) =
∑s

1 Ik(p)∑s
1 fk

, (2.2)

as an estimator of p, which we do for two reasons. First, p̂(s, p) is an unbiased estimator of p.
Indeed,

E(p̂(s, p)) =
∑s

1 E(Ik(p))∑s
1 fk

= p.

Similarly, it follows from the independence of the Ik that

V[p̂(s, p)] = V1(s)

(
∑s

1 fk)
2
.

Secondly, this estimator is efficient for constant fk , that is, it has the smallest possible variance,
as one can readily show using the Fisher information and Rao–Cramer’s bound. We note,
however, that (2.2) is in general not a maximum likelihood estimator of p, as one can easily
check. This is why we also offer an alternative approach later on.

Let us consider the distribution for p̂ for index s and parameter p both fixed. We denote it
by

P̂ (ρ | s, p) := P[p̂(s, p) = ρ].
We can see that P̂ (ρ | s, p) becomes the binomial distribution if the fk are constant. In the
general case, it can be numerically computed by extracting the coefficients from the generating
function

Gs(z) :=
s∏
1

(pfiz+ 1 − pfi). (2.3)
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We obtain

P

[
p̂(s, p) = ν∑s

1 fk

]
= [zν]Gs(z),

where [zn]f (z) denotes the coefficient of zn in the power expansion of f (z).

2.2. The distribution of the number of successes

Let

ν(s) :=
s∑
k=1

Ik = # of successes up to time s.

We note that ν(s) follows no well-known distribution unless the fk are constant. However, we
can construct a tractable recurrence relation for the law of ν(s) from Gs(z), as given by (2.3).
Let pk = pfk and qk = 1 − pfk . Then, from (2.3), limiting ourselves to z ≥ 0,

Gs(z) =
s∏
k=1

(qk + pkz), z ≥ 0. (2.4)

We note that we can confine our interest to the case in which qk > 0 for all k = 1, 2, . . . , s,
because, for each k with qk = 0, we have Ik = 1 almost surely, so that we can reduce ν(s) to a
new random variable ν̃(s) which counts only nontrivial successes after the last qk = 0 (that is
if pk = 1). Hence, we can and do suppose that

Gs(0) > 0. (2.5)

Now, from (2.4),

lnGs(z) =
s∑
k=1

ln(qk + pkz),

and, by differentiating,

G′
s(z) = Gs(z)

s∑
k=1

pk

qk + pkz
, z ≥ 0. (2.6)

Here we used the facts thatGs(z) ≥ Gs(0) > 0 from (2.4) andGk(0) > 0 from (2.5). Now let

Rs(z) =
s∑
k=1

pk

qk + pkz
. (2.7)

Then (2.6) becomes
G′
s(z) = Gs(z)Rs(z), z ≥ 0. (2.8)

We will use (2.8) to build a recurrence formula for arbitrarily high derivatives.
Let G(m)s (z) denote the mth derivative of Gs(z) with respect to z. Then we obtain, from

(2.8) and the well-known formula for derivatives of higher order of products,

G(m)s (z) = dm−1

dzm−1G
(1)
s (z)

= dm−1

dzm−1 (Gs(z)Rs(z))

=
m−1∑
k=0

(
m− 1

k

)
G(k)s (z)R

(m−1−k)
s (z). (2.9)
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136 F. T. BRUSS AND G. LOUCHARD

Note that the right-hand side of (2.9) uses only the derivatives up to order (m− 1), so that we
will have a convenient recurrence relation for theG(m)s (z), m = 1, 2, . . ., as soon as we have a
formula for R(j)s (z).

Lemma 2.1. We have

R
(j)
s (z) = (−1)j j !

s∑
k=1

(
pk

qk + pkz

)j+1

for all j ∈ N.

Proof. The statement is true for j = 0, since

R(0)s (z) = Rs(z) =
s∑
k=1

(
pk

qk + pkz

)
,

which coincides with definition (2.7). Suppose now that the statement is true for j = 0, 1, . . . , l,
l ∈ N. Then

R(l)s (z) = (−1)l l!
s∑
k=1

(
pk

qk + pkz

)l+1

,

and, therefore,

R(l+1)
s (z) = (−1)l l!

s∑
k=1

(l + 1)

(
pk

qk + pkz

)l −p2
k

(qk + pkz)2

= (−1)l+1(l + 1)!
s∑
k=1

(
pk

qk + pkz

)l+2

,

which completes the proof.

It follows that

R
(j)
s (0) = (−1)j j !

s∑
k=1

r
j+1
k , (2.10)

where, as before,

rk = pk

qk
= pfk

1 − pfk
.

It follows, from (2.9) and (2.10), that

P[ν(s) = m] = 1

m!G
(m)
s (0)

= 1

m!
m−1∑
k=0

(
m− 1

k

)
G(k)s (0)(−1)m−1−k(m− 1 − k)!

s∑
j=1

rm−k
j

= 1

m

m−1∑
k=0

1

k!G
(k)
s (0)(−1)m−1−k

s∑
j=1

rn−kj . (2.11)

This yields the recurrence to compute {P[ν(s) = m]}m=0,1,...,s , namely, from (2.11),

P[ν(s) = m] = 1

m

m−1∑
k=0

P[ν(s) = k](−1)m−1−k
s∑
j=1

rm−k
j

with initial condition
P[ν(s) = 0] = q1q2 · · · qs.
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2.3. The future number of successes

The value of our recurrence relation is that it immediately lends itself to the distribution of

µ(s) = ν(n)− ν(s),

that is, µ(s) counts the number of successes from time s onwards. Indeed, it suffices to replace
the p1, p2, . . . by ps, ps+1, . . . and to replace the second sum

∑s
j=1 r

m−k
j by

∑n
j=s r

m−k
j , that

is,

P[µ(s) = m] = 1

m

m−1∑
k=0

P[µ(s) = k](−1)m−1−k
n∑
j=s

rm−k
j , m = 0, 1, . . . , n− s + 1,

with initial condition
P[µ(s) = 0] = qsqs+1 · · · qn.

2.4. A stopping rule based on the sequential maximum likelihood

Since at time s the history of all successes and failures is known up to time s, we can plug in the
corresponding maximum likelihood estimators (at time s), denoted by pML

s+1(s), p
ML
s+2(s), . . . ,

pML
n (s). The rule to stop on a success if

P[µ(s) = 1 | Is = 1, pML
s+1(s), p

ML
s+2(s), . . . , p

ML
n (s)]

≥ P[µ(s + 1) = 1 | pML
s+1(s), p

ML
s+2(s), . . . , p

ML
n (s)] (2.12)

is then optimal in the class of one-step-look-ahead stopping rules (see [8, Chapter 5]).
This is the alternative approach, which we announced before. However, the computation

of the maximum likelihood estimators always needs the full history of the processes I1, I2, . . .

and cannot be based on a simpler sufficient statistic of the history. Hence, this approach is
computationally much more involved than our approach based on (2.2) and the odds algorithm.
We do not study the maximum likelihood approach performance as such. The computations
are much more complicated and the few easy examples we went through showed no convincing
overall improvement which would justify a more detailed study of this approach.

Finally, even this more complicated approach would not always yield the overall optimal
strategy because (2.12) does not imply that the stopping problem is a monotone case problem
(see, e.g. the section on monotone rules in [7]). Hence, the overall optimal rule need not be in
the class of one-step-look-ahead stopping rules.

We therefore focus our interest on the odds algorithm using estimator (2.2).

2.5. Qualitative assessment

Let us now discuss the intrinsic weakness of any approach based on sequential estimation.
If p̂(s, p) is small at the beginning (no events {Ik = 1} at the beginning), the stopping

threshold s is also small and we could consequently stop too early. It is true that we can only
stop on a success, so that p̂ jumps up at such instances. This reduces the risk of under-estimating
p and, hence, the qk . However, it does not exclude it.

Similarly, if we wait some time before we compute and use p̂(s, p), and if p is small, we
could stop too late. As an alternative, we may decide to use some fixed learning samples and
to never stop on the first sd − 1 values, that is, we start the algorithm at s = sd . Here sd = 1
corresponds to the classical algorithm with no delay. The question of an optimal delay sd will
be analysed later on.
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The odds algorithm for the stopping threshold s leads to the equation

ϕ(p̂(s, p)) ≤ s.

The threshold computation procedure is given in Algorithm 2.1, below.

Algorithm 2.1. (The odds algorithm with sequential estimation of odds.)

• Input. Precompute the optimal delay sd (if we use a delay).

• Output: an optimal stopping threshold s.
s := sd
cont := true
while cont do
ν := ∑s

1 Ik, p̂(s) = ν/
∑s

1 fk
if

∑n
s+1 rk(p̂(s)) < 1 then cont := false

else
s := s + 1
if s = n then cont := false
end if

end if
end while
return s

2.6. Winning probability

Here s is a random variable with some distribution φ(s, p), say.
Fix p. For each time s, the possible values of the random variable ν := ∑s

1 Ik satisfying

ϕ

(
ν∑s
1 fk

)
≤ s

are constrained to stay in an interval denoted by [0, γ [s]]. In order to stop at any case not later
than n, we just set γ [n] = n. In the case of delaying we just set γ [s] = −1, s = 1, . . . , sd − 1.
Here ν is represented by a Markov chain. In the following we drop the p parameter to ease the
notation. Let


[s, µ] := P[ν = µ, no stopping threshold before s].
Then,


[1, 1] = pf1, 
[1, 0] = 1 − pf1, φ[1, p] =
γ [1]∑
µ=0


[1, µ],

and, for s ≥ 2,


[s, µ] = 
[s − 1, µ− 1]pfs1{µ�=0∧µ−1>γ [s−1]} +
[s − 1, µ](1 − pfs)1{µ>γ [s−1]}.

The stopping threshold probability distribution is now given by

φ(s, p) =
γ [s]∑
µ=0


[s, µ].
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The odds algorithm based on sequential updating and its performance 139

Finally,

P[win] = P[algorithm stops on the last 1 | p] =
n∑
s=1

φ(s, p)ψ(s, p) = �(p), say.

2.7. Choice of fk and n

In the examples given in this paper we use two different choices for the sequence (fk). One
choice is fk = 1 for all k. This is a natural choice for the case when all the Ik are independently
and identically distributed Bernoulli random variables. We could also have used fk = C for
some fixed constant 0 < C ≤ 1. Our second and most frequent choice is fk = 1/k. One reason
is that we want to cover the case when all the odds are different. Besides this, there is nothing
really special about this choice except that it solves a new version of a well-known best-choice
problem, that is, the secretary problem with unknown availability probability. Indeed, suppose
that in a sequence of candidates, all arrival orders of different ranks are equally probable, and
that the kth candidate is available, independently of his rank, with probability p. Then this
candidate is best so far and available with probability p/k. See also [1].

We usually use the sample size n = 15, but again there is nothing special about this choice
and most graphs would look similar for n not too small. Clearly, small n, say n ≤ 6, lead to
unreliable odds estimates and, hence, to bad performance.

2.7.1. Examples. In Figure 1 we plot �(p) as a function of p for sd = 1, . . . , 5. We have
chosen n = 15 and fk = 1/k (these parameters will always be used in the sequel). The circles
denote ψ∗(p) and the horizontal line represents 1/e. The relevance of a comparison with 1/e
will be explained below.

Note that�(p) possesses a local maximum and a local minimum for some values of sd . This
can be explained as follows. When p is small, the chance of having 1s is small, and, hence, the
total win probability is small for any strategy. Since the estimated odds are very likely to be
small as well for small p, the risk of a wrong decision by the odds strategy is also small simply
because stopping on the very first 1 (if any) is best. But, for growing p, this risk increases in

0.10
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0.35

0.40

0.00
0.2 0.4 0.6 0.8 1.00.0

Figure 1: Plots of �(p) as a function of p for sd = 1, . . . , 5 (in order from top to bottom at p = 0.1),
n = 15, and fk = 1/k, k = 1, . . . , n. The circles denote ψ∗(p) and the horizontal line denotes 1/e.
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Figure 2: Plots of �(p) as a function of p for the choice fk = 1/k and sd = 1, where the solid curve
displays the exact solution and the dotted curve displays the results of the simulation.

the middle range of p so that the total win probability goes somewhat down before getting the
full benefit of large success probabilities. The difference between the local maximum and the
local minimum is of course also dependent of the choice of the fk . A more detailed approach
is given in Section 5.

There is a good reason why the comparison of the performance of this algorithm with the
value 1/e is the most adequate one. Indeed, it was shown that if the odds are known and if their
sum is at least 1, then 1/e is the exact lower bound for the win probability over all such sequences
p1, p2, . . . , pn (see [3]). But, moreover, if n becomes large and if

∑n
k=1 p

2
k/

∑n
k=1 pk → 0 as

n → ∞, then the win probability converges to 1/e (see [2]). Hence, in particular, if the sum
of all the odds is at least 1 then it suffices that pk → 0 as k → ∞.

We finally observe that, for any value of p, there is an optimal value of sd . This will be
useful later on.

We have also made a simulation of φ(s, p) for 1000 trials, and computed �(p) for sd = 1
with the simulated matrix and ψ(s, p). This is given in Figure 2, showing that the fit is good.

3. Unknown p according to a density P(p)

We now suppose that the unknown parameter p follows a density P(p), which is unknown
to the decision maker. Let �(p) denote, as before, the conditional probability of winning for
a given p. The absolute win probability using our algorithm is then given by

Pw := P[win] =
∫ 1

0
P(p)�(p) dp.

There is no statistical inference on p other than using the sequential estimator (2.2). The only
focus is the impact of delaying as a function of the distribution P(p). Statistical inference
based on a (known) prior distribution of p will be used in the Bayesian approach in Section 6.

3.1. Examples

(i) As a first example, we let P(p) be given by a parabola on [0, 1], with maxima occurring
respectively at pm ∈ [ 1

16 ,
1
8 ,

1
4 ,

1
2 ,

3
4 ,

7
8 ]. The parabola starts at the origin for pm = 1

16 ,
1
2 ,

3
4 ,

7
8 ,
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Figure 3: A plot of Pw as a function of sd for pm = 7
8 .

and ends at 0 forp = 1 andpm = 1
8 ,

1
4 . Again, we use fk = 1/k. Forpm = 1

8 , Pw as a function
of the delay parameter sd is strictly decreasing. Nothing is gained by delaying stopping. The
situation is the same for pm = 1

16 ,
1
4 . However, for pm ∈ [ 1

2 ,
3
4 ,

7
8 ], we see that it is better to

ignore the first event. We see this, in Figure 3, for pm = 7
8 , where Pw is plotted as function of

the delay parameter sd .
The optimal sd values, for our six parabolae, are given by [1, 1, 1, 2, 2, 2]. We see that these

optimal values are rather robust: minimal information about the shape of P(p) is enough to
choose sd .

(ii) As an example of large sd , we have computed Pw with a linear P(p) = 2p. This leads
to an optimal delay sd = 4.

In the case of sequential updating, we will denote by Pw(pm) the success probability
without delay and byPwopt (pm) the success probability with optimal delay for our six parabolae
distributions.

If we know p beforehand, we must use ψ∗(p). Hence,

P ∗
w =

∫ 1

0
P(p)ψ∗(p) dp.

4. Algorithm cost

The computational cost of Algorithm 2.1 depends essentially on the computation of p̂(s)
and on the instruction: if

∑n
s+1 rk(p̂(s)) < 1. Assuming, for simplicity, that each numerical

operation costs 1 unit, we have, at time s, a cost of

C(s, p) =
s∑
1

(n− v + 1) =
(
n+ 1

2

)
s − s2

2
, (4.1)

and C′
s(s, p) = n+ 1

2 − s ≥ 0. The mean cost M(p) is given by

M(p) =
n∑
1

φ(s, p)

((
n+ 1

2

)
s − s2

2

)
=

(
n+ 1

2

)
s̄ − s̄2

2
,
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where

s̄i :=
n∑
1

φ(s, p)si .

Similarly, the second moment of the cost becomes

M(2)(p) =
n∑
1

φ(s, p)

((
n+ 1

2

)
s − s2

2

)2

= s̄4

4
−

(
n+ 1

2

)
s̄3 +

(
n+ 1

2

)2

s̄2,

and the variance is given by
V[p] = M(2)(p)−M(p)2.

The cost distribution is itself computed as follows. For fixed p, we have

C(1, p) = n,

C(2, p) = 2n− 1,

C(3, p) = 3n− 3,

...

C(n, p) = n(n+ 1)

2
.

For each possible value of the function C, the corresponding value of s is given, from (4.1), by

s = (2n+ 1)− √
(2n+ 1)2 − 8C

2
.

This allows, with φ(s, p), the computation of the cost distribution H(p). For instance, for
H( 1

2 ) with our usual parameters, only three values of s lead to nonnull values of φ(s, p), and
only three values of the cost determine the distribution.

4.1. Asymptotic behaviour of the cost as n → ∞
To study the asymptotic behaviour of the cost as n → ∞, we must distinguish between two

cases.
Case (i). If

∑∞
1 fk converges and

∑∞
1 fk/(1 − fk) > 1 (otherwise we always stop at

s = 1), we have, for each p, a maximum s∗(p) such that
∑∞
s∗ rk(p) ≥ 1. Here ϕ(p) is

asymptotically independent of n and φ(s, p) also becomes independent of n, and we have a
cost given by (4.1), which is linear in n. Also, setting

ŝ : = sup

{
j :

∞∑
j

fk

1 − fk
≥ 1

}
,

we have s∗(p) ≤ ŝ and

C(s, p) ≤
(
n+ 1

2

)
ŝ − ŝ2

2
.

Case (ii). If
∑∞

1 fk diverges, ϕ(p) is close to n, φ(s, p) gives a maximum weight in the
neighbourhood of n, and the cost is now of the order of n2.
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For instance, if fk = 1, the odds algorithm gives s ∼ n− q/p and

C(s, p) ∼ n2

2
,

if fk = 1/k, we have s ∼ ne−1/p and

C(s, p) ∼
(

e−1/p − e−2/p

2

)
n2.

5. The asymptotic behaviour of ψ∗(p, n) for fk = 1/k

In this section we explicitly introduce the parameter n into ψ(s, p) and ψ∗(p): we will use
ψ(s, p, n) and ψ∗(p, n). All asymptotics in this section are limit relations as n tends to ∞.

We will use a continuous variable approach: our tool will be the Euler–Maclaurin formula
with one error term (to simplify). In our previous expressions we replace sums by integrals,
using

b∑
a

f (k) ∼
∫ b

a

f (x) dx + 1

2
f (a)+ 1

2
f (b).

Thus, if we equate the approximation with the odds-sum threshold 1, we obtain∫ n

s∗(p,n)

p/v

1 − p/v
dv + p/s∗(p, n)

2(1 − p/s∗(p, n))
+ p/n

2(1 − p/n)
= 1.

Solving for s∗(p, n), we obtain accordingly

s∗(p, n) = ne−1/p − pe−1/p + p + 1

2
+ 1

2
e−1/p + O

(
1

n

)
. (5.1)

Also,

s∗′
(p, n) = ne−1/p − pe−1/p − p2e−1/p + p2 + 1/2e−1/p

p2 + O

(
1

n

)
. (5.2)

A critical value p∗(n) is given by

s∗(p∗(n), n) = 1,

that is, ∫ n

1

p∗(n)/v
1 − p∗(n)/v

dv + p∗(n)
2(1 − p∗(n))

+ p∗(n)/n
2(1 − p∗(n)/n)

= 1,

which leads to

p∗(n) = 1

ln(n)
− 1

2 ln(n)2
− 5

4 ln(n)3
+ 9

8 ln(n)4
+ O

(
1

ln(n)5

)
.

5.1. Uniqueness of the maximum of ψ∗(p, n)
In the upper range for p, p∗(n) ≤ p ≤ 1, we have

ψ(s, p, n) = exp

[∫ n

s

ln

(
1 − p

u

)
du+ 1

2
ln

(
1 − p

s

)
+ 1

2
ln

(
1 − p

n

)]
×

(∫ n

s

p/v

1 − p/v
dv + p/s

2(1 − p/s)
+ p/n

2(1 − p/n)

)
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and

ψ∗(p, n) = ψ(s∗(p, n), p, n)

= exp

[∫ n

s∗(p,n)
ln

(
1 − p

u

)
du+ 1

2
ln

(
1 − p

s∗(p, n)

)
+ 1

2
ln

(
1 − p

n

)]
(5.3)

with ∫ n

s

ln

(
1 − p

u

)
du = −p ln(n)+ ln

(
n− p

n

)
− p ln

(
n− p

n

)
+ p ln(s)

− s ln

(
s − p

s

)
+ p ln

(
s − p

s

)
.

To show that the limiting extremum for ψ∗(p, n) is unique in the upper range, we differentiate
ψ∗(p, n) with respect to p, and set it to 0. This leads to the equation

0 = − ln

(
1 − p

s∗(p, n)

)
s∗′
(p, n)− 1

p

(
1 − p/s∗(p, n)

2(1 − p/s∗(p, n))
− p/n

2(1 − p/n)

)
+ −1/s∗(p, n)+ ps∗′(p, n)/s∗2(p, n)

2(1 − p/s∗(p, n))
− 1/n

2(1 − p/n)
.

Using (5.1) and (5.2), we obtain, in a first approximation,

0 = 1

n

(
−1

2
e1/p(2pe−1/p − 2p + 1)

)
+ O

(
1

n2

)
.

This yields

p∗
min(n) = 1

Lambert(−2e−2 + 2)
+ O

(
1

n

)
,

where
Lambert(x)eLambert(x) = x.

This is related to the tree function T (x): T (x) = −Lambert(−x). We have

1

Lambert(−2e−2 + 2)
= 0.627 500 487 4 . . . .

Also, an asymptotic series for ψ∗(p, n) is given from (5.3) by

ψ∗(p, n) = e−1 − 1

n

[
1

2
e−1+1/pp2(−1 + e−1/p)

]
+ O

(
1

n2

)
,

and we can show that the extremum is actually a minimum with

ψ∗(p∗
min(n), n) = 0.284 028 432 2 . . .

n
+ O

(
1

n2

)
.

At the critical point, we have

ψ∗(p∗(n), n) = exp

[∫ n

1
ln

(
1 − p∗(n)

u

)
du+ 1

2
ln(1 − p∗(n))+ 1

2
ln

(
1 − p∗(n)

n

)]
,
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which is

ψ∗(p∗(n), n) = e−1 + 3e−1

4 ln(n)2
+ O

(
1

ln(n)3

)
. (5.4)

Let us now turn to the lower range for p, 0 ≤ p ≤ p∗(n). Recall that s∗(p, n) = 1 in this
range. We obtain

ψ∗(p, n) = exp

[∫ n

1
ln

(
1 − p

u

)
du+ 1

2
ln(1 − p)+ 1

2
ln

(
1 − p

n

)]
×

(∫ n

1

p/v

1 − p/v
dv + p

2(1 − p)
+ p/n

2(1 − p/n)

)
. (5.5)

Now use∫ n

1
ln

(
1 − p

u

)
du = −p ln(n)+ ln

(
n− p

n

)
− p ln

(
n− p

n

)
− ln(1 − p)+ p ln(1 − p)

and ∫ n

1

p/v

1 − p/v
dv = p ln(n− p)− p ln(1 − p).

This leads to

ψ∗(p, n) = exp

[
−p + p ln(1 − p)− 1

2 ln(1 − p)

]
× p ln(n)− p ln(1 − p)+ p/(2(1 − p))

np

+ O

(
ln(n)

n1+p

)
, (5.6)

so that

ψ∗(p∗(n), n) = e−1 + 3e−1

4 ln(n)2
+ O

(
1

ln(n)3

)
.

Note that this agrees with (5.4).
Next, we want to show that, asymptotically, ψ∗(p, n) is increasing in the lower range. So

we differentiate ψ∗(p, n) as given by (5.6). Setting p = α/ ln(n), this gives

ψ∗′
(p, n)np ∼ ln(n)(1 − α) ≥ 0, α ∈ [0, 1].

This shows that ψ∗(p, n) is increasing for sufficiently large n.
Finally, we have, asymptotically, a unique maximum of ψ∗(p, n) for

p = p∗(n) = p∗
max(n), say.

Using (5.3), (5.5), and n = 15, in Figure 4 we plot ψ∗(p, n) on the whole range p ∈ [0, 1].
This function is continuous, but its derivative is not. We also compare it with the discrete
expression for ψ∗(p, n) given by (2.1).

The fit is reasonable, given that n is small and that we used Euler–Maclaurin with only
one error term and a continuous s∗(p, n) instead of the discrete one given in (1.1). Note that
the plot in Figure 4 has a similar behaviour to that in Figure 1 for �(p) in the sequential
updating approach. In Figure 1, the difference between the maximum and minimum is even
more pronounced.
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Figure 4: A plot of ψ∗(p, n) versus ψ∗(p, n) for n = 15 and fk = 1/k, where the solid curve displays
the continuous version and the dotted curve displays the discrete version.

For large n, the difference between exact (continuous) expressions and first-order asymp-
totics (neglecting O(1/n) errors) becomes negligible. We confine our interest to the difference
between the discrete and the continuous approach.

For n = 100, the fit is excellent. Let us note that the optimal sd values, for our six parabolae
for n = 100 are given by [1, 3, 4, 6, 13, 13]. Again, these optimal values are rather robust.

We note that it would be hard to prove existence and unicity of min and max in the discrete
case as well as for �(p).

6. Bayesian approach

6.1. The theory

We use in this approach the work of Van Lokeren [18] (mémoire de DEA under the supervi-
sion of F. T. Bruss, unpublished). The problem is as before, that is, maximising the probability
of stopping on the last success. Allowing the different success parameters p1, . . . , pn to vary
independently of each other leads to an ill-posed problem. Therefore, we make the following
assumptions.

Let p be a random variable taking values in [0, 1], and let 
 : [0, 1] × N → [0, 1] be a
deterministic (known) function. We assume that the success parameter pk is given by

pk = 
(p, k).

Furthermore, we suppose the following.

(I1) The conditional law of Ik , given p = x, is a Bernoulli law with known success parameter

(x, k).

(I2) The random variables I1, I2, . . . , In are conditionally independent, given p = x.

6.1.1. The general solution. Suppose that the prior distribution of p is given by a density P(x).
We first determine the form of the posterior distribution. Suppose that we have observed
I1, I2, . . . , Ik yielding the outcomes a1, a2, . . . , ak with ai ∈ {0, 1} for all i. The posterior
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distribution of p at time k is defined by

Pk(x | a1, . . . , ak) := d

dx
P[p ≤ x | I1 = a1, . . . , Ik = ak] for all x ∈ [0, 1].

Now Bayes’ rule gives

Pk(x | a1, . . . , ak) = P[I1 = a1, . . . , Ik = ak | p = x]P(x)
P[I1 = a1, . . . , Ik = ak] . (6.1)

By conditional independence of the Ik given p, we have

P[I1 = a1, . . . , Ik = ak | p = x] =
k∏
i=1

P[Ii = ai | p = x]

=
k∏
i=1

(
(x, i))ai (1 −
(x, i))1−ai .

Applying the law of total probability to the denominator of (6.1) yields

P[I1 = a1, . . . , Ik = ak] =
∫ 1

0

k∏
i=1

(
(x, i))ai (1 −
(x, i))1−aiP (x) dx,

so that, from (6.1),

Pk(x | a1, . . . , ak) = (
∏k
i=1(
(x, i))

ai (1 −
(x, i))1−ai )P (x)∫ 1
0 (

∏k
i=1(
(x, i))

ai (1 −
(x, i))1−ai )P (x) dx
. (6.2)

Similarly as in the case of the maximum likelihood approach (see (2.12)), the posterior distri-
bution now depends on the full history up to time k.

We denote by ak the history up to time k, that is, ak := (a1, . . . , ak), where ai is the outcome
of observation Ii . Write (ak, 1) for (a1, . . . , ak, 1). Formally, we set a0 = 0 to indicate that no
observations have been taken. We also introduce the function

C̃(k, ak) :=
∫ 1

0

( k∏
i=1

(
(x, i))ai (1 −
(x, i))1−ai
)
P(x) dx. (6.3)

Let Vn−k(ak) be the optimal value obtained by applying the optimal strategy from time k
onwards—that is, if there are still n− k observations to come—given that no stop has yet been
made strictly before time k and that the history up to time k is given by ak . We distinguish two
cases: k = n− 1 and k < n− 1.

Case (i): k = n− 1. We have

V1(an−1) = P[In = 1 | an−1]

=
∫ 1

0
P[In = 1 | p = x]Pn−1(x | an−1) dx

=
∫ 1

0

(x, n)Pn−1(x | an−1) dx.
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By the explicit form (6.2) of the posterior distribution for k = n − 1 and the definition
of C̃(n− 1, an−1), we obtain

V1(an−1) =
∫ 1

0

(x, n)

(
∏n−1
i=1 (
(x, i))

ai (1 −
(x, i))1−ai )P (x)
C̃(n− 1, an−1)

dx

= C̃(n, (an−1, 1))

C̃(n− 1, an−1)
.

Case (ii): k < n− 1. We obtain, from the optimality principle, the equation

Vn−k(ak) = P[Ik+1 = 0 | ak]Vn−k−1((ak, 0))

+ P[Ik+1 = 1 | ak]
× max{P[Ik+2 = · · · = In = 0 | (ak, 1)], Vn−k−1((ak, 1))}.

The first term yields

P[Ik+1 = 0 | ak] =
∫ 1

0
P[Ik+1 = 0 | p = x]Pk(x | ak) dx

=
∫ 1

0
(1 −
(x, k + 1))Pk(x | ak) dx

=
∫ 1

0
(1 −
(x, k + 1))

(
∏k
i=1(
(x, i))

ai (1 −
(x, i))1−ai )P (x)
C̃(k, ak)

dx

= C̃(k + 1, (ak, 0))

C̃(k, ak)
,

and the second term is given by

P[Ik+1 = 1 | ak] = C̃(k + 1, (ak, 1))

C̃(k, ak)
.

Finally, by conditioning on the parameter p,

P[Ik+2 = · · · = In = 0 | (ak, 1)]

=
∫ 1

0
P[Ik+2 = · · · = In = 0 | p = x]Pk+1(x | (ak, 1)) dx

=
∫ 1

0

n∏
i=k+2

(1 −
(x, i))Pk+1(x | (ak, 1)) dx

=
∫ 1

0

n∏
i=k+2

(1 −
(x, i))

× (
∏k
i=1(
(x, i))

ai (1 −
(x, i))1−ai )
(x, k + 1)P (x)

C̃(k + 1, (ak, 1))
dx.

If we write a(k)n := (a1, . . . , ak, 0, 0, . . . , 0) and a(k+)n := (a1, . . . , ak, 1, 0, . . . , 0), we
can rewrite the last probability as

P[Ik+2 = · · · = In = 0 | (ak, 1)] = C̃(n, a
(k+)
n )

C̃(k + 1, (ak, 1))
.
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The recurrence relation for Vn−k(ak) then becomes

Vn−k(ak) = C̃(k + 1, (ak, 0))

C̃(k, ak)
Vn−k−1((ak, 0))

+ C̃(k + 1, (ak, 1))

C̃(k, ak)
max

{
C̃(n, a

(k+)
n )

C̃(k + 1, (ak, 1))
, Vn−k−1(ak, 1)

}
(6.4)

with boundary condition

V1(an−1) = C̃(n, (an−1, 1))

C̃(n− 1, an−1)
. (6.5)

We have thus proven the following theorem.

Theorem 6.1. Let the prior distribution ofp and the function
 be given. An optimal strategy is

(i) to stop at the first Ik for which Ik = 1 and C̃(n, a(k)n )/C̃(k, ak) ≥ Vn−k(ak), where the
right-hand side satisfies the recurrence relation (6.4) and its boundary condition (6.5);

(ii) to stop at In if the above conditions are not fulfilled for 1 ≤ k ≤ n− 1.

The optimal value is given by Vn(a0).

This represents an exact solution to the stopping problem.
If a discrete distribution of p is chosen, it suffices to replace the integral in (6.3) by a sum

running over the possible values of p. All other expressions remain unchanged.
We are now ready to give the algorithm.

6.2. The algorithm for the Bayesian approach

The algorithm deals with a vector a[1, . . . , n] of bits. We convert this vector into an integer
l = ∑n

1 a[i]2i−1 with the procedure l := conv1(a). Similarly, for any l, we compute the
corresponding vector a with a procedure a := conv2(l). Then, according to [18], we compute
the two n-by-nmatrices C[0..n, 0..2n− 1] and V [1..n, 0..2n− 1] with the following formulae:

C[0, 0] := 1;
for i to 2n − 1 do C[0, i] := 0 od;
for k to n do

for l from 0 to 2n − 1 do

a := conv2(l);
where ‘od’ is the code for the end of the programme loop. Then, in general,

C[k, l] : =
∫ 1

0

k∏
1

(xfi)
a[i][1 − (xfi)]1−a[i]P(x) dx; od; od;

for l from 0 to 2n − 1 do V [1, l] := C[n, l + 2n−1]/C[n− 1, l]; od;
for k from n− 2 by − 1 to 0 do

for l from 0 to 2k − 1 do

A : = C[n, l + 2k]
C[k + 1, l + 2k] ; B := V [n− k − 1, l + 2k]; T := max(A,B);

V [n− k, l] := C[k + 1, l]
C[k, l]V [n− k − 1, l] + C[k + 1, l + 2k]

C[k, l]T ; od; od.
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Figure 5: Plots of P ∗
w(pm), Pwopt (pm), P

B
w (pm), and Pw(pm) (in order from top to bottom at p = 0.8)

for pm ∈ [ 1
16 ,

1
8 ,

1
4 ,

1
2 ,

3
4 ,

7
8 ], n = 15, and fk = 1/k. The horizontal line at height 1/e serves as a

comparison.

Finally, the Bayesian optimal value is given by

PB
w = V [n, 0].

The practical procedure is given in Algorithm 6.1, below.

Algorithm 6.1. (The optimal strategy.)

• Input. Precompute C and V .

• Output: an optimal strategy.

(i) Set a[k] := Ik, k = 1, . . . , n.

(ii) Stop at the first Ik for which Ik = 1 and, with lk := conv1(a[1..k]),
C[n, lk]
C[k, lk] ≥ V [n− k, lk].

(iii) Stop at In if the above conditions are not fulfilled for any 1 ≤ k ≤ n− 1.

As an illustration, we have computed the success probability given by the Bayesian approach,
PB

w (pm) for our five parabolae distributions.
Figure 5 gives (n = 15)P ∗

w(pm), P
B
w (pm), Pw(pm), andPwopt (pm). HereP ∗

w naturally gives
the best result. The other ones are comparable, with a slight advantage for PB

w and Pwopt , but
Pw is rather close. Note that, for some values of pm, the value PB

w is better than Pwopt , but the
opposite is true for other values of pm.

7. The case fk = 1

The case fk = 1 for all k = 1, 2, . . . , n is the simplest interesting special case. In Figure 6
we plot �(p) as a function of p for sd = 1, . . . , 14 and n = 15. The circles denote ψ∗(p)
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Figure 6: Plots of �(p) as a function of p for sd = 1, . . . , 14 (in order from bottom to top at p = 0.3),
n = 15, and fk = 1, k = 1, . . . , n. The dotted curve displays ψ∗(p).
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Figure 7: Plots of P ∗
w(pm), Pwopt (pm), P

B
w (pm), and Pw(pm) (in order from top to bottom at p = 0.8)

for pm ∈ [ 1
16 ,

1
8 ,

1
4 ,

1
2 ,

3
4 ,

7
8 ], n = 15, and fk = 1.

and the horizontal line denotes 1/e. If we compare this graph with Figure 1, we see that the
maximum and minimum are more pronounced (at least for small values of sd ).

The delay analysis shows that, for pm = 1
16 , no delay is necessary, but, for pm = 1

8 , we
already have an optimal sd = 10. The optimal sd values for our six parabolae are given by
[1, 10, 10, 11, 12, 12]. Again, these optimal values are rather robust: minimal information
about the shape of P(p) is enough to choose sd .

Figure 7 displays P ∗
w(pm), P

B
w (pm), Pw(pm), and Pwopt (pm). Again, P ∗

w gives the best
result, but its advantage is less pronounced. Here PB

w and Pwopt are rather close to each other,
and Pw is definitively bad.

Of course, we could compute an equivalent continuous analysis of ψ∗(p, n), as we did in
Section 5, but we will not pursue this matter in this paper.
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8. Conclusion

The solution of the problem of maximising the probability of stopping on a last success
in a sequence of independent indicators has many real-world applications, ranging from best-
choice problems (secretary problems) over buying-selling strategies to applications in sequential
search, maintenance problems, and clinical trials. If the odds are known in advance, the odds
algorithm provides this solution in a straightforward way, and this algorithm is itself optimal.
If the odds are unknown and must be estimated from preceding observations, then the optimal
rule is not obvious and can be made explicit in special cases only. The objective of this work
was to examine the question of whether there are good approximations for the optimal rule.
We have proposed an algorithm which is based on the odds algorithm and on a simple unbiased
sequential estimator of the success probabilities pk = P[Ik = 1]. Although we have no precise
estimates for how much this algorithm misses optimality, we have established several important
facts.

Firstly, it is asymptotically optimal, because, as n → ∞, the sequential estimators of the
odds will converge, in our model, to the true odds, and we know that for the true odds the odds
algorithm gives the optimal solution.

Secondly, its cost seems lower than that of the more complicated decision rule obtained
by maximal likelihood estimates. The maximal likelihood algorithm should not be better, of
course, than the optimal algorithm, leading toP ∗

w, and we have seen that our algorithm compares
favourably with it.

Thirdly, a comparison is given with decision rules based on the Bayesian model. Here,
again, the computational cost is incomparably higher, but the result is not uniformly better.

We can now summarise our conclusions. Taking all arguments together, we would suggest to
always use the odds algorithm with sequential updating based on the estimator defined in (2.2).
With some additional information, we may somewhat improve on this by a slight delay factor
sd , as explained before. Note also that this algorithm, working with a number of computations
which are at most quadratic in n, stands out from a computational point of view.
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