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1. Introduction

A K3 surface is called supersingular if its numerical Néron—Severi lattice is of rank 22.
Supersingular K3 surfaces exist only in positive characteristics. Artin showed in [1] that,
in characteristic p > 0, the discriminant of the numerical Néron—Severi lattice of a super-
singular K3 surface X is of the form —p??(X), where o(X) is a positive integer less than
or equal to 10. This integer o(X) is called the Artin invariant of X.

We work over an algebraically closed field k of characteristic 2.

Definition 1.1. Let X be a supersingular K3 surface, and let £ be a line bundle on X
with £2 = 2. We say that L is a polarization of type (#) if the following conditions are
satisfied:

(i) the complete linear system |£] has no fixed components;

(ii) the set of curves contracted by the morphism @ | : X — P? defined by |L£] consists
of 21 disjoint (—2)-curves.

In [10], we have shown that every supersingular K3 surface X in characteristic 2 has
a polarization of type (f), and that, if £ is a polarization of type () on X, then the
morphism @)z is purely inseparable. In [11], we have constructed a nine-dimensional
moduli space M of polarized supersingular K3 surfaces of type (f). In this paper, we
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investigate the locus 9y of M corresponding to supersingular K3 surfaces with Artin
invariant 2. We will show that the curve 9y is a disjoint union of three affine lines
punctured at the origin. We will also construct explicitly the universal family of polarized
supersingular K3 surfaces over certain finite covers of these punctured affine lines. The
construction involves investigations of configurations of lines and conics on the projective
plane in characteristic 2. These configurations are encoded by certain binary codes. In
order to construct the moduli curve, we have to determine the automorphism groups of
these codes. The automorphism group of the polarized K3 surface is obtained from the
automorphism group of the corresponding code.

Let us briefly review the construction of the moduli space 9 in [11]. For a non-zero
homogeneous polynomial G € H°(P?, Op2(6)) of degree 6, we denote by

na: Yo — P?

the purely inseparable double cover of P? defined by W? = G(X,Y, Z).

Definition 1.2. Let U denote the locus of all non-zero homogeneous polynomials G €
HO(P?, Op2(6)) such that the surface Y has 21 ordinary nodes as its only singularities.

The locus U is Zariski open dense in H°(P?, Op2(6)). Indeed, in characteristic 2, the
differential dG of G can be defined as a global section of §25,(6) for any homogeneous
polynomial G € H°(P?, Op:2(6)), because, by the isomorphism Opz (6) = Opz(3)©2, we can
assume that the transition functions of the line bundle corresponding to Op2(6) are all
squares. Since ¢2(£252(6)) = 21, the subscheme Z(dG) defined by dG = 0 is reduced and
of dimension 0 if and only if it consists of 21 points. The singular locus Sing(Ys) of Y¢ is
equal to ;' (Z(d@)), and the singular point of Y lying over a reduced point of Z(dG)
is an ordinary node. Hence, the condition that G be a point of U is equivalent to the
open condition that Z(dG) be reduced and of dimension 0.

Let (X, L) be a polarized supersingular K3 surface of type (). There then exists a
homogeneous polynomial G' € U such that the Stein factorization of @|-| may be written
as

X 2%y, I8 p2.
Conversely, suppose that we are given G € U. Let pc : Xg — Yo be the minimal
resolution of the surface Y. Then X is a supersingular K3 surface, and the invertible
sheaf
Lg:= (mgopc) Op:(1)
on X¢ is a polarization of type ().
We put
V= H°(P?, Op(3)).

Because we have d(G + H?) = dG for any H € V, the additive group V acts on the space
U by
(G,H)eUxV—G+H?cl.

Proposition 1.3. Let G and G’ be homogeneous polynomials in U. Then the following
conditions are equivalent:
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(i) Yo and Yo are isomorphic over P2,
(il) Z(dG) = Z(dG"), and
(iii) there exist ¢ € k* and H € V such that G’ = cG + H2.

See §2 for the proof.
Therefore, the moduli space 2 of polarized supersingular K3 surfaces of type (f) is

constructed by
M = PGL(3, k) \ P.(U/V).

For G € U, let [G] denote the point of M corresponding to G, which corresponds to the
isomorphism class of the polarized supersingular K3 surface (Xqg, Lg) of type (f). By
Proposition 1.3, the automorphism group Aut(X¢g, L) of the polarized supersingular
K3 surface is canonically identified with

{g € PGL(3,k) | 9(Z(dG)) = Z(dG)}.
The moduli space 9 is stratified by the Artin invariant o(Xq) of X¢. We put
My ={[G] € M| 0(Xg) =0} and M, :={[GleM|o(Xg) <0}
As was shown in [11], the locus M1 = My consists of a single point [Gpk], where
Gpk = XYZ(X?+Y?*+ Z3)

is the homogeneous polynomial of Dolgachev and Kondo [5]. The points Z(dGpk) coin-
cide with the Fy-rational points of P? and, hence, the group Aut(Xgpy, Lopk) is equal
to PGL(3,Fy). We call [Gpk] the Dolgachev—Kondo point.

Now we can state our main results.

Theorem 1.4. The locus M, is a union of three irreducible curves My, Mp and
M. In M, they are situated in such a way that, set-theoretically,

ﬁA ﬂﬁg ZﬁB ﬂﬁc = ﬁc ﬂﬁA = {[GDK]}
For T'= A, B and C, we put
Mr = My \ {[Gpx]}-

Hence, M5 is the disjoint union of M 4, WM and M.

Theorem 1.5. For T = A, B and C, the curve 9y is isomorphic to an affine line
punctured at the origin.

We will describe the curves MMy more explicitly. Let w € F4 be a primitive third root
of unity, and let @ be w + 1 = w?.

We fix a finite set P := {Py,..., P,1} consisting of 21 elements. A marking of a
polarized supersingular K3 surface (X¢g, Lg) of type (f) is a bijective map v : P —
Z(dQ).
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Table 1. Marking for 9t a

(1) = [1,w,0] M) = [L, 14+ A1 n(Pis) = [1,A,1]
M(P) = [1,@,0] A (Po) = [1,1,1] M (Pre) = [0,1+ A, 1]
W(Ps) = [T+ A1+ N1 m(Po) = [0,A,1] Y (Pr7) = [A,0,1]
’YA(P4) = [1+)‘7)‘7” ’YA(PU) = [03171] ’Y>\(P18) = [17050]
A (Ps) = [A A 1] YA(Pr2) = [0,1,0] A (Pro) = [1,0,1]
’YA(PG) = P‘vl"_)‘?l} ’VA(P13) = [17170] ’Y)\(PQO) = [0707 1]
(Pr) = [1+ A 1,1] Y (Pra) = A, 1,1] A (P21) = [1+A,0,1]

Theorem 1.6. Let I'y be the group

1 1 A A+1
1. —
{A’)‘Jr TAAHTTA+TT A }

acting on the punctured \-line A' \ {0,1} = Spec k[\, 1/A(\ + 1)]. We put

A2+ XA+1)3

Ta= Tan e

so that k[\, 1/A(\ + 1)} = k[J 4] holds. We also put
GAN = XYZ(X+Y +2) (X2 + Y2+ (N + N2+ XY +YZ + ZX).
There then exists an isomorphism
M4 = Speckl[Ja,1/J4]

such that the family W? = GA[)] of sextic double planes over the finite Galois cover
A\ {0,1,w,@} = Spec k[\, 1/(A* + \)] of the moduli curve M 4 yields the universal fam-
ily of polarized supersingular K3 surfaces of type (f) with marking v : P — Z(dGA[)])
given in Table 1. The origin J4 = 0 corresponds to the Dolgachev—Kondo point.

For a € k\ {0,1,w, @}, Aut(Xga(a), Laala)) is equal to the group

A A € GL(2,F,),

€ PGL(3, k) a,be {0,1,a,a + 1}

(1.1)

e Rl

00

of order 96.

Theorem 1.7. We put
Q= (@A +W)X?+0Y?+wAZ2 + A+ DXY + (@A +w)YZ + (A +1)ZX,

and
GB[N=XYZ(X+Y + Z2)Qa.
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Table 2. Marking for 9Mp

P; Y (P;)
P = C(22) A+ 1LoA+w, @\ + W)
P, = C(20) 1, wA + w,w]
P = (C(21) A+@, 1, A +1]
Py = T(20,21,22) 1, w,w]
P = C(02) A, 0N\, WA + &
Ps = C(12) A+ o, 0\ +0,0)
Pr = T(02,12,22) 1, @,a]
Py = C(11) A+1,1,]
Py = T(02, 11, 20) 1,@,w]
Pio = 0(10) [1,&))\"!‘1,0]
Py = T(02,10,21) [1,o,0]
Piy = T(10,11,12) [1,1,0]
Pi3 = C(01) A, 0, A + @]
Py = T(01,12,20) [1,0,w]
Py = T(01,11,21) (1,0, 1]
Py = T(01,10,22) (1,0,0]
Py = C(00) 0, ), 1]
Pis = T(00,12,21) [0,1,w]
Pio = T(00,11,22) 0,1,1]
Py = T(00, 10, 20) [0,1,0]
Pa1 = T(00,01,02) (0,0, 1]

Let I's be the group

I A40 0d+tw o w wA+1) @A A A+1
TAFLDA+TT XN A A+@ A+ A+ A+ N

{)\7w)\+1 ,w(A+1)}

acting on the punctured A\-line A'\ {0,1,@} = Speck[\, 1/A(\ + 1)(A + ©)]. We put

A+ w)t?

TB = BP0 0)

so that k[A, 1/A(A + 1)(\ + @)]'® = k[J] holds. There then exists an isomorphism

1
Mp = Speck:[JB7 — ]
JB

such that the family W2 = GB[)] of sextic double planes over the finite Galois cover
A\ {0,1,w,@} = Speck[\, 1/(A* + \)] of the moduli curve Mp yields the universal fam-
ily of polarized supersingular K3 surfaces of type (§) with marking vy : P — Z(dGBI[)])
given in Table 2. The origin Jp = 0 corresponds to the Dolgachev—Kondo point.
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Table 3. Marking for 9Mc

() = [1,1,A] M) = [L@,wA+&]  n(Ps) =[1,0,8]
’y)\(Pg) = [1, LA+ 1] ’y)\(Pg) = [1,(,0,@1)\—"-@} ’Y/\(Pl(i) = [1,0,&)]
YA (Ps) = [1, 1L, A+ u] M (Pro) = [1,w,@A] W (Pr7r) = [0,1,1]
Y (Py) = [1,1, A + @] A (Pi1) = [1,w, 0\ + W] Y (Pig) = [0,1,0]
'y/\(P5) = [1,Q,MA+UJ] ’YA(P12) = [1,w,@k+ 1} ’VA(Plg) = [O, 1,w]
’Y)\(Pﬁ) = [17‘:}""))‘} ’VA(P13) = [1707 1] ’VA(PQO) = [07 lvw]
’)/)\(P7) = [17@,(4})\—"- 1} ’y)\(P14) = [170,0] ’Y)\(P21) = [070, 1]

For any a € k\{0,1,w,w}, Aut(X¢g(a); LaBla)) Is equal to the subgroup of PGL(3, k)
generated by

w 0 0 0
1 0}, 1 1 and
1 1 w 0

— = &

00
1 0. (1.2)
0 1

— & o
&€ €

In particular, Aut(X¢p|a), LaBlo)) IS isomorphic to the extended Heisenberg group of
order 18.

The meaning of C' and T in Table 2 is explained in the proof of Theorem 1.7.
Theorem 1.8. Let I'c be the group
{aA+ 3| a e F}, BTy}
of order 12 acting on the \-line Al = k[\]. We put
Jo = (M4 2)3
so that k[\]T¢ = k[Jc] holds. We also put
GO = XYZ(X3+Y3+ 7% + (M + )X3Y3.
There then exists an isomorphism
Mo = Speck[Jo, 1/Jc]

such that the family W2 = GC[)] of sextic double planes over the finite Galois cover
AMN{0,1,w,@} = Spec k[\, 1/(A*+))] of the moduli curve M ¢ yields the universal family
of polarized supersingular K3 surfaces of type (f) with marking ) : P — Z(dGC[\])
given in Table 3. The origin Jo = 0 corresponds to the Dolgachev—Kondo point.

For o € k\ {0,1,w, @}, Aut(Xecia), Laca)) s equal to

a b 0
c d 0| € PGL(3,k)
a’Ca+e bVdPa+f 1

a,b,c,d, e, f € Fy,
ad+bc=1

of order 960.
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Next we consider the isomorphism classes of non-polarized supersingular K3 surfaces
with Artin invariant 2.

Definition 1.9. A reduced (possibly reducible) curve D in My x My is called a
correspondence between My and My, For a correspondence D C My x Wiy, let DT
denote the correspondence in My x My obtained from D by interchanging the first
and the second factors. When D is a union of two curves D; and Dy without common
irreducible components, we write D = Dy 4+ Dy and Dy = D — D1. Let Dy C 97 X My
and Dy C My, x My be correspondences. The composite D1 x Dy C 9y X Mpn of Dy
and D, is defined as the image of

(D1 X S)JtTu) N (DﬁT X Dg) C My X My X Mpn

by the natural projection to My x My

Definition 1.10. A correspondence D in My x My is called an isomorphism corre-
spondence if, for every point ([G], [G’]) of D, the supersingular K3 surfaces X and X¢
(without polarization) are isomorphic. An isomorphism correspondence D C My x My
is said to be trivial if T is equal to 77 and D is the diagonal At of My x M.

Using Cremona transformations by quintic curves, which played a central role in the
study of Aut(Xg,,) in [5], we have obtained examples of non-trivial isomorphism cor-
respondences.

Definition 1.11. Let G be a homogeneous polynomial in 4. We say that a subset
Y C Z(dQ) of cardinality 6 is a centre of Cremona transformation for (X¢q, Lg) or for G
if X7 satisfies the following conditions:

(i) no three points of X are collinear;
(ii) for each p; € X, there exists a conic curve N/ C P? such that N/NZ(dG) = X\ {p;}.

Note that the conic curve N/ is necessarily non-singular.

Let ¥ = {p1,...,ps} be a centre of Cremona transformation for (Xg, Lg). Consider
the linear system |Z%(5)| C |Op2(5)| of quintic curves that pass through all the points
of X and are singular at each point of X. Then |Z%(5)| is of dimension 2, and defines a
birational map

CTy:P?-.. = P2

The birational map CTsx is the composite of the blowing up 3:.S — P2 of the points
of X and the blowing down 3’ : S — P? of the strict transforms N; of the conic curves
N!. We denote by p/ the image of N; by . Note that, if p € P?\ X, then the point
CTx(p) € P? is well defined.

Proposition 1.12 (Dolgachev—Kondo [5]). We put

7' ={CTx(p) | p€ Z([dG)\ T} U {p,....pg}-
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There then exists a homogeneous polynomial G' € U such that Z' = Z(dG'). The
birational map CTx of P? lifts to an isomorphism

C‘\TZ‘IXG l}XGw

of supersingular K3 surfaces.

Proposition 1.12 is proved in §8. Note that the polynomial G’ is not uniquely deter-
mined, but the point [G'] € 9 is uniquely determined by G and X. We call CTs the
Cremona transformation of X¢g with centre X.

Let T'be A, B or C. As Tables 1-3 show, the family

{(p;A) [ p € Z(AGTA])} € P? x (A" \ {0, 1,w,&})

of the points Z(dGT[A]) consists of 21 connected components, each of which is étale of
degree 1 over the punctured A-line A'\ {0, 1,w, @}. Therefore, it makes sense to talk about
a family X'[A] of subsets of Z(dGT'[\]) that depends on A continuously. It can be shown
that, if X'[a] is a centre of Cremona transformation for GT'[a] at one a € k\ {0,1,w, @},
then so is X[a] at every a € k\ {0,1,w,®}. In this case, we say that X[\ is a centre of
Cremona transformation for GT'[A] or for (Xara, Larpn)-

Suppose that X[A] is a centre of Cremona transformation for GT'[A]. There then exist
a family G’[)A] of homogeneous polynomials in I/ and a family of isomorphisms

é\rrgp\] : XGT[)\] l) XG/[)\]

depending on the parameter A. The points [G’[A]] are of course contained in My =
M4 UMp UNMe. Suppose that [G'[A]] € My. Then the curve

{(GT N, [G'[N)]) € Mz > Mpr | A€ A0, 1, w,0}}

is an irreducible isomorphism correspondence between 97 and M.

Theorem 1.13.

(1) There exist 1644 centres of Cremona transformation for the family (Xgapx, Laajn))-
They yield the following isomorphism correspondences:

(i) 156 of them give the trivial correspondence A 4;

(ii) 144 of them give the correspondence
Daaq: 14 Jady+ Ja2T0 + Ja20° + 04320, =0

in f)ﬁA X SﬁA,‘

(iii) 720 of them give the correspondence

Daao2=Daag*Daar—Aa CMa x My;
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Table 4. Non-trivial irreducible isomorphism correspondences

T T’ name equation

b
b

Daax J3JC+ JAJ0 + J3T0 2 + Jady +1

Daan JSTW 4+ JATWt + JATLC + JATL2 + J3IL 4+ JAT02 + T304 + T3040
F JATY A+ T+ TRTN 4 3TN + Jadh 4 TR+ J3T0 4 Jady + T4

Dpa Je*Js+J52J05" + J2J5% + Jpdst + JsPJs + Jp2J5° + JpJi® + 1

Deoca Jor ISt + IR Te 4+ Jo?IE” + JedEP + o + IR Te + Jod&E + J5°

Dapi1 Ja+JiJe + JaJs® + Jads + JB

Dago JSJp+ JiJs + JhJp? 4+ J5Jp® + Jidp +JaJe? +JaJs + JaJs + 1

Dpci1 JJc+1

Do Jgdo® +Js%Jc% + JgdJc? + Jg2Jc® + Jo* + Jg2Jo + JeJo + JB

Doan JEJG+JcJi +Jcda+Jo+ Ja

Doan JEIS + JT5E + I3 T4 + Jodh + Jo2T3 + I + I Ja + JoJ3 + T3

b

Q QB we»=QaQw
= Q QB waAaw

(iv) 576 of them give the correspondence
Dapi:Jp+Jadp+ Jadg® + Ja2Jp +Ja* =0

in DJTA X QﬁB,‘
(v) 48 of them give the correspondence

Daca:Jdo+Ja+Jado+Ja%Jo+Ja*Jc? =0
in SJJTA X mc.

(2) There exist 1374 centres of Cremona transformation for (Xgpn), Lapiy)- They
yield the following isomorphism correspondences:

(i) 798 of them give the trivial correspondence Ap;
(ii) 216 of them give the correspondence

Dpai:i=Dapi’ CMp x My;
(iii) 360 of them give the correspondence
Dpp1:=Dpai1*Dapi—Ap CMNMp xMp.

(3) There exist 2224 centres of Cremona transformation for (Xgcn), Lacpy)- They
yield the following isomorphism correspondences:

(i) 1200 of them give the trivial correspondence Ac;

(if) 960 of them give the correspondence
Do i=Daci® C Mo x My;
(iii) 64 of them give the correspondence

Deci:=Dcai1*Dagci—Ac CMe x M.
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Starting from the isomorphism correspondences by Cremona transformation above,
making transposes and composites, and taking irreducible components, we obtain non-
trivial irreducible isomorphism correspondences given in Table 4.

When T # T’, we denote by D7 1, the correspondence DT7T/7VT for v = 1 and 2.
They have the relations in Appendix A.

Question 1.14. Are there any non-trivial irreducible isomorphism correspondences
other than the ones in Table 4 and their transposes?

The Cremona transformations that yield the trivial isomorphism correspondence are
also interesting, because they give automorphisms of the supersingular K3 surface X
that may not be contained in Aut(X, £) (see Remark 7.12).

Observation 1.15. Consider a Cremona transformation (ﬁ‘g on (Xgap, Laapy)
that yields the non-trivial isomorphism correspondence D 4,1. The curve Dy 4,1 inter-
sects the diagonal Ay at two points (Ja,J);) = (w,w) and (@,®). Let 7 be an element
of k such that the Ja-invariant of (Xgap,), Laapm) is w or @; that is, 7 is a root of

DR DA A+ DA+ X+ X2+ 0+ 1) =0.

The Cremona transformation CT » gives rise to an automorphism of Xg4[,), which can-
not be deformed to any automorphisms of Xg4y for a generic A. In other words, the
automorphism group Aut(Xgapy)) of the non-polarized supersingular K3 surface Xqapy
Jumps at A = n, even though the numerical Néron—Severi lattice of X[y is constant
around A = 7. Note that the automorphism group of a supersingular K3 surface is
always embedded into the orthogonal group of its numerical Néron—Severi lattice [8, §8,
Proposition 3].

The plan of this paper is as follows. In § 2, we recall from [11] the definition of the binary
code associated with a polarized supersingular K3 surface of type (f). We stratify the
moduli space 9t according to the isomorphism classes [C] of the codes, and give a method
to construct the stratum 9|} from the code C. In §3, we present three isomorphism
classes [C4], [Cp| and [C¢] of codes that are associated with polarized supersingular
K3 surfaces of type (f) with Artin invariant 2. In §§4-6, we carry out the method of the
construction of M| for C = C4, Cp and C¢, and prove Theorems 1.6, 1.7 and 1.8,
respectively. In § 7, we review from [5] the theory of Cremona transformations by quintic
curves. In §8, we explain the algorithm to calculate the isomorphism correspondences
given by Cremona transformations, and prove Theorem 1.13.

The isomorphism classes of codes associated with polarized supersingular K3 surfaces
of Artin invariant o > 3 are also given in [11]. For ¢ = 3, there are 13 isomorphism
classes, and for o = 4, there are 41 isomorphism classes. It would be a challenging
problem in computational algebraic geometry to construct explicitly the moduli spaces
of dimension o —1 corresponding to these isomorphism classes of codes, and to investigate
the relations between them.

In [7], Rudakov and Shafarevich gave families of supersingular K3 surfaces in char-
acteristic 2 for Artin invariants ¢ = 1,...,10. The equation of the family for ¢ = 2
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is
y? = a3+ Sz + 15t + 1)%,
where p is the ‘modulus’. We would like to know the relation between p and our moduli
JA, JB and Jc.
The polarized supersingular K3 surface of type (4) is an example of Zariski surfaces.
A general theory of Zariski surfaces has been developed in [2].

1.1. Notation and terminology

(1) Let A be a commutative ring, and S a set. We denote by A° the A-module of all
maps from S to A.

(2) Let S be a finite set. The full symmetric group of S is denoted by &(.5), which acts
on S from left. We denote by Pow(S) the power set of S. A canonical identification
between Pow(S) and F5 is given by f € F5 — f~1(1) C S. Hence, Pow(S) has a
structure of the Fy-vector space by the symmetric difference

T +T2:(T1UT2)\(T1 ﬂTg), T,1T, C S.

A linear subspace of F§ = Pow(S) is called a code, and an element of a code is called
a word. A word is expressed either as a vector of dimension |S| with coefficients in
Fo, or as a subset of S. The cardinality |A| of a word A C S is called the weight of A.
The automorphism group Aut(C) of a code C C Pow(S) is the subgroup of &(S5)
consisting of all permutations preserving C. Two codes C' and C’ in Pow(S) are
said to be isomorphic if there exists a permutation o € &(S) such that o(C) = C".
The isomorphism class of codes represented by a code C is denoted by [C].

(3) A lattice is a free Z-module A of finite rank equipped with a non-degenerate sym-
metric bilinear form A x A — Z. A lattice is called even if v2 € 2Z holds for
every v € A. A lattice is called hyperbolic if the signature of the symmetric bilinear
form on A @ R is (1,7 — 1), where r is the rank of A. The dual lattice AV of A is
the Z-module Hom(A,Z). There exists a canonical embedding A < A of finite
cokernel. Hence, AV can be regarded as a submodule of A ®7 Q. We have a natural
Q-valued symmetric bilinear form on AV that extends the Z-valued bilinear form
on A. An owverlattice of A is a submodule A’ of AV containing A such that the
canonical Q-valued symmetric bilinear form on AV takes values in Z on A’.

2. The codes associated with the supersingular K3 surfaces

First we give a proof of Proposition 1.3.

Proof of Proposition 1.3. The equivalence of (i) and (iii) follows from the structure
of the graded ring P, HO(X,£%™), where X is a K3 surface and £ is a line bundle
of degree 2 (see [11, §7]). By [11, Theorem 2.1}, Z(dG) = Z(dG’) holds if and only if
dG = cd@G’ for some ¢ € k*. Since the kernel of G — dG is equal to {H? | H € V}, the
equivalence of (ii) and (iii) follows. O
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2.1. Definition of the code C(X, L,~)

Let us fix a finite set
P .= {1317 e ,Pgl}

consisting of 21 elements, on which the full symmetric group &(P) acts from left.

Definition 2.1. We denote by G the space of all injective maps v : P < P? such that
there exists a homogeneous polynomial G € U satisfying v(P) = Z(dG).

The space G are constructed as follows. For G € U, let (G) € P, (U/V) denote the
point corresponding to G. We denote by

2= {(p.(G)) € P* x P.(U/V) | p € Z(dG)} = P.(U/V)

the family of Z(dG), which is finite and étale of degree 21 over P, (U /V). We prepare 21
copies of Z and make the fibre-product Z(2Y) of them over P, (i//V). Then G is the union
of irreducible components of Z(21) that do not intersect the big diagonal.

Remark 2.2. We fix a base point (Go) € P.(U/V), and consider the monodromy
action

wem (P U/V),(Go)) = 6(Z(dGo))

of the algebraic fundamental group of P.(U/V) on Z(dGp). Then the number of irre-
ducible components of G is equal to the index of the image of p in &(Z(dGy)). It was
shown in [2, Chapter 4, Appendix 2] that the monodromy group on the singular points
of a generic Zariski surface in characteristic greater than or equal to 5 is equal to the
full-symmetric group.

The group G(P) acts on G from right, and PGL(3, k) acts on G from left. By Propo-
sition 1.3, we have

M = PGL(3,k) \ G/&(P).

Let
21
Ny :=7ZP ®Zh = @Zei@Zh
i=1
be a free Z-module of rank 22 generated by vectors ej,...,es; corresponding to
Py,...,Py; € P and a vector h. We equip Ny with a structure of the even hyperbolic
lattice by
ef=-2 h*=2 ee;j=0 ifi#j he =0.
The dual lattice
Na/ = HOH’I(N(),Z) C NO Kz Q
is generated by e;/2 (i = 1,...,21) and h/2. Thus, we have a canonical isomorphism

Ny /No = FY @ Fy = Pow(P) @ Fs.
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Hence, we can write an element of Ny /Ny in the form (A, «), where A is a subset of P
and a € Fy. We denote by

pr: Ny — Ny /No = Pow(P) @ Fo
the natural projection. We also denote by
p: Ny /Nog = Pow(P) @& Fy — Pow(P)

the natural projection onto the first factor. The following lemma is obvious.

Lemma 2.3. Let C be a subspace of the Fo-vector space Pow(P) @ Fy. Then the
submodule pr=1(C) of Ny is an even overlattice of Ny if and only if

4] = Omod 4 ifa=0,
~ |1mod4 ifa=1
holds for every (A, a) € C.

Let (X, L) be a polarized supersingular K3 surface of type (#), and let NS(X) denote
the numerical Néron—Severi lattice of X. There exists G € U such that & : X — P?
factors through 7 : Yg — P2. We put

Z(X,E) = Z(dG) = Fg(SingYG).

There also exists a point v : P < P2 of G, unique up to the action of &(P), that induces
a bijection from P to Z(x r). We fix such a point v € G. Let E; be the (—2)-curve on X
such that @|,|(E;) is the point v(FP;) € Z(x ). Then we obtain an embedding

Ly : No = NS(X)

of the lattice Ny into NS(X) by e; — [E;] and h — [L]. By the embedding ¢, we can
regard NS(X) as a submodule of Ny'. We put

C(X,L,v):=NS(X)/Ny C Pow(P) @ Fs
and

C(X,,C,"y) = p(é(Xa ‘C,’Y)) C POW(P)

Since NS(X) is an even overlattice of Ny, the code C(X, £,~) is uniquely recovered from
C(X,L,v) by Lemma 2.3, and hence the lattice NS(X) is also uniquely recovered from
the code C(X, L, 7). In particular, the Artin invariant o(X) of X is given by

o(X) =11 —dimp, C(X, L, 7).

Note that the isomorphism class of the code C(X, L, ) does not depend on the choice
of . The following is one of the main results of [11].
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Theorem 2.4. For an isomorphism class [C] of codes in Pow(P), the following two
conditions are equivalent.

(i) There exists a polarized supersingular K3 surface (X, L) of type (f) such that,
for a (and hence any) bijection vy from P to Z(x ), the code C(X,L,~) is in the
isomorphism class [C].

(ii) A (and hence any) code C € [C] satisfies the following:

(a) dim C < 10,
(b) the word P € Pow(P) is contained in C, and
(c) |A] €{0,5,8,9,12,13,16,21} for every word A € C.

2.2. Geometry of Z x ) and the code C(X, L,~)

Let (X, £) be a polarized supersingular K3 surface of type (). We fix a bijection  from
P to Zx,c)- Let G € U be a homogeneous polynomial such that @, factors through
Yg, or equivalently, such that Z(dG) = Zx ) holds. For the proofs of the facts stated
in this subsection, we refer the reader to [11, §§6 and 7].

Definition 2.5. Let C C P2 be a reduced irreducible curve. We say that C' splits
in (X, L) if the proper transform of C' by &z : X — P? is non-reduced. We say that a
reduced (possibly reducible) curve C’ splits in (X, L) if every irreducible component of
C’ splits in (X, £).

Since @\, is purely inseparable of degree 2, the proper transform of a splitting curve
C by @)z is written as 2F¢, where F¢ is a reduced divisor of X. We denote by w(C') €
Pow(P) the image of the numerical equivalence class [F¢| € NS(X) by

NS(X) — NS(X)/Ny <= Ny /No £ Pow(P),

where Ny < NS(X) is obtained from the fixed bijection v : P — Z(x ). By definition,
we have

w(C) € C(X, L,7).

It is easy to see that
w(C) = {P; € P | the multiplicity of C' at y(P;) is odd}.
If C is a non-singular curve splitting in (X, £), then
w(C) =7"HC N Z(x,z))-

If ¢b and Cy are two splitting curves without common irreducible components, then
w(Cl U CQ) = w(C’l) + w(Cg) holds.
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Proposition 2.6. Let Z ) C Op2 be the ideal sheaf defining the subscheme Z(dG).
The linear system |Zzq¢)(5)| of quintic curves passing through all the points of Z(dG)
is of dimension 2, and spanned by the curves defined by

oG oG oG
87 = O, 87 =0 and 87 =0.

A general member C of |Zzq¢(5)| splits in (X, £), and the word w(C) € C(X, L, ) is
equal to P € Pow(P).

Proposition 2.7. Let C be a reduced curve splitting in (X, L), and let p be a point
of C.

(1) Ifp is an ordinary node of C, then p € Z(x ).
(2) Ifp is an ordinary tacnode of C, then p ¢ Z(x r).

Proposition 2.8. Let C be a reduced curve of degree 6 splitting in (X, L), and let
G’ = 0 be a defining equation of C. If C' has only ordinary nodes as its singularities, then
the homogeneous polynomial G’ is a point of U, and the point [G'] € 9 corresponds to
the isomorphism class of (X, L).

Proposition 2.9. Let L C P? be a line. The following conditions are equivalent:
(i) L splits in (X, L);

(i) [LNZx.0)l = 3;

(iii) [L N Zx,0)l = 5.

Proposition 2.10. Let Q C P? be a non-singular conic curve. The following conditions
are equivalent:

(i) Q splits in (X, L);
(ii) QN Zx.c)|l = 6;
(iii) [@N Z(x.0)| =8

Corollary 2.11. The word w(L) =~y (LNZx,r)) of a splitting line L is of weight 5,
and the word w(Q) = v *(Q N Z(x,z)) of a splitting non-singular conic curve Q Is of
weight 8.

Definition 2.12. A pencil € of cubic curves in P2 is called a regular pencil if the
following hold:

(i) the base locus Bs(€) of £ consists of nine distinct points;
(ii) every singular member of £ has only one ordinary node as its singularities.

We say that a regular pencil £ splits in (X, £) if every member of £ splits in (X, L).
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Proposition 2.13. Let £ be a regular pencil of cubic curves spanned by Fy and F.
Let Hy =0 and H,, = 0 be the defining equations of Fy and E,, respectively. Then £
splits in (X, £) if and only if there exist ¢ € k* and H € V such that

G = cHyHoo + H? (2.1)
holds. If £ splits in (X, L), then Bs(£) is contained in Z(x ), and
w(By) =~ (Bs(€))

holds for every member E; of €. In particular, the word w(FE}) is of weight 9.
Remark 2.14. The condition (2.1) is equivalent to

Z(d(HoHx)) = Z(dG) = Z(x )

by Proposition 1.3.

Remark 2.15. A regular pencil £ has 12 singular members E, ... E(?) We denote
by N the ordinary node of E(). Suppose that £ splits in (X,L£). Then Z(x ) is a
disjoint union of Bs(£) and {NM ... N2},

Let Ly and Ly be distinct lines splitting in (X, £). Then the intersection point of L
and Ly is in Z(x ) by Proposition 2.7, and hence

’U.)(Ll @] Lg) = U)(Ll) + "UJ(LQ)

is a word of weight 8.
Let Ly, Ly and L3 be lines splitting in (X, £) such that Ly N Ly N Ly = (). Then the
three ordinary nodes of L1 U Ly U L3 are in Z(x ) by Proposition 2.7, and hence

’LU(Ll @] L2 @] Lg) = ’U)(Ll) + U)(LQ) + 'lU(Lg)

is a word of weight 9.

Let @ be a non-singular conic curve splitting in (X, £), and let L be a line splitting
in (X, £). Using Proposition 2.7, we see that L intersects ) transversely if and only if
w(L U Q) = w(L) +w(Q) is of weight 9. We also see that L is tangent to @ if and only
if w(L)Nw(Q) = 0.

Definition 2.16. Let C C Pow(P) be a code satisfying the conditions in Theo-
rem 2.4(ii), and let A be a word of C with |4| € {5,8,9}.

(i) We say that A is a linear word of C if |A| = 5.

(ii) Suppose |A| = 8. If A is not a sum of two linear words of C, then we say that A is
a quadratic word of C.

(iii) Suppose |A| = 9. If A is neither a sum of three linear words of C nor a sum of a
linear and a quadratic word of C, then we say that A is a cubic word of C.
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Proposition 2.17.

(1) The correspondence L — w(L) yields a bijection from the set of lines splitting in
(X, L) to the set of linear words in C(X, L,7).

(2) The correspondence Q — w(Q) yields a bijection from the set of non-singular conic
curves splitting in (X, L) to the set of quadratic words in C(X, L,~).

(3) The correspondence & ~ v~ 1(Bs(£)) yields a bijection from the set of regular
pencils of cubic curves splitting in (X, L) to the set of cubic words in C(X, L, 7).

By Theorem 2.4, the code C(X, L,v) is generated by the word P and by the linear,
quadratic and cubic words in C(X, £,~). Combining this fact with Proposition 2.17, we
obtain the following corollary.

Corollary 2.18. Let g be an element of the group
Aut(X, E) = {h € PGL(3,/€) ‘ h(Z(XAL)) = Z(X,L)}-

We then have C(X,L,v) = C(X,L,go~). Hence, there exists a unique element o, €
Aut(C(X, L, 7)) such that goy = vyooy holds. By g — o4, we can embed Aut(X, L) into
Auwt(C(X, L,7)).

2.3. Construction of M ¢ from C

Let [C] be an isomorphism class of codes satisfying the conditions of Theorem 2.4(ii).
We denote by
E)JT[C] cm

the locus of all isomorphism classes of polarized supersingular K3 surfaces (X, L) of
type () such that C(X, L,) is contained in [C] for a (and hence any) bijection ~ from
P to Z(x,c)- We also denote by Gjc; the pull-back of M) by the quotient map

G — M = PGL(3,k) \ G/&(P).

We will describe the locus Gic-

Definition 2.19. For a point v of G, let C[y] denote the code in Pow(P) generated
by the following words:

(i) P € Pow(P);
(ii) words A of weight 5 such that the points y(A) are collinear;

(iii) words A of weight 8 such that there exists a non-singular conic curve contain-
ing 7(A);

(iv) words A of weight 9 such that there exists a regular pencil £ of cubic curves
spanned by Ey = {Hy = 0} and Fo, = {Hs = 0} such that Bs(€) = v(A) and
Z(d(HoHw)) = ~(P) hold.
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From the results above, we obtain the following.

Corollary 2.20. Suppose that v € G, and let (X, L) be a polarized supersingular
K3 surface of type (#) such that v(P) = Z(x ). Then the code C[y] coincides with the
code C(X, L,7).

By definition, we have
Clyoa] =0 C[y]) for any o € &(P).
For each code C € [C], we put
Go:={reglchl=C}.

Then we have
G& = Go-1(0)s
where GZ denotes the image of Go by the action of o € &(P). Therefore, we obtain
Gor= || Ge=||G& (disjoint union),

C’'e[C]

where ¢ runs through the set of representatives for the right cosets in &(P) with respect
to the subgroup Aut(C) C &(P). Hence, we have

gﬁ[c] = PGL(3,k) \Qc/ Aut(C').

For v € Ge, let [y] € PGL(3,k) \ G¢ denote the projective equivalence class of v. From
Corollary 2.18, we obtain the following.

Corollary 2.21. Let (X, L) be a polarized supersingular K3 surface of type () cor-
responding to the image of [y] € PGL(3,k) \ Gc by the quotient map

PGL(3,k) \ G — E)JT[C] =PGL(3,k) \ G/ Aut(C).

Via the natural embedding of Aut(X, L) into Aut(C(X, L,v)) = Aut(C), the automor-
phism group Aut(X, L) is equal to the stabilizer subgroup of the point [v].

3. The isomorphism classes of codes with Artin invariant 1 and 2

We have classified all isomorphism classes of codes satisfying the conditions of Theo-
rem 2.4(ii). The list is given in [11, §8]. Using the classification, we have obtained the
following theorem [11, Corollary 1.11].

Theorem 3.1. There exists exactly one isomorphism class [Cy] of codes of dimen-
sion 10 satisfying the conditions in Theorem 2.4(ii). The moduli space M ¢, consists of
a single point corresponding to the Dolgachev—Kondo polynomial

Gpk = XYZ(X? + Y3+ Z%).
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Table 5. Generators of the code C'a

[t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
[0 O OO O OO OTOOWOTUOTUOTOTUOTUOTU OT1 1 1 1 1]
[0O OOO OO OOOOW OO OTUWOT1 11 1 0 0 0 0 1]
[0 O OO 0O O O O0OO0OT1 1 1 00 0 1 0 0 0 1 0]
[0 O OO 0 0 0 1 1 0 0O 1 0 0O 1 0 0 0 1 0 0]
[0 O OO 0 0O 1 01 01 001 0 0O O0O 1 0 0 0]
[0 O OO 1 1 0 0O O0OO0OO0O 1 0 1 0 00 1 1 1 1]
[0 OO 1 0 1 0 0O 0O 0O 1 0 0 1 1 1 0 0 1 0 1]
[0 O 1 0 0 1 0 0O 1 0 01 0O0OT1 1 0 1 1 0 0]
Table 6. Generators of the code Cp
[1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
[0 O OO 0O O O O0OOTO0OTO0OO0OTO0OO0OTO0OTO0O 1T 1 1 1 1]
[0 O OO 0 O O O OO OO 11 1 1 0 0 0 0 1]
[0 O OO 0 O 0 0O O0O 1 1 1 0 0 0 1 0 0 0 1 0]
[0 O OO O OO 11 001 001 0 0 0 1 0 0]
[0 O OO O 1 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0]
[0 OO O 1 0 1 0 1 0 1 0 O O O O O O O 0 1]
[0 O 1 1.0 0 O O OO T1 O0OO0OO0OT1 O0 0 1 0 0 0]
[0 1 o 1 0 O O O 1 O O O O 1 0 O O O O 1 0]

We call the point [Gpk] constituting 9, = Mc,) the Dolgachev-Kondo point. We
define the Dolgachev-Kondo code

Cpk C POW(]P)2 (F4))

to be the code generated by the words A(F,), where A are Fy-rational lines in P2. The
codes in the isomorphism class [Cy] are precisely the codes v~ !(Cpxk), where v runs
through the set of all bijections from P to P?(F,) = Z(dGpk). The weight enumerator
of any code in [Cy] is

14 212° 4+ 21028 + 2802° 4 28022 + 2102'3 + 21216 + 221

There are no quadratic or cubic words in Cj.
From the list in [11, § 8], we obtain the following proposition.

Proposition 3.2. There are exactly three isomorphism classes [C4], [Cg], [Cc] of
codes of dimension 9 satisfying the conditions in Theorem 2.4(ii).

As representatives of these isomorphism classes, we can take codes C4, Cp and Cc
generated by vectors in Tables 5, 6 and 7.
The numbers of linear, quadratic and cubic words in these codes are given in Table 8.
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Table 7. Generators of the code Cc

coccc o oo o~
_ O O O oo o o o
O R OO O O O O =
= = OO O OO OO OO o =
SO O H OO OO O =
SO OO H OO O O =
SO OO O+ OO O =
O O = == O OO -
SO OO OO = OO
_H O R HFO R OO R
O R R O R R OO
— R ORr R R OO
O O OO OO+ O
= = 2 OO~ O
—_ O, O R O~ O
O R O, R O R O
O OO OO OO = =
O R R R O OO~
_ = O R OO
—_ O O~ R~k OO R
O O OO KR K~ R~ -

Table 8. Numbers of linear, quadratic and cubic words in Ca, Cp and Cc

linear quadratic cubic

Cy 13 28 0
Cs 9 66 0
Cc 5 120 0

The weight enumerators of these codes are as follows:

Ca:14132° +1062% +1362° + 136212 4 106213 + 13216 + 221,
Cp:1+92° 410228 +1442° 4+ 144212 4102213 4 9216 + 221,
Ce: 14 52° 413028 + 1202° + 120212 + 130213 4 5216 4 221,

Remark 3.3. The Dolgachev—Kondo code Cpy is related to the binary Golay code
C5,4 in the following way. Let M := {u1, ..., u2a} be the set of positions of the Miracle
Octad Generator as is indicated in [9, Table 6.1]. The definition of Ca4 as a subcode of
Pow(M) is described in [3, Chapter 11]. We put N := {22, pio, pioa} C M, and consider
the ten-dimensional subcode

Cyp:={weCy|w>dDNorwnN=0}

of Cs4. We then define a map
P2(Fy) = M

by [9, Table 6.2]. The pull-back of Cs2 by this map is just the Dolgachev—Kondo
code Cpxk.

Remark 3.4. The codes C4, Cp and C¢ are isomorphic to linear subcodes of Cpk
defined as follows. Let F' = {Q1, @2, Q3,Q4} be a set of four points of P?(F,), and let
C'r be the nine-dimensional linear subcode of Cpk defined by

Cr:={w € Cpk | |[wN F| is even}.
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If no three points of F' are collinear, then C'r is isomorphic to C4. If exactly one triplet
of the points of F'is collinear, then Cr is isomorphic to Cg, while if F' is on a line, then
C'r is isomorphic to Cc.

For T'= A, B and C, we will write M7 instead of M|c,), and Gr instead of Go,.. In
the next three sections, we will construct explicitly the space

mT = PGL(3, k‘) \ QT/ Aut(CT)

for T'= A, B,C, and prove Theorems 1.6, 1.7 and 1.8 stated in § 1. For this purpose, we
must determine the group Aut(Cr) and the space Gr. Since Cr is generated by P and
the set of linear and quadratic words, we obtain the following proposition.

Proposition 3.5. Let Wi (Cr) and Wo(Cr) be the sets of linear and quadratic words
in Cr, respectively. An element o of &(P) is contained in Aut(Cr) if and only if the
following hold:

o(Wi(Cr)) = Wi(Cr) and o(Wa(Cr)) = Wa(Cr).

Proposition 3.6. Suppose that a map v : P — P2 is given. Then ~ is contained in
Gr ={y € G |Cly] = Cr} if and only if the following hold:

(i) ~ Is injective;

)
(ii) there exists a homogeneous polynomial G of degree 6 such that v(P) = Z(dG);
(iii) for every linear word | of Cr, there exists a line L C P? containing ~(l);

)

(iv) for every quadratic word q of Cr, there exists a non-singular conic curve Q C P?
containing y(q).

Proof. The ‘only if’ part is obvious from the definition of Gr. Suppose that ~y satisfies
(1)—(iv). By (i) and (ii), we have v € G. Since Cr is generated by the word P and linear
and quadratic words, the properties (iii) and (iv) imply that Cr C C[v]. If Cr # C[v],
then, by Theorem 3.1, the code C[y] C Pow(P) is isomorphic to the Dolgachev—Kondo
code Cpk C Pow(P?(Fy)) by some bijection from P to P?(F4). Hence, there exists g €
PGL(3, k) such that

9(+(P)) = Z(dGpxk) = P*(Fa).

However, there are no eight points in P?(F,) that are contained in a non-singular conic
curve. 0

In fact, we will prove the following assertions for T'= A, B and C.

(1) The space PGL(3,k) \ Gr has exactly two connected components, both of which
are isomorphic to A\ {0,1,w,@}. Let Ny C Aut(Cr) be the subgroup consisting of
the elements that do not interchange the two connected components, and let I be the
image of Nz in Aut(A®\ {0,1,w,@}). Then Nr is of index 2 in Aut(Cr). The moduli
curve M7 is the quotient of Al \ {0,1,w,&} by I'r.
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Table 9. Orders of the groups given in assertion 2.

Aut(Cr)| = 2 x |[Ir| x |Aut(X, L)

T

A 1152 = 2 x 6 x 96
B 432 = 2 x 12 x 18
c 23040 = 2 x 12 x 960

(2) The action of I'r on the punctured affine line Al \ {0,1,w,@} is free. Hence, the
order of the stabilizer subgroup Stab([v]) C Aut(Cr) of a point [y] € PGL(3,k) \ Gr is
constant on PGL(3, k) \ Gr. By Corollary 2.21, Stab([y]) is equal to Aut(X, L), where
(X, L) corresponds to the image of [v] in M. Hence, we have an exact sequence

1= Aw(X, L) > Np - Ip—1

for any polarized supersingular K3 surface (X, L) corresponding to a point of M.
The orders of the groups above are given as in Table 9.

Remark 3.7. The following algorithm will be used frequently. Suppose that we are
given eight points
plz[glﬂnlﬂC’L]u i:]-v"'vga

on P2. In order for them to be on a (possibly singular) conic curve, it is necessary and
sufficient that the 8 x 6 matrix

5%77]%7 <127£1771) T]1<17 lel
M = :

€3, 13, C3, Esls, MsCss Css
is of rank less than 6. When the rank of M is less than 6, a non-zero solution
[A,B,C,D,E,F|*
of the linear equation Mx = 0 gives us a defining equation
AX?+BY?*+CZ*+ DXY +EYZ+FZX =0 (3.1)
of a conic curve containing p1, ..., ps.

The following are phenomena peculiar to projective geometry in characteristic 2.

Remark 3.8. The conic curve defined by equation (3.1) is singular if and only if
AE®? + BF? + CD* 4+ DEF =0

holds.

Definition 3.9. Let L C P? be a line, and let Q C P? be a (possibly singular) conic
curve. We say that L and @ are tangent if they fail to intersect at distinct two points.
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Table 10. Linear words in C4

m:{1,2,12,13,18}
lo1:{10,11,12,16,20}
11272 : {8, 9, 12, 15, 19}
los:{5,6,12,14,17}
lioa:{3,4,7,12,21}
lisq:{13,14,15,16,21}
l1372 : {7, 8, 107 13, 17}
lss:{4,6,11,13,19}
lis.a:{3,5,9,13,20}
lis:{17,18,19,20,21}
l18,2 : {7, 9, 11, ].47 18}
llg)g : {4, 57 10, 157 18}
l1874 : {3, 6, 8, 16, 18}

Remark 3.10. Let L be a line. Then the conic curves tangent to L form a linear
system in |Op2(2)|. If three distinct lines Ly, Lo and L3 are concurrent, then every conic
curve that is tangent to L; and Lo is tangent to Ls.

Remark 3.11. Let A, B, C, D € P? be distinct points. Suppose that no three of them
are collinear. Let O (respectively, P) (respectively, @) be the intersection point of the
lines AB and CD (respectively, AC and BD) (respectively, AD and BC). Then O, P
and @ are collinear.

4. The moduli curve corresponding to the code Cy

In this section, we prove Theorem 1.6.

The linear words of C'4 are listed in Table 10.

From now on, we sometimes abbreviate, for example, the set { Py, Py, P12, P15, Pig} to
{8,9,12,15,19}. The linear word m stands out from the rest in that there are two points
P, and P, in m through which no other linear words pass. We call m the special linear
word. The other linear words are divided into three groups according to the intersection
point with m. For v = 12,13,18 and 7 = 1,2, 3,4, the non-special linear word [, ; inter-
sects m at the point P,. For each of P and P», there exists only one linear word m
containing it. For each of P, P;3 and Pig, there exist exactly five linear words contain-
ing it. For each of the other 16 points, there exist exactly three linear words containing
it. For each o, 8 = 1,...,4, there exists a unique v = y(«, ) such that the three linear
words l12,q, l13,8 and l15,, have a point in common.

We call such a triple («, 3,7) a concurrent triple. The list of concurrent triples is given
in Table 11. For a concurrent triple (a, 3,7), we denote by T3, the intersection point
of llg,a, 11375 and ll&,y.

The 28 quadratic words in C4 are divided into two groups. The quadratic words
q,---,q1o listed in Table 13 are disjoint from the special linear word m, and intersect
each of the non-special linear words [, ; at distinct two points. On the other hand, for
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Table 11. Function vy(«, 8) of concurrent triples

«
——
B 1 2 3 4
1 4 3 2 1
2 3 4 1 2
3 2 1 4 3
4 1 2 3 4

Table 12. Points Tapy

aBy  Tapy afy  Topy

114 Pig 312 Py
123 Pio 321 Pr7
132 P 334 Ps
141 Pso 343 Ps
213 Pis 411 Py
224 Py 422 P
231 Pio 433 Py
242 Py 444 Ps

Table 13. Quadratic words q, in Ca

¢, :{5,6,7,9,10,16,19,21}
¢ :{5,6,7,8,11,15,20,21}
¢ :{4,6,8,9,10, 14,20, 21}
¢, :{4,6,7,9,15,16,17,20}
¢ :{4,5,8,9,11,16,17,21}
a6 :{4,5,7,8,14,16,19,20}
¢ :{3,6,9,10,11,15,17,21}
¢ :{3,6,7,10,14,15,19,20}
¢ :{3,5,8,10,11,14,19,21}
dho:{3,5,7,11,15,16,17,19}
¢i1:{3,4,9,10,14,16,17,19}
di2:{3,4,8,11,14,15,17,20}

each concurrent triple («, 3,7), there exists a unique quadratic word g, that is disjoint
from the three linear words li2.«, l13,8, l1s,y, and intersects other ten linear words at
distinct two points. The list of these quadratic words g.g- is given in Table 14.

In order to study Aut(C4), we embed C4 into the Dolgachev—Kondo code Cpk C
Pow(P2(FF,)) by the bijection ¢ : P — P2(F4) given in Table 15.
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Table 14. Quadratic words gag in Ca

q114: {17 2, 47 5, 77 9, 17, 19}
q123:{1,2,3,6,9,14,19,21}
qi32:{1,2,3,5,8,15,17,21}
q1a1:{1,2,4,6,7,8,14,15}
g213:{1,2,3,6,7,11,17,20}
g224:{1,2,4,5,11,14,20,21}
q231 : {17 2, 3, 5, 77 107 147 16}
g2a2:{1,2,4,6,10,16,17,21}
gs12:{1,2,3,4,8,10,19,20}
gs1:{1,2,3,4,9,11,15,16}
gs31:{1,2,7,9,10,15,20,21}
gsa3:{1,2,7,8,11,16,19,21}
qa11 {17 2, 5, 6,87 97 10, 11}
G422 : {1, 2, 57 6, 15, 16, 19, 20}
qu33:{1,2,8,9,14,16,17, 20}
quas:{1,2,10,11,14,15,17,19}

Table 15. Bijection ¢ from P to P*(F4)

d’(Pl) = [17“)70] ¢(P8) = [17‘:}’ 1] ¢(P15) = [va 1]
¢(P2) = [1,0,0] (Po) = [1,1,1] #(P1s) = [0,1,w]
¢(Ps) = [1,1,w] ¢(Pro) = [0,1,&] ¢(Pr7) = [1,0,&]
¢’(P4) = [1,&),&)] ¢(P11) = [07 L 1] ¢(P18) = [17070]
¢(P5) = [17 1750] ¢(P12) = [07 170] ¢(P19) = [1707 1]
¢(P6) = [l,w,@] ¢(P13) = [17 1’0] ¢(P20) = [070’ 1]
¢(P7) = [170.),(4)] ¢(P14) = [17“77@] ¢(P21) = [1707‘*)]

The following can be checked easily.

(1) If I is a linear word of C4, then the points in ¢(I) are collinear. The linear words
of C4 coincide with ¢~ 1(A(F,)), where A are Fy-rational lines containing at least

one Of d)(PlQ), ¢(P13), ¢(P18)
(2) The words ¢, ..., ], coincide with the words written as
¢~ (A1(Fa) + A2(Fy)),

where Ay and A, are distinct Fy-rational lines such that both Ay (F4) and As(Fy)
are disjoint from {¢(Pi2), ¢(P13), d(Pis)}, and such that the intersection point of
Al(IF4) and A2(F4) is either ¢(P1> or ¢(P2)

(3) For a concurrent triple (a, 3,7), let A; be the Fy-rational line passing through
?(Twpy) and ¢(P;) for i = 1,2. Then we have gagy = ¢~ (A1 (Fy) + Ax(Fy)).
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Let PG’ be the subgroup of PGL(3,F,) consisting of g € PGL(3,Fy) satisfying

{9(¢(P12)), 9(#(P13)), 9(¢(P18))} = {#(Pr2), ¢(P13), #(Pis)},

and let PG be the subgroup ¢! o PG’ 0@ of &(P). The order of PG is 288. Let F’ €
S(P?(F4)) be the element of order 2 obtained by the conjugation w +— @ of Fy over Fa.
We then put

F = gb_l o F' O¢ = (Plpg)(P3P5)(P4P6)(P7P14)(P8P15)(P10P16)(P17P21) S 6(7))

We also put
T := (P1P2)

Proposition 4.1. The group Aut(C,) is of order 1152, and is generated by PG, F
and T.

Proof. Since the actions of PG’ and F’ on P?(F,) leave the set

{[07 L, 0]7 [1) 170]> [lv 0, O]} = {¢(P12)7 ¢(P13)a ¢(P18)}

invariant, and preserve the line-point incidence configuration, we see that PG C Aut(Cy)
and F € Aut(Ca). It is obvious that T' € Aut(C4). By direct calculation, we see that
the subgroup of &(P) generated by PG, F and T is of order 1152.

Every automorphism of Cy4 leaves each of the sets { Py, P>} and { P2, P13, Pis} invari-
ant. Hence, we have a homomorphism

Aut(CA) — 6({P1,P2}) X 6({P12,P13,P18}). (41)

Since PG acts on {Pi2, P13, Pig} as the full-symmetric group, and since T' is contained
in Aut(C4), the homomorphism (4.1) is surjective. Let K denote the kernel of (4.1). We
have a homomorphism

K — 64 x &y, g (o,0"), (4.2)

where o and ¢’ are given by
9(l12,a) = li2,0(a) 9(li3,8) = 3,07 (8)-
We also have a homomorphism
G4 x 64— 6(P),  (0,0) goor, (4.3)
where ¢, . is given by
900 (P) =P, if P,em,

9o (Tapy) = To(@)o ()
where (o, 8,7) and (o(a),0’(3),~") are concurrent triples.
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Since the composite of (4.2) and (4.3) is the identity of K, the homomorphism (4.2)
is injective. For each pair (o,0") of &4 x &4, we check whether g, is in Aut(Ca),
i.e. whether g, ./ satisfies the following (see Proposition 3.5):

9o,0' (Wi(Ca)) = Wi(Ca) and  goor(W2(Ca)) = Wa(Ca). (4.4)
Among (4!)? = 576 pairs, exactly 96 pairs satisfy (4.4). Hence, Aut(C},) is of order
|K||S2] [S3] =96 x 12 = 1152,
and is generated by PG, F and T. a
For a parameter A of the affine line A, let
P — P?

be the map given in Table 1. Note that v, coincides with ¢ defined above.
We denote by T the subgroup {1,7} of Aut(Ca).

Proposition 4.2. The map A — v, induces an isomorphism from A\ {0,1,w,@} to
PGL(3,k)\ Ga/T.

Proof. First note that v, is injective if and only if
A#£0 and A #1. (4.5)

From now on, we assume (4.5).
We make the following claim.

Claim 4.3. Let +' be an arbitrary element of G4. Then there exists a unique triple
(9,t,A) € PGL(3,k) x T x (k\ {0,1,w,o})
such that
goy ot =.

Because the points v/(Pig), 7' (P1o), 7' (Pao) of 7/(l1s,1) are on a line and the points
v (P12), v (P13), 7' (P1g) of v(m) are on another line, there exists a unique element
g € PGL(3, k) such that v := g o+’ satisfies the following:

v(P1s) = [1,0,0],
v(P12) = [0,1,0],
v(Pr3) = [1,1,0], (4.6)
v(P20) = [0,0,1],
v(Pro) = [1,0,1]
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Let Li2q, Lis s and Lig, be the lines containing v(l12,a), 7(l13,3) and v(l1s,4), respec-
tively. We put x := X/Z, y := Y/Z. Then the defining equations of these lines can be

written as
Ligq : T+ a, =0,
Lisg: x+y+bsg=0, (4.7
Lig,: y+c, =0.
From (4.6), we have
a; =0, as =1, by =1, by =0, c1=0. (4.8)

The condition that («, 3,7) is a concurrent triple is equivalent to
aq +bg+cy =0.

By solving the linear equations corresponding to the 16 concurrent triples and combining
the result with (4.8), we obtain the following solutions:

(a17a27a37a4) - (Oa 17 >‘7 1+ )‘)a
(blaanb37b4) = (1+>\a)‘71a0)5 (49)
(017027037 04) = (Oa 17 Aa 1 + A)a

where X is a parameter. The coordinates of the points T, 3., are given by [aq, ¢, 1]. Using
Table 12, we see that v(P;) = v (F;) holds for every i except for i = 1 and ¢ = 2. The
line M containing v(m) is defined by Z = 0. Hence, we can put

V(Pl) = [177_1a0]7 ’Y(PZ) = [LTZ,O]'

By the algorithm in Remark 3.7, we see that a conic curve containing v(q114) exists if
and only if the following hold:

(1 + T2 + 7'22)()\ + 1)2>\2 = 0,
(m+ 7)1 +m+7*)A+1)A=0, (4.10)
(1 +7) (1 + 7+ 1A+ 1)A=0.

Here we have used the Buchberger algorithm to calculate the Grobner basis of the ideal
in k[A, 71, 2] generated by 6 x 6-minors of the 8 x 6-matrix corresponding to the eight
points in ¥(g114). Replacing v by v o T if necessary, we have

m=w and T =W
by (4.5), (4.10) and 71 # 7. Then the conic curve containing v(g114) is defined by
X244 Y24 A2+ XY + (A +1)ZX =0,

which is non-singular if and only if A2 + A + 1 # 0 (see Remark 3.8). Thus, we have
proved the existence and the uniqueness of the triple (g,t, \) satisfying go~' ot = 7,.
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Table 16. Defining equations of the conic curves @

Q- AXZ Y2+ (W HNZ2+YZ+XZX =0
Qh: A+DX24+Y24+YZ+ (V2 +1)ZX =0
Qh: A+FDX2HAY2 XY Z4+ (V2 4+1)ZX =0
Q- AXZ A+ DY2 4+ (M +1D)YZ+AZX =0
Q5 X2 HAY2+ (V24 NZ22 40V Z2 42X =0
Q6 X2+ A+ D)Y? 4+ (N +1D)YZ+ZX =0
Qr: XPHOAFDYPH(HNZ2+ (N HD)YZ+ZX =0
Qk: X2 HAY2 4+ XY Z4+2ZX =0

Qo AX2+ A+ DY2 4+ (W +NZ24+ (N +1D)YZ+ A ZX =0
Qlo: A+ DXZHAY2 4+ (N + N2+ XY Z+ (NP +1)ZX =0
Qli: A+DX2+ Y + (N +NZ°+YZ+ (N +1)ZX =0
Qs AX24+Y24+YZ+XNZX =0

In particular, for each double coset in PGL(3,k)\ Ga/T, there exists a unique A €
k\{0,1,w,@} such that ~, is contained in the coset.

Conversely, let A be an element of &k \ {0,1,w,o}. We will show that ~y, is in G4. The
points v (P) coincide with Z(dGA[)\]), where GA[)] is given in Theorem 1.6. Indeed, we
can check that

OGAIN
aX

 0GA[N]

(R = 252 e

07

((P1)) = (1 (P) =0

holds for ¢ = 1,...,21. For each linear word [ of Cjy, there exists a line containing 7y ().
The defining equations of them are given by (4.7) and (4.9). (The line M containing
va(m) is defined by Z = 0.) For each quadratic word ¢, of C4 (respectively gqp-), there
exists a non-singular conic curve @} (respectively Qqp,) containing vx(g;) (respectively,
Y1 (gasy)). The defining equations of them are given in Tables 16 and 17. Hence, yx € Ga
by Proposition 3.6. O

Remark 4.4. The polynomial GA[A] defines the nodal splitting curve
MUL121ULg 1 ULz 3 U Qo

(see Proposition 2.8).

Remark 4.5. When A € {w,®}, the set v,(P) coincides with P?(F,), and the point
[GA[N]] € 9 is the Dolgachev—Kondo point.

Let k(M) be the rational function field with variable A. For each o € Aut(Cjy), we
calculate the unique triple

(gorte, A7) € PGL(3, k(X)) x T x k()

such that
goo(moo)oty = e
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Table 17. Defining equations of the conic curves Qag~

Quia: X4+ Y+ XY +AZ°+ (A +1)ZX =0
Q123 : X2+ Y2 4 XY +(AN+1)Z24+ 212X =0
Qi32: X24Y2 4+ XY+ (N +NZ2+2ZX =0
Qa1 : X2 4 Y2 XY+ (N +A+1)22=0
Q213 X2+ Y? 4+ XY +YZ+AZX =0
Q224 XP+Y?’+ XY +YZ+(A+1)ZX =0
Q231 X24Y2 4+ XY+ (N 4+NZ2+YZ =0
Q242 X2+ Y? 4+ XY + (N +NZ°+YZ+2ZX =0
Q312 X2+ Y2+ XY +AYZ +ZX =0
Q321 X2+ Y? 4 XY+ (A +1)Z24+AYZ =0
Qs34 : X244 Y24+ XY +AYZ+(A+1)ZX =0
Q343 X244 Y+ XY + (A + )22+ XY Z+2AZX =0
Qa11: X24+Y? 4+ XY+ A2+ (A +1)YZ =0
Qa2 XP4+ Y2+ XY+ A+ 1)YZ+2ZX =0
Qa33 X4 Y2+ XY+ A+ 1)YZ4+AZX =0

Quaa: X2+ Y+ XY + A2+ A+ 1D)YZ+ (A +1)ZX =0

holds (see Claim 4.3). The calculation is done as follows: g, is the unique linear auto-
morphism of P? characterized by

9o (11 (0 (P1s))) = [1,0,0],
9o (1a(0(Pr2))) = [0,1,0],
9o (M (o(P13))) = [1,1,0],
9o (1 (o(P20))) = [0,0,1],
9o (M (o(Pro))) = [1,0,1];

t, €T is given by
_ fid i go(n(o(P))) = [1w,0],
TAT o (nlo(Br) = [1.2,0);
and \? is the rational function of the parameter \ satisfying
9o (A (0 (Pr0))) = [0, A7, 1].
The map o — t, is a homomorphism from Aut(Cy4) to 7. We put
N = Ker(Aut(Ca) — T).
From the proof of Proposition 4.2, we obtain the following corollary.

Corollary 4.6. The space PGL(3,k) \ Ga has exactly two connected components,
each of which is isomorphic to A' \ {0,1,w,©}. Set-theoretically, they are given by

(PGL(3> k) \ gA)+ = [’Ya} ‘ ack \ {07 17"‘}7@}}
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and
(PGL(3,k)\Ga)™ :={[yaoT] | a € k\{0,1,w,&}}.

The group N4 acts on (PGL(3,k) \ Ga)T, and the moduli curve M4 is equal to the
quotient space (PGL(3,k)\ Ga)"/Na.

Let
pa AN\ {0,1,w,@} = (PGL(3,k) \ Ga)" — M4 = (PGL(3,k) \ Ga)T /N4

denote the natural projection. For o € k \ {0,1,w,®}, let P[a] be the point of
A\ {0,1,w,@} given by A = a. Then pa(P[a]) € M4 corresponds to the isomorphism
class of the polarized supersingular K3 surface (Xgaja), Lca[a])-

Proposition 4.7. The set p'(pa(P[a])) is equal to
{Pla], P[1/a], Pla+ 1], P[1/(a + 1)}, Pla/(a + 1)], P[(a + 1)/a]}, (4.11)
and Aut(Xgafa], Lcala)) Is equal to the group (1.1).

Proof. The set {\? |0 € Na} C k(\) coincides with the group I'4 given in The-
orem 1.6. The fibre p,*(pa(P[a])) is therefore equal to (4.11). Note that the fibre
pa' (pa(Pla])) consists of six distinct points for any a € k\ {0, 1,w, @}, i.e. the action of
Iy on (PGL(3,k) \ Ga)™ is free. Hence, for any a € k\{0,1,w, @} and any o € Aut(Ca),
the projective equivalence classes [y,] and

[Ya ©0] = [Yar ots] € PGL(3,k) \ Gc

coincide if and only if ¢, = id and A2 = A hold. Therefore, using Corollary 2.21, we can
obtain Aut(Xgafa], Laaja)) from the subgroup

{90 | to =id and A7 = A} C PGL(3, k()
by substituting « for A. O

Corollary 4.8. We have M4 = Speck[Ja,1/Ja], where J4 = (A2 +A+1)/A2(A+1)2
The morphism p 4 is an étale Galois covering with Galois group I's, which is isomorphic
to 63.

5. The moduli curve corresponding to the code Cp

In this section, we prove Theorem 1.7.

Let AF be the affine plane over F3, P(AF) the set of rational points of AF, and L(AF)
the set of rational affine lines of AF. Each element of P(AF) is expressed by a pair aa’
of elements of F5, and each element of L(AF) is expressed as a subset {aa’,bb’,cc’} of
P(AF) with cardinality 3. We have

IP(AF)| =9 and |L(AF)| = 12.
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Table 18. C-points C(aa’) and T-points T(£) for £ = {aa’, bV, cc'}

aa’ 00 0r 02 10 11 12 20 21 22

C’(aa’) P17 P13 P5 PIO Pg P@ P2 P3 P1

aa’ b e T)

00 01 02 Po;
00 10 20 Poo
00 11 22 Py
00 12 21  Pig
01 10 22 P
01 11 21  Pis

01 12 20 Puia
02 10 21 Py
02 11 20 Py
02 12 22 P
10 11 12 Pypo
20 21 22 Py

The incidence relation
{(p,¢) € P(AF) x L(AF) | p € ¢}

is called the Hesse configuration [4]. The automorphism group
GHesse := {0 € 6(P(AF)) | 0(¢) € L(AF) for all £ € L(AF)}

of this configuration is isomorphic to the group of affine transformations of AF defined
over F3. In particular, the order of Gyesse s 432.
We define injective maps

C:P(AF)—-P and T:L(AF)—>7P

by Table 18. Then P is a disjoint union of C(P(AF)) and T(L(AF)). A point P € P is
called a C-point or a T-point according to whether P € C(P(AF)) or P € T(L(AF)).
The code Cp is described as follows.

The linear words of Cp are precisely the words

low = {C(ad’), T(£,), T((2), T(¢3), T(€4)}, ad’ € P(AF),

where {41, ...,¢, € L(AF) are the four affine lines passing through the point aa’ € P(AF).
There are two types of quadratic words.

(I) Let £ = {ad’,bb’, cc’} be an element of L(AF). There exists a unique pair of distinct
affine lines

51 = {ala’l,blb'l,clc’l} 7’5 é, fg = {agaé,bgbé,CQC/Q} 7’5 /
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Figure 1. Intersection points.
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that are parallel to £. Then the word
qe = {C(alall)ﬂ C(blb/l)7 0(016/1)7 C(a2a/2)v C(beIQ)v 0(620/2)’ T(€1)7 T(KQ)}
is a quadratic word of Cp.

(IT) Let ¢; and {5 be two distinct elements of L(AF) that are not parallel, and let
aa’ € P(AF) be the intersection point of ¢; and ¢3. Then there exists a pair {m,n} of
elements of L(AF) with the following properties:

(i) m and n are parallel,
(i) ad’ ¢ m, aa’ ¢ n,
(iii) none of the pairs (¢1,m), (¢2,m), ({1,n), ({2,n) are parallel.
For such a pair {m,n}, there exists a unique line ¢ € L(AF) such that
(a) ad’ € ¥,
(b) is distinct from ¢ and /s,
(c) intersects both of m and n.
We denote the intersection points of these affine lines as in Figure 1. Then the word
G, 0, = {C(M1), C(Mz), C(N1), C(N2), T(MyN'), T(M>N'), T(N1M"), T(N,M') }

is a quadratic word of Cp, where M N € L(AF) denotes the affine line containing the
points M and N. For each (¢1, £2), there exist exactly two pairs satisfying (i), (ii) and (iii).
However, the word qzl’ ¢, is independent of the choice of the pair.

There exist 12 quadratic words of type I, and 54 quadratic words of type II. The
quadratic words of Cp are precisely these 66 words. The linear and quadratic words of
Cp are explicitly presented in Tables 19-21.

The following proposition can be checked easily.
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Table 19. Linear words of Cg

loo = {17,18,19,20,21}
loy = {13,14,15, 16,21}
lo» = {5,7,9,11,21}
lio = {10,11,12, 16,20}
li1 =4{8,9,12,15,19}
Lo = {6,7,12,14,18}
loo = {2,4,9,14,20}

lo1 = {3,4,11,15,18}
Iy = {1,4,7,16,19}

Table 20. Quadratic words of type I in Cpg

qoo,o1,02 = {1,2,3,4,6,8,10,12}
q00,10,20 = {1, 3, 5, 6, 7, 8, 13, 15}
goo,11,22 = {2,3,5,6,10,11,13,14}
qoo,i2,21 = {1,2,5,8,9,10, 13,16}
qo1,10,22 = {2,3,5,6,8,9,17,18}
qo1,11,21 = {1,2,5,6,7,10,17,20}
qo1,12,20 = {1,3,5,8,10,11,17,19}
go2,10,21 = {1,2,6,8,13,14,17,19}
go2,11,20 = {1, 3,6,10,13,16,17,18}
qo2,12,22 = {2,3,8,10,13,15,17,20}
qio,11,12 = {1,2,3,4,5,13,17,21}
Q021,22 = {5,6,8,10,12,13,17,21}

Proposition 5.1. Let £ = {aa’,bb’, cc'} be an element of L(AF). Then the quadratic
word qp of type I is disjoint from the three linear words laq/, lpy and l.. containing
T() €P.

We define a homomorphism
v GHcssc — G(P)
by
¥(g)(Claa)) := C(g(aa’)),  W(g)(T(¢)) := T(g(¢)).
It is obvious that ¥ is injective.

Proposition 5.2. The automorphism group Aut(Cp) of the code Cp coincides with
the image of ¥.

Proof. The above description of the linear and quadratic words in Cp shows that
every element in the image of ¥ preserves the sets of these words. Since Cp is generated
by the word P € Pow(P) and these words, the image of ¥ is contained in Aut(Cp).
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Table 21. Quadratic words of type Il in Cp

T() T) Qo0

18 19 {1,3,6,8,9,11,14,16}
18 20  {2,3,6,7,9,10,15,16}
18 21 {3,4,5,6,9,12,13,16}
19 20 {1,2,7,8,10,11,14,15}
19 21 {1,4,5,8,11,12,13,14}
20 21 {2,4,5,7,10,12,13,15}
11 12 {3,4,5,6,8,14,19,21}
11 16 {1,3,5,9,13,14,18,19}
11 20 {2,3,5,7,14,15,17,19}
12 16 {1,4,6,8,9,13,18,21}
12 20 {2,4,6,7,8,15,17,21}
16 20  {1,2,7,9,13,15,17,18}
9  {1,3,5,8,12,16,18,21}
14 {1,3,6,11,12,13,19,21}
20 {1,3,7,10,12,15,17,21}
14 {5,6,8,11,13,16,18,19}
20  {5,7,8,10,15,16,17,18}
14 20 {6,7,10,11,13,15,17,19}
14 15 {2,3,6,7,8,11,19,20}
14 16 {1,2,6,9,10,11,18,19}
14 21 {2,4,5,6,11,12,17,19}
15 16 {1,3,7,8,9,10,18,20}
15 21 {3,4,5,7,8,12,17,20}

© © = e

Suppose that o € Aut(Cp) is given. A point P € P is a C-point if and only if
there exists exactly one linear word in Cp that contains P. Hence, o preserves the
set of C-points. Via the bijection C : P(AF) = ImC, we obtain a unique element
& € S(P(AF)) such that 0o C = C 04 holds. When P = C(aa’), the unique linear word
in Cp containing P is just l,,,. The Hesse configuration on AF is recovered from Cp as
follows: a set {aa’, b, cc'} of cardinality 3 is an element of L(AF) if and only if the three
linear words l,q/, lpp, lcer have a point in common. In this case, the common point of 44/,
Loty leer 18 Just T'({ad’, bb', cc’}). Therefore, we see that & € Ghesse, and that co T =T o0&
holds. Thus, o = ¥(5). O

Let A be a parameter of the affine line A', and let vy : P — P? be the map given in
Table 2. We also denote by T' = (T") the subgroup of Aut(Cp) of order 2 generated by

T := (PyP5)(P3Ps)(PyPr)(PioP13)(Pr1Pra)(PraPis)(Pao Pa1),
which corresponds to the automorphism of the Hesse configuration given by aa’ — a’a.

Proposition 5.3. The map A + ~y, induces an isomorphism from A\ {0,1,w, @} to
PGL(3,k)\ Gp/T.
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Table 21. (Cont.) Quadratic words of type II in Cg

T() T) Qe

16 21 {1,4,5,9,10,12,17,18}
9 12 {2,4,5,6,10,16,18,21}
9 15 {2,3,5,7,13,16,18,20}
9 19 {1,2,5,11,14,16,17, 18}

12 15 {3,4,6,7,10,13,20,21}

12 19 {1,4,6,10,11,14,17,21}

15 19 {1,3,7,11,13,14,17,20}
4 11 {1,2,5,10,12, 14,19, 21}
4 15 {1,2,7,8,12,13,20,21}
4 18 {1,2,6,9,12,16,17,21}

11 15 {5,7,8,10,13,14,19, 20}

11 18 {5,6,9,10,14,16,17,19}

15 18 {6,7,8,9,13,16,17,20}
9  {1,2,6,8,15,16, 18,20}
11 {1,3,6,10,14,15,19, 20}

21 {1,4,6,12,13,15,17,20}

11 {2,3,8,10,14,16,18,19}

21 {2,4,8,12,13,16,17,18}

11 21 {3,4,10,12,13,14,17,19}

12 {1,4,5,8,10,15,20,21}

14 {1,2,5,11,13,15,19, 20}
7 18 {1,3,5,9,15,16,17,20}

12 14 {2,4,8,10,11,13,19,21}

12 18 {3,4,8,9,10,16,17,21}

14 18 {2,3,9,11,13,16,17,19}
7 {2,3,5,6,12,15,20,21}

16 {2,3,9,10,12,13,18,21}

19 {2,3,8,11,12,14,17,21}

16 {5,6,9,10,13,15,18,20}

19 {5,6,8,11,14,15,17,20}

16 19 {8,9,10,11,13,14,17,18}

© © 1

ES N

ECTN (N SEIF NN

Proof. First note that «, is injective if and only if
A£0, A#1 and AN#®
hold.
Suppose that A # 0,1,w and @. Then ~, is injective, and the image v, (P) coincides

with Z(dGB[A]), where GB[A] is given in Theorem 1.7. Moreover, for each linear word
laar (respectively, each quadratic word ¢, of type I) (respectively, each quadratic word
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Table 22. Defining equations of the lines Ly

aa’  defining equation
00 X =0
01 Y=0
02 X+wY =0
10 Z =0
11 X+Y+2Z2=0
12 wX+wY+2=0
20 wX+2=0
21 X+wY+2=0
22 Y+2Z2=0

Table 23. Defining equations of the conic curves of type I

ad bV o defining equation of Qua/ b/ ce’

00 01 02 A+@)X*+oY*+(A\+w)Z?+IXY

00 10 20 (wA+DX°+ @ \+1)Y?+wAZ?+2ZX

00 11 22 (@A+w)X?+aY?’+wAZ2+A+1DXY +(A+1)ZX
00 12 21 Y24AZ2+(wA+1D)XY +(N+0)ZX

01 10 22 (@A +DX’+Y?+0AZ2+(\+@)YZ

01 11 21 (WA+DX*+AZ°+ XY +YZ

01 12 20 A+@)X’+Y?+AZ°+ (WA +w) XY +(A+1)YZ
02 11 20 WwY?4+AZ°4+ (@A +w)XY + (wA+1)YZ+ (A +@)ZX
02 12 22 (WA+DX’4+wAZ?+ XY +wYZ+2ZX

10 11 12 QA4+0)X2+Y? 4+ A\YZ+AZX

20 21 22 A+ X2+oY2PHAXY @AY Z 4+ AZX

qp ¢ of type II) of the code Cp, there exists a line L, containing v (laar) (respectively,
a conic curve @, containing yx(ge)) (respectively, a conic curve @ ,, containing v (gy . ))
given in Tables 22-24. The conic curves in Tables 23 and 24 are non-singular because
A ¢ {0,1,w,0}. Hence, v, is in Gg by Proposition 3.6.

Conversely, let 4/ be an arbitrary element of Gg. We make the following claim.

Claim 5.4. There exists a unique triple

(g,t,\) € PGL(3,k) x T x (k\ {0,1,w,@})

such that go~' ot =~y holds.

The points v/ (Py5), v (Pis), 7' (P21) of v/ (¢g1) are on a line, and the points 7' (Py2),
7' (P1g), 7' (Pso) of 7/(£10) are on another line. Hence, there exists a unique element
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Table 24. Defining equations of the conic curves of type I1

T T defining equation of Qj
18 19 WAY?+0Z° +wAXY +ZX
18 20 Y24+ O+DZ2P+H(WAFDXY +(A+1)ZX
18 21 A+ DYPHAZ2+ A+ DXY + (A +0)ZX
19 20 (@A+ W) X2 +oY P+ (WA+1D)Z2+ A+ DXY + (A +@)ZX
19 21 @A+ W) X2+ A+ o)V +wrZ? + (WA + )XY + (A +1)ZX
20 21 (WA + DX+ Y2+ wAZ? +wAXY + ZX
11 12 wX?+ (@A +w)Y2+ (@A+w)YZ+ZX
11 16 (@A+W)X2HDAY?HwAZ2+NYZ+ (A +1)ZX
11 20 @AX?HwY?4+ w22 +wA+1)YZ+AZX
12 16 A+)X2+oA+ )Y +uo(A+1)YZ +AZX
12 20 A+DX2PHY2HAYZ+ (A +1)ZX
16 20 WA+ DX+ @Y’ +wAZ® + (@A +w)YZ +ZX
4 9 oA+ +oM+DXY +w(A+1)YZ+2ZX
4 4 Q+0)X2+ WA+ DY+ (@A +w)XY + (WA + 1)YZ +AZX
4 20 AH+O)X*HYVIHAXY @AY Z+ (N +@)ZX
9 14 WAY24AZ2 4 AXY +0AYZ + (A +0)ZX
9 20 WY?2HAZZH (@A +W)XY +(wA+1)YZ+AZX
14 20 WA+ DX+ wY?+wAZ? + oA+ 1)XY +w(A+1)YZ +ZX
14 15 AX2+(A+0) 22+ XY + (A +@)YZ
14 16 (@A +w)X?+oY?+wZ?+(A+1)XY +YZ
14 21 X2+ Y4 A2+ wXY +(A+1)YZ
15 16 (@A +w)X*+oA+1)Z2°+wXY +(A+1)YZ
15 21 A+ DX2PHAZ2+ A+ )XY +YZ
16 21 (WA DX H Y24+ A2+ oA XY + (VA + @)Y Z
9 12 oY 4+ (A4 XY 4+wYZ+(A\+1)ZX
9 15 AZ24+ @A+ )XY 4w YZ 4+ A+ @) ZX
9 19 Y2424 0XY +(A+0)YZ4AZX
12 15 A+0)X2+0XY +A+0)YZ+IZX
12 19 (WAHDX?+ 0V + oA+ DXY +wdYZ+ (A +0)ZX
15 19 @A+W)X?2HwAZ2+ A +0)XY +wYZ+ A+ 1)ZX
4 11 (WAFDX2+ Y2 +uAXY +YZ+ (A +0)ZX
4 15 OA+)X2+ A+ XY +o(A+1)YZ+AZX
4 18 wY?+wXY +wAYZ+(A+1)ZX
11 15 (@A 4w)X?+wAZ? +wXY +wAYZ + (A +1)ZX
11 18 WwY?+ A2+ A+ @) XY +o(A+1)YZ +AZX
15 18 AP HwAXY +YZ+(A+0)ZX
7 9 (A+DZ2+0AXY +wA+1)YZ+ (A+1)ZX
7 11 (@A 4+w)X?+ (WA + D)2+ wXY + (wA+1)YZ + (A + @) ZX
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Table 24. (Cont.) Defining equations of the conic curves of type II

T@) T¢) defining equation of Qj ,
7 21 WA+ DX+ wAZ? + (WA + )XY +wYZ + ZX
9 11 Y* 4022+ (wA+ )XY +wYZ +ZX
9 21 WYPHAZP 4+ wXY + (WA + DY Z+ (\+@)ZX
11 21 (A + W)X+ wY? +wAZ? + OAXY +w(A+ )Y Z + (A +1)ZX
7 12 A+o)X?+oXY+ A+ 1)YZ+A+w)ZX
7 14 (WA+1DX?+w0AZ% + (00X + W) XY +wAY Z + ZX
7 18 A2+ w(IA+1DXY +YZ+MZX
12 14 CA+0)X?+Y2+w@BA+DXY +YZ+2AZX
12 18 wY?+ (4o +w)XY +wAYZ + ZX
14 18 Y24+ AZ?+0XY +(BA+1)YZ + (6A+w)ZX
4 7T (MA+DXZ+ BA+DXY + (90X +w)YZ + (0N + 1) ZX
4 16 (IA+@)X?+0Y?+AXY +wYZ 4+ AZX
4 19 wX?4+oY? 4+ XY +oAYZ+ZX
7 16 uA+DX?+wAZ?+ XY +0AYZ 4+ ZX
7 19 @AX?+wAZ? + AXY +wYZ + A\ZX
16 19 BoA+w)X?+aY2+wAZ? + (A + DXY + (bod +w)YZ + (6A+1)ZX

g € PGL(3, k) such that v := go~/ satisfies

v(Pre) = [1,0,0],
v(Pi2) = [1,1,0],
7(P20) = [0,1,0], (5.1)
v(Pis) = [1,0,1],
v(P21) = [0,0,1].

For aa’ € P(AF), let L,o C P? be the line containing v(lsq), and let

gaa’X + naa/Y + Caa’Z =0

be the defining equation of L., . By (5.1), we can put

Soo=1, moo=0,  Goo=0,
§o1=0, mo1=1 (o1 =0,
So2 =1, Go2 =0,
§10=0, mo=0, Co=1,
u=1, m=1  Cu=1
§12 =1, me =1,
§20 =1, 20 = 0,
§a1 =1, C1 =1,
§22 =0, n22 = L.
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Table 25. Basis {F1 =0, F2 = 0} of the pencil PQ¢ and the member Q¢ = {F1 + B¢F> = 0}

Z F1 F2 BZ
00,01,02 wX?+wY?+272%2 oX?+wY?+XY (A2 4 @)/ )2
00,10,20 X?+wY?+2%  X*4+Y?24ZX (WA 4 1)/22
00,11,22 @X?+wY?+272? wX?+oY?+ XY +2ZX (@A% +w)/\?
00,12,21  wY? + Z2 wY? +wXY 4+ ZX (A2 4+ @)/)\?
01,1022 wX?+oY?+272? wX?+uwY?4+YZ (WX + 1)/
01,1121 wX?+ 72 X2+ XY +YZ 1/A
01,12,20 wX?*+Y?+2722 oX*+Y?*+wXY+YZ A +1)/A
02,1021 @X?4+Y?+272% WwX?+0Y?P4wYZ4+ZX (@A +@)/A
02,11,20 @Y? + 72 Y2+ oXY +wYZ+ZX  (A+@)/A
02,12,22 X2+ 22 X2+ XY +wYZ+ZX @/A
10,11,12 ©X?+Y? X24+YZ+2ZX A
20,21,22 X2 4Y? X2+ XY +oYZ+2ZX WA

The three lines L,q/, Ly and L. are concurrent if {aa’,bb’,cc’} € L(AF). Hence, we
obtain a system of equations

gaa’ Naa’ Caa’
det | &y My G | =0 for every {aa’,bb’, cc’} € L(AF). (5.2)
Scc/ Nee! Ccc’

A Grobner basis of the ideal generated by the left-hand side of (5.2) in the polynomial
ring k[noz2, N21, C12, C20, Ca2] is calculated as follows:

(1+ Caz, 1+ Coo + m21, 1+ Ci2 + M1, Mo2 + M1, L+ 121 + 731).

Hence, there are two solutions of this system of equations:

N21 = Moz = W, C12 = G20 = @, Ca2 =1,

or
C22 = ]-a

M21 = No2 = W, C12 = G20 = w,

which are conjugate over Fo. If the latter holds, then we replace v with ggo~yoT, where

1 0
go:=10 O
0 1

oS = O

so that we can assume the former always holds. The image of the T-points by ~ is
therefore equal to the ones given in Table 2, and the lines L, are given by equations in
Table 22.
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We next determine the coordinates of the image of C-points by «y. The point v(C(00)) =
~v(Py7) is on the line Loy = {X = 0} and is different from ~(Pyg) = [0, 1,0] and ~v(Pa1)
[0,0,1]. Hence, we can put

’y(P17> = [O, )\, 1], (53)

where X is a non-zero parameter. Let ¢, /1 and f2 be three distinct elements of L(AF)
that are parallel to each other. The conic curves @ satisfying the following conditions
form a pencil PQy:

(i) @ contains v(T'(¢1)) and v(T'(¢2));

(ii) @ is tangent to the lines Loq/, Lpp, Lew, where £ = {aa’, bV, cc’} (recall Defini-
tion 3.9 and Remark 3.10).

Using the coordinates of the points v(7T'(¢)) and the defining equations of the nine lines
Lgy determined so far, we can calculate this pencil explicitly. By Proposition 5.1, the
conic curve @, containing y(g¢) is a non-singular member of the pencil PQ,. Starting
from (5.3), we can determine the coordinates of v(C(aa’)), and see that they coincide
with Table 2. For example, consider ¢ = {01, 10,22} € L(AF). We have

0, ={02,11,20}, £, = {00,12,21}.

The pencil of conic curves passing through the points

VT(l)) =~(Py) =[Lw,w],  (T(l)) =~(Ps) =[0,1,u],
and tangent to the lines

Lo = {Y =0}, Lip ={Z =0}, Loo ={Y +Z =0}
is spanned by the two conic curves defined by
wX?+@Y?+ 22 =0 and wX’4wY?4+YZ=0.
Because the conic curve @, passes through v(Pi7) = [0, A, 1], it is defined by
MwX?2+0Y2 + 22 + (WA + D(wX? +wY?+YZ) =0.

The intersection points of Q¢ with the line Ly = {wX + wY + Z =0} are v(T'(¢2)) =
v(Pig) = [0,1,w] and v(C(12)) = v(Fs). Hence, we obtain

Y(C(12)) =v(FPs) = [wA+ 1, A+ 1, )]

See Table 25 for details of the calculation.

Thus, we have proved that «y is equal to 7). Because -y, is injective, A is not among
{0,1,}.

There exists a unique conic curve containing 7y (q) for each quadratic word ¢ of Cp,
and the defining equations of those conic curves are given in Tables 23 and 24. The
smoothness of these curves implies that A\ # w. Thus, we have proved Claim 5.4. |
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Remark 5.5. The polynomial GB[)] is the defining equation of the nodal splitting
curve
Loo U Loy U Lig U L1y UQp 4,
where T'(¢) = Pig and T'(¢') = Pyg (see Proposition 2.8).
Remark 5.6. Consider the projective plane (P?)" of lines on P2. Let [U, V, W] be the

homogeneous coordinates of (P?)V dual to the homogeneous coordinates [X,Y, Z] of P2.
Let E) be the cubic curve in (P?)V defined by

QUW + UW? +wAUV? + (wA + )V
+ (WA 4+ VW2 +0AU?V 4 (w+ MUV = 0.
The points v, (C'(P(AF))) then correspond to the nine flex tangents to E, and the points
Ya(T(L(AF))) correspond to the twelve lines containing three flex points of E.

Remark 5.7. When A = w, the set v,(P) coincides with P?(F,), and the point
[GB[A]] € 9 is equal to the Dolgachev—Kondo point.

For each o € Aut(Cp), we calculate the unique triple
(9os to, A7) € PGL(3,k(N)) x T x k()
such that ggf(%\oa)otg = 7 holds. The map o +— {, is a homomorphism from
Aut(Cp) to T. We put Np := Ker(Aut(Cp) — T).

Corollary 5.8. The space PGL(3,k) \ Gg has exactly two connected components,
each of which is isomorphic to A' \ {0,1,w,@}. One of them is given, set-theoretically,
by

(PGL(3,k)\ Gp)" := {[1a] | @ € K\ {0, 1,w,&}},
and the other is equal to (PGL(3,k)\Gg)™)-T. The group Np acts on (PGL(3,k)\Gg)T,
and the moduli curve Mg is equal to the quotient space (PGL(3,k)\ Gg)*/Np.

Consider the natural projection
pp A\ {0,1,w,@} = (PGL(3,k) \ Gg) " — Mp = (PGL(3,k) \ G) " /Np.

For a € k\ {0, 1,w, &}, let Pla] denote the point of A\ {0,1,w,©} given by A = a.. Then
pa(Pla]) € Mp corresponds to the isomorphism class of the polarized supersingular
K3 surface (X¢p[a), LaBa))- The following is proved in the same way as Proposition 4.7.
Proposition 5.9. The fibre p5' (pp(P[a])) is equal { P[p]}, where ¢ runs through the
set I'y in Theorem 1.7 with X replaced by a. The group Aut(X¢p(a), LaBla)) is equal to
the subgroup of PGL(3, k) generated by the elements in (1.2).
Corollary 5.10. We have Mp = Speck[Jp,1/Jp|, where

B ()\ + w)12

COMAF1D3A+ )3

The morphism pg is an étale Galois covering with Galois group I'p, which is isomorphic
to the alternating group 2y.

JB

Indeed the group I'p acts on the set {0,1,o,00} as y.
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Table 26. Linear words of Cc

I = {17,18,19, 20,21}
Iy := {13,14,15,16,21}
5 == {9,10,11,12,21}
4= {5,6,7,8,21}
Is == {1,2,3,4,21}

o~ o~

Table 27. Bijection ¢ from P to P?(IF4)

¢(Pr) = [1,1,0] o(Ps) = [1,0,w] o(Pis) [1,0,&]
¢(P2) = [1,1,1] ¢(Po) = [1,w, ] ¢(Pis) = [1,0,w]
¢(P5) = [17 17“}] ¢(P10) = [1,&),0] ¢(P17) = [Oa 1, 1]
¢(P4) = [17 17“7] d)(Pll) = [1,0),&)] d)(PlS) = [Oa 1’0]
QZ’(PS) = [17‘:}7‘”] ¢(P12) = [170.), 1] ¢(P19) = [07 17"‘_)]
¢(P6) = [17‘:)’0] ¢(P13) = [LOa 1] ¢(P20) = [07 1aw]
o(Pr) = [1,0,1] ¢(Pra) [1,0,0] ¢(P21) = [0,0,1]

6. The moduli curve corresponding to the code C¢

In this section, we prove Theorem 1.8.

The linear words of C¢ are listed in Table 26.

The list of quadratic words in C¢ is omitted. The point P»; is special because every
linear word contains it. The following proposition can be checked directly by computer.

Proposition 6.1. Let ¢ : P = P?(F,4) be the bijection given in Table 27.

(1) The linear words of C¢ are precisely the words ¢~ (A(Fy)), where A are Fy-rational
lines passing through
O := [0,0, 1] = ¢(P21)

(2) The quadratic words of C¢ are precisely the words ¢~ (A(Fy) + A'(F4)), where A
and A’ are distinct Fy-rational lines that do not pass through O.

Note that ¢ embeds C¢ into the Dolgachev—Kondo code Cpk.

Corollary 6.2. For each quadratic word q in C¢, there exists a unique linear word [
in C¢ such that ¢N 1= 0.

From Remark 3.11, we obtain the following corollary.

Corollary 6.3. Let ! and I’ be distinct linear words of C¢, and let Ay, As € 1 (respec-
tively, By, By € l') be distinct points not equal to Pa. Then there are exactly two
quadratic words q and ¢' in C¢ containing the points {A1, Aa, By, Ba}. Moreover, if a
linear word I"” € C¢ is disjoint from q, then l” is also disjoint from ¢'.
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For aq, g, a3 € Fy, we denote by A[ajasag] the Fy-rational line defined by
a1 X +aY +a3Z =0,
and by glaasas, £1520;] € Ce the quadratic word
¢~ (Alarasas](Fy) + A[B18205] (Fy)).

We put
LG’ := {g € PGL(3,F4) | g(O) = O}.

The automorphism group Aut(C¢) of the code C¢ contains a subgroup
LG = ¢ LoLG 0g.
The order of LG is 2880. The group Aut(C¢) also contains the permutation
T := (P3Py)(P5Py)(PsPro)(PrPra)(Ps Pr1) (P15 Pis ) (Pro Pao)

of P that corresponds, via the bijection ¢, to the action of the conjugation w +— @ over
Fy on P?(F4). It can be checked easily by computer that the following permutation is
also contained in Aut(Cc):

S = (Plpg)(P2P4)(P5P7)(P(;Pg)(Pg.Pll)(Ploplg).

The automorphisms T and S of C¢ generate a subgroup isomorphic to the dihedral
group of order 8 in Aut(C¢). An ordered quartet

(R17R27 /17R/2)

of points in P\ { P21} is called a marking quartet if Py, Ry, Ro are in a linear word, and
P51, R}, R are in another linear word. There are 2880 marking quartets, and the action
of LG on the set of marking quartets is simply transitive.

Proposition 6.4. The group Aut(C¢) is generated by LG, T and S, and the order
of Aut(C¢) is 23040.

Proof. Let o be an arbitrary element of Aut(C¢). Because (Pi7, Pis, P13, P14) and
(0(P17),0(P1g),0(P13),0(P14)) are marking quartets, there exists an element 7 € LG
such that 7o(P;) = P; for ¢ = 13,14,17,18,21. Because 7o (l1) = l; and 7o (l2) = I3, we
have

{TJ(Plg),TO'(PQQ)} = {P197P20} and {TJ(P15),TU(P16)} = {P15,P16}.

If 70(P1g) = Pao, then we replace 7 by T'7. Therefore, modulo the subgroup generated
by LG and T, we can assume that ¢ has the following properties:

(o (i)) o fixes each of the seven points Pi3, P14, P17, Pig, P19, Pao, Po1,

(o (i) {o(P15),0(Pi6)} = { P15, Pi6}-
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Table 28. List of the triples (f,{q,q'},1.)

f la,d'] I,

{13,14,17,18}  ¢[101,011

{7,8,11,12,13,14,17,18} I5

]

q[111,001] = {5,6,9,10,13,14,17,18}
{13,14,17,19}  ¢[1®1,011] = {2,3,10,11,13,14,17,19} I,

q[111,0w1] = {1,4,9,12,13,14,17,19}
{13,14,17,20}  ¢[lwl,011] = {2,4,6,8,13,14, 17,20} I3

q[111,0w1] = {1,3,5,7,13,14, 17, 20}
{13,14,18,19}  ¢[101,0w1] = {2,4,5,7,13,14,18,19} I3

q[101,001] = {1,3,6,8,13, 14, 18,19}
{13,14,18,20}  ¢[101,0wl] = {2,3,9,12,13,14,18,20}  I4

q[lw1,001] = {1,4,10,11,13, 14, 18, 20}
{13,14,19,20}  q[1®1,0w1] = {7,8,9,10,13,14,19,20}  I5

q[lwl,0w1] = {5,6,11,12,13,14, 19, 20}

Consider, for example, a set of four points {Pi3, P14, P17, Pis}, each of which is fixed
by o. The two quadratic words containing them are

q[101,011] = {2,7,12,13,18} + {2,8,11,14,17} = {7,8,11,12,13, 14,17, 18},
q[111,001] = {1,5,9,13,17} + {1,6,10, 14,18} = {5,6,9, 10,13, 14,17, 18}.

Both of ¢[101,011] and ¢[111,001] are disjoint from [5. By Corollary 6.2, we have
o(ls) = l5. Considering other sets of four points fixed by o, we can show that o(ly) =4
and o(l3) =I3. In Table 28, we list the triples (f,{q,¢'},l,), where f is a set of four
points pointwise fixed by o, {g, ¢’} is the pair of quadratic words containing f, and I, is
the linear word disjoint from both of ¢ and ¢'.

Therefore, we have the following;:

(o (iil)) o leaves each of the sets
{Pr, P2, P3, Py}, {Ps, Ps, Pz, Pg}, {Po, Pro, P11, P12}
invariant.
Let us consider the quadratic words ¢; := ¢[101,011] and g2 := ¢[111,001] again. Since
{o(grNla), (g2 Nla)} = {q1 N la, g2 N la},
the action of o on {Ps, Ps, P, Py} preserves the decomposition
{P5, P, Pr, Ps} = {P5, P} U{Pr, Ps};

that is, {o(Ps),0(Ps)} is either {Ps, Ps} or { Py, Ps}. By the same argument applied to
the pairs {g, ¢’} of quadratic words in Table 28, we see the following:
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o (iv)) o preserves the decompositions
(o (iv))
{P1, P, Ps, P} = {P1, Py} U{P, P3} = {P1, Ps} U{P, Py},
{P57P6ap77p8} = {P57P6}U{P77P8} = {P5aP7}U{P67P8}a
and

{Py, Pro, P11, Pr2} = {Py, Pio} U{Pi1, Pia} = {Py, Pia} U{Pio, Pi1}.

The two quadratic words containing { P13, Pig, P17, P1g} are
qlwll, 101] = {2,4,10,12,13,16,17, 18}
and
q[111,w01] = {1,3,9,11,13,16,17, 18},

both of which are disjoint from I4. On the other hand, the two quadratic words containing
{P13, P15, P17, Pig} are

q[@11,101] = {2,3,6,7,13,15,17,18}
and
q[111,&01] = {1,4,5,8,13,15,17,18},

both of which are disjoint from [3. Since o fixes each of I4 and I3, we see that the property
(o (il)) of o can be strengthened to the following:

(O' (11))/ O'(P15) = P15, O'(Plﬁ) = P16~

Using computer, we can easily list all 43> = 64 permutations o satisfying (o (i)), (o (ii))’,
(o (iii)) and (o (iv)). We can check that exactly four of them id, S,

(ST)? = (P1P2)(P3P4)(PsPs)(P; Ps)(Py Pio) (P11 Pr2)
and
(ST)2S = (PyPy)(P2Ps3)(PsPs)(PsPy;)(PyPy2)(PioPr1)
preserve the set of quadratic words in C¢. Hence, by Proposition 3.5, Aut(C¢) is gen-

erated by LG, S and T. It can be checked by computer that the order of Aut(C¢)
is 23 040. 0

Let A be a parameter of the affine line A and let v : P — P? be the map given in
Table 3. When A = 0, the map ~, is equal to ¢. Let T denote the subgroup of Aut(C¢)
generated by the involution T

Proposition 6.5. The map A — 7y induces an isomorphism from A\ {0,1,w,&} to
PGL(3, k) \ Gc/T.
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Table 29. Parametric presentation of ~

Y(P1) = [1,t5, 85,1] Y(Ps) = [1,ta,824]  v(Pis) = [a2,0,1]
Y(P2) = [1,t5, 85,2 Y(Po) = [1,t5,831]  v(Pis) = [B2,0,1]
v(Ps) = [Lts,853]  v(Po) = [1,t3,832]  v(Pir) = [0,1,1]
Y(Py) = [1,5, 85,4] ¥(P11) = [1,t3, 53,3] v(P1s) = [0,1,0]
Y(Ps) = [1,t4, 84.1] Y(Pr2) = [1,t3, s3.4] v(Puo) = [0, 1, 1]
Y(Ps) = [1,14, 84,2 v(Pis) = [1,0,1] v(P20) = [0, 81, 1]
Y(Pr) = [1,ta,823]  ~v(Pa) = [1,0,0] v(P21) = [0,0,1]

Proof. First note that v, is injective for every .
Claim 6.6. Let v/ be an arbitrary element of Go. Then there exists a unique triple
(9,4, 3) € PGL(3, k) x T x (' {0,1,,})

such that govy' ot = ~,.

Since ¥/ (Po1), ¥/ (P13), v/ (P14) are on aline, and v/ (Pa1), v/ (P17), 7' (Pis) are on another
line, there exists a unique g € PGL(3, k) such that v := g o+’ satisfies

’Y(PQl) = [07 0, 1] =0, ’Y(P17) = [0’ L, 1]7 7(P18) = [07 170]7
7(P13) = [1707 1]7 7(P14) = [17070}

The X-coordinate of y(F;) is not 0 for i = 1,. .., 16, because otherwise v(F;), v(Py7) and

~v(P»1) would be collinear, and hence there would exist a linear word of C¢ containing
{P;, P17, P1} by Proposition 2.9. Therefore, there exist parameters ay, as, 51, Be, ti,

845, t=3,4,5, j =1,...,4, such that v is given by Table 29.
The lines L, containing the points 7(l,) are defined by

Ly ={X =0},
Ly ={Y =0},
Ly ={Y =#;X},
Ly ={Y =t4X},

Ly ={Y =t;X}.
Claim 6.7. t5 = 1.
Consider the quadratic word
q = {7,8,11,12,13,14,17,18} = {2,7,12,13,18} + {2,8,11, 14,17},

which passes through the four points Pi3, P14, P17, Pig, and is disjoint from the lin-
ear word [5. The conic curves containing the points y(Pi3) = [1,0,1], v(P14) = [1,0,0],
v(Pi7) =10,1,1] and v(Pyg) = [0, 1,0] form a pencil

0 Z(X+Y +Z)+XY =0, oecP.
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The conic curve @1 C P? containing y(q;) is a member of this pencil. Since @7 is non-
singular, the value of the parameter o corresponding to )7 is not 0 nor oco. Since @) is
tangent to the line Ly = {Y = t5X}, we have o(1 4 t5) = 0. Hence, t5 = 1.

From the quadratic words that

(i) contain exactly one of {Pi7, Pig},
(ii) contain exactly one of {P3, P14},
(iii) are disjoint from I5,
we obtain the following relations.
Claim 6.8.
o = az (= @), B = B2 (=: B), a+ B =ab.
Consider, for example, the quadratic word
g2 == {6,8,9,11,14,16,17,19} = {2,6,9, 16,19} + {2,8,11, 14, 17}..

Since the conic curve Q2 containing y(g2) passes through the points v(P14) = [1,0, 0] and
v(P17) = [0,1,1] and is tangent to Ls = {X =Y}, it is a member of the web

o1 (Y2 4+ Z) 4 0o XY +03(Y? +YZ+ZX) =0, [01,09,03] € P?,

of conic curves. Since y(Pig) = [02,0,1] € Q2, we have (5 = 01/03. Since v(Pig) =
[0,1,1] € Q2 and a; # 1, we have a; = 01/(01 + 03). Therefore, we obtain a relation
ay + B2+ ayffa = 0.

From the quadratic words that contain exactly three of Py7, Pig, P13, P14, we obtain
the following relations.

Claim 6.9.

ay +t3 =0, B1+ts=0;
14 asty =0, 14 Bats = 0;
1+ az + asts =0, 1+ B2+ Boty = 0;
ar+is+aita =0,  Bi+t3+ Pits =0.

Consider, for example, the quadratic word
qs :={2,4,10,12,13,16,17,18} = {4,7,10,16,17} 4+ {2,7,12,13,18}.

Since the conic curve @3 containing v(g3) passes through the points v(Py3) = [1,0, 1],
v(Pi7) =1[0,1,1] and y(Pis) = [0, 1,0], it is a member of the web

o1 ( X2+ 224 YD)+ 0o(X?+ ZX) +03XY =0, [01,09,03] € P2,
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of conic curves. Since y(Pig) = [32,0,1] is contained in @3, we obtain ﬁ22(01 +o09) +

B209 4+ 01 = 0. Since Q3 is tangent to the line Ly = {Y = t4 X}, we have t401 + 02 = 0.

Combining these two relations and (2 # 1, we obtain a relation 1+ 8y + foty = 0.
Combining Claims 6.7-6.9, we obtain the following two possibilities for the parameters:

ar=a=w, fi=f=0  l3=w,  t4=w, {5=1
ap=a=0, fi=fh=w t3=0, t=w, =1
If the latter holds, then we replace v by voT so that we assume that the former always
holds.
Next we put
Pl = [la 1) AL
where A = s5 1 is a parameter. Using quadratic words that
(i) contain exactly four points among I3 U lg,
(ii) are not disjoint from 5,
we obtain the following claim.
Claim 6.10.
S5,1 = A, S50 = A+1, 85,3 = A+ w, S5,4 = A+,
841 =WA 4w, Si2=wA, S43=wWA+1, Sga=wA+w,
§3,1 = WA+ @, §3,2 = WA, 83,3 = WA+ w, 83,4 = WA+ 1.

Consider, for example, the quadratic word
qs :=91,2,11,12,14,16,17,20} = {1,8,12,16,20} + {2,8,11, 14,17},

which is disjoint from l4. Because there exists a conic curve @4 that contains y(gy) and
is tangent to the line Ly = {Y = @ X}, the following matrix M is of rank less than 6:

1 A2 1 A A
1 1 35’22 1 s52 852
1 @ 83732 W Wws33 833
R 1 & 8342 w ws3s s34
M:=11 0 0 0 o0 0
w 0 1 0 0 w
0 1 1 0 1 0
0 w 1 0 w 0
10 0 0 0 w 1 |

Indeed, if the equation

G X%+ asY?+a3Z? + au XY +asYZ +a6ZX =0
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defines a conic curve containing v(g4) and tangent to Ly, then a = [a1,aq,...,a6]T is a
non-zero solution of Mx = 1. (The condition was + ag = 0 is equivalent to the condition
that the conic curve is tangent to Ls.) Let M[iq,...,i6] denote the submatrix of M

consisting of i;th rows of M. Because
det M[1,2,5,7,8,9] = (552 + A)(s5.0 + A+ 1)
and s52 # 55,1 = A, we obtain s5 2 = A + 1. Because
det M[1,3,5,7,8,9] = (s33 + @\ + 1)(s33 + @\ + w),

we obtain
$533=WA+1 or wWA+w.

Continuing the same calculations, we get the relations in Claim 6.10.

Thus, we have proved Claim 6.6.

Conversely, suppose that A € k\{0,1,w, @} is given. Then v, (P) is equal to Z(dGC[))),
where GC[)A] is given in Theorem 1.8. Moreover, for every linear word ! of C¢, there
exists a line containing (1), and for every quadratic word ¢ of C¢, there exists a unique
conic curve containing v (g). The defining equations of the 120 conic curves are omitted.
These conic curves are non-singular because A ¢ {0,1,w,&}. Hence, v, is in Gp by
Proposition 3.6. (]

Remark 6.11. When X € {0,1,w,&}, the set v5(P) coincides with P?(Fy4), and the
point [GC[A]] € M is equal to the Dolgachev—Kondo point.

For each o € Aut(C¢), we calculate the unique triple
(Jorter A7) € PGL(3, k() x T x k(\)

such that gg~0(%\oa)otg = holds. The map o+ ¢, is a homomorphism from
Aut(C¢) to T. We put N¢ := Ker(Aut(Ce) — T).

Corollary 6.12. The space PGL(3,k) \ G¢ has exactly two connected components
(PGL(3,k) \ Go)" == {[val | @ € K\ {0,1,w,@}}

and

(PGL(3,k)\ Gc)™) - T,

each of which is isomorphic to Al \ {0,1,w,©}. The group N¢ acts on (PGL(3,k) \ Go) T,
and the moduli curve M¢ is equal to the quotient space (PGL(3,k) \ Go)*/Ne.

Consider the natural projection
pe A"\ {0,1,w,0} = (PGL(3,k) \ Go)* — Mc = (PGL(3,k) \ Gc) ™ /Ne.

For a € k\ {0,1,w,@}, let Pla] denote the point of Al \ {0,1,w,&} given by A\ = a.
Then pe(Pla]) € M corresponds to the isomorphism class of the polarized supersingular
K3 surface (Xgora) Lacla])-
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Proposition 6.13. We have
o’ (pc(Pla])) = {Plua +v] | u € FY, v € Fy}.
The group Aut(Xgce(a], Lacla)) 1s equal to the subgroup (1.3) of PGL(3, k).
Corollary 6.14. We have M¢ = Speck[Jc,1/Jc], where Jo := (A* + \)3. The mor-
phism p¢ is an étale Galois covering with Galois group I¢.
7. Cremona transformations by quintic curves

7.1. Preliminaries

Let X; and X, be disjoint sets of reduced points of P? with |¥;| = n; and |X3| = na,
and let Zx;, C Op2 and Zx, C Op2 be the ideal sheaves defining X'; and Y. We define ¥
to be the zero-dimensional subscheme of P? defined by the ideal sheaf

Is:=15,13,.

The length of O is ny + 3ns. Let d be a positive integer. The linear system |Zy(d)|
consists of plane curves of degree d that pass through the points of 37 U X5 and are
singular at each point of Xs.

Proposition 7.1. Suppose that the linear system |Z(d)| is of dimension greater than
or equal to 1 and has no fixed components. If

dim [Z(d)| > 2(d+2)(d+ 1) — (n1 + 3n2) — 1, (7.1)

then there exists a projective plane curve of degree d — 3 that passes through all the
points of X5.

Corollary 7.2. Suppose that the linear system |Zs(d)| is of dimension greater than
or equal to 1 and has no fixed components. If d < 3 and ny > 0, then the dimension of
the linear system |Zy(d)| is equal to 3(d + 2)(d + 1) — (nq + 3ng) — 1.

Proof. We follow the argument in [6, pp. 712-714]. From the exact sequence
0—Zs(d) = Op2(d) = Os(d) — 0,
we obtain
hO(P?,Zs(d)) = 2(d+2)(d+1) — (n1 + 3na) + h' (P, I (d)). (7.2)
Let 3: S — P? denote the blowing up of P? at the points of X U X5. We put
Ap=p7HE),  Agi=TH(Z),

both of which are considered to be reduced divisors. Let H C S be the pull-back of a
general line on P2. We put

L= 3*Opa(d) ® Og(—A1 — 2As) = Og(dH — Aq — 2A,).
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Because Kg = —3H + A1 + As, we have
L? = d* —ny — 4no, LKg = —3d+ ni + 2no.

The complete linear system |H| = |3*Op2(1)| on S is fixed-component free. Since the
intersection number H(Kg — L) = —d — 3 is negative, we have

h*(S,L) = h°(S,Kg — L) = 0.

By the Riemann—Roch theorem, we obtain

hO(S,L) = 3(d+2)(d+ 1) — (n1 + 3n2) + h' (S, L). (7.3)
There exists a canonical isomorphism
Zs(d)] = |L] (7.4)
that maps a member C of |Z(d)| to the member 5*C —A; —2A, of |L|. From (7.2)—(7.4),
we obtain
hY(P?,Z5(d)) = h'(S, L). (7.5)
Using the assumption (7.1) and the equalities (7.2) and (7.5), we obtain
R (S, L) > 0. (7.6)

Since |Z(d)] is of dimension greater than or equal to 1 and has no fixed components, we
obtain by the isomorphism (7.4) global sections s and s’ of L such that the subscheme
R = {s =5 =0} of Sis of dimension 0. Let Zr C Og be the ideal sheaf defining R.
From the Koszul complex

(s,5) (=s",9)"

0— Os(KS - L) _— Os(Ks) (&5) OS(KS) _— IR(KS + L) —0
and h°(S,05(Ks)) = (S, Os(Ks)) = 0, we obtain
h'(S,L) = h'(S,0s(Ks — L)) = h®(Zr(Ks + L)).

From (7.6), we see that the linear system |Zr(Kg + L)| is non-empty. Since Kg + L =
B*Op2(d — 3) @ Og(—Az2), a member of |Zr(Kg + L)| is mapped by 5 to a projective
plane curve of degree d — 3 that passes through the points of Xs. (Il

Definition 7.3. Let F be an effective divisor of P2. We put
= (Z\(Z1NF)U (XN FY, X =35\ (D2 NF),

where F0 is ~the locus of all p € Supp(F') at which F' is reduced and non-singular. We
then define X\ F to be the zero-dimensional subscheme of P? defined by the ideal sheaf

Tsp =TTy
If F is a fixed component of |Zs(d)|, then C — C — F gives an isomorphism
Z5(d)| = [Zg o (d — deg F)|
of linear systems. By the definition, we have
S\ (P +F) = (E\ )\ F (7.7)

for any effective (not necessarily distinct) divisors Fy and Fy of P2.
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7.2. A homaloidal system of quintic curves

Let X = {p1,...,p6} be a set of distinct six points of P? satisfying the following
conditions:

(X'1) no three points of X' are collinear;
(X2) there are no conic curves containing X.
These are equivalent to the following:

(X3) for each p; € X, there exists a non-singular conic curve N/ C P? that contains
X\ {p:} and does not contain p;.

Proposition 7.4. The linear system |Z%(5)| of quintic curves that pass through the
points of X and are singular at each point of X is of dimension 2, and has no fixed
components.

Proof. Because each point of X' imposes three linear conditions on |Opz(5)], we have
dim |Z5(5)] > 2.
Suppose that |Z%(5)| has a fixed component. Let F be the fixed component, and let

F=F+---+Fn

be the decomposition into the reduced irreducible components of F', where non-reduced
components are expressed by repetition of summation. We have

deg F' =degFy + -+ deg Fx > 0.

As in the previous subsection, we denote by Y the zero-dimensional subscheme of P2
defined by the ideal sheaf Z7%. We will consider the linear system

which has no fixed components and is of dimension equal to dim |Z % (5)] = 2. For v =
0,...,N, we define reduced zero-dimensional subschemes EY) and 221/) of P? by

~ — 2
Io\(FittF) = IE§“>IE§“"

Then
v v . . v+1 v .
2 s ik, BT = 20—,

where
i=15NF,), j=2"NF,u, k=|5" NSingF,1|.

The integers i, j and k are subject to the following conditions:
(i) i+j <2and k=0 if deg F,.1 = 1, because of (X'1);

(ii) i+ 75 < 5and k =0 if deg F,, 11 = 2, because of (X22);
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(iii) k& < 1if deg F,+1 = 3, because an irreducible cubic curve has at most one singular
point;

(iv) k < 4 if deg F,41 = 4, because if k > 5, there would exist a conic curve C' with
CF,+1 > 10.

Since
‘I§(5)| = |IE§N)I;£N) (5 — deg F)|

is of dimension greater than or equal to 2 and fixed-component free, we have
deg F =4 = | Y™ <1 and |2V =0,
deg F =3 = || <4and |2V =0.
We put
§:=1(6— deg F)(7 — deg F) — (|| + 31 2M)) — 1.

From Corollary 7.2, we also have
degF >2and2 >0 = |Z£N)\ =0.

Using these considerations, we see that the triple (|E§N)\, \EéN)Ldeg F) is one of the
following:

(0,6,1),  (1,5,1),  (2,4,1).

For these triples, however, we have |Z £\ (b —deg F)| = (), because otherwise there would
exist an irreducible quartic curve C4 and a conic curve Cy such that C4Cs > 8. Thus, we
have proved that |Zy(5)| is fixed-component free.

If dim |Z&(5)| > 2, then, by Proposition 7.1, there would exist a conic curve that con-
tains X, which contradicts (X£2). O

Remark 7.5. Recall from (X3) that N/ C P? is the conic curve such that N/ N X =
I\ {p:}. Let Q be a general member of |Z%(5)|. Since N/Q = 10 for each i, the multiplicity
of ) at each point of X' is 2.

Let 3 : S — P2 be the blowing up of P2 at the points of X, and let M; be the exceptional
(reduced) divisor 371(p;). We put

L= ﬁ*OIpﬂ (5) ® Os(—QMl — 2M6)
Let N; be the strict transform of N/ by 3. We have L? =1, N;L = 0 and N? = —1.

Proposition 7.6. The complete linear system |L| on S has no base points, and the
morphism @ : S — P2 defined by |L| is the contraction of the curves Ny,..., Ng. Let
p; be the image of N; by ®|1|. Then X' = {p},...,ps} satisfies the condition (¥3).
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Proof. By Proposition 7.4, the complete linear system |L| on S is of dimension 2
and has no fixed components. Suppose that |L| has a base point p € S. Let B:8—9
be the blowing up of S at p, and let M’ be the exceptional divisor 5~'(p) of j.
Since L? = 1, the complete linear system |L| of the line bundle L := §*L @ Og(—M’)
is of dimension 2 and has no fixed components. We have K §I~/ = —2, and hence
h2(S,L) = hO(S,Og(KS — L)) =0 follows. By the Riemann-Roch theorem, we have
RY(S,L) = h'(S, Kg— L) = 1. Using the argument of the Koszul complex as in the proof
of Proposition 7.1, we see that h%(S,Og(Kg + L)) > 0. Hence, there exists a conic curve
in P2 that passes through the points of X, which contradicts (X2). Thus, |L| has no base
points.

Since L? = 1, the morphism P is of degree 1. Because N;L = 0, the curves N; are
contracted by @|z|. Let C be a reduced irreducible curve on S that is contracted by @z,
Because M;L = 2, we have C' # M; and, hence, C" := 3(C) C P? is a reduced irreducible
curve. We will show that C” is equal to one of the conic curves N/. Let d be the degree
of C'. We have

B (C") = C +miMy + -+ + meMs,
where m; is the multiplicity of C” at p;. The condition C'L = 0 implies that
5d = 2(mqy + - - + mg).
If C” is not equal to N/ for any 4, then

C/N{:2d>(m1+~~+m6)fmi:gdfmi

holds for each 4. Hence, 2m; > d for i = 1,...,6. Therefore, 5d = 2> m; > 6d, which is
absurd. Thus, we have proved that @, is the contraction of the (—=1)-curves Ny, ..., Ng.

Since M; L = 2, the image of M; by & is a non-singular conic curve. Because M; N; =
0 if and only if = j, the conic curve @1,|(M;) satisfies

D (M;) N X' = 2"\ {pi}-
Hence, X' satisfies (X3). O
Corollary 7.7. The rational map
CTyx : P?... — P2,

defined by the linear system |I%(5)|, is birational, and the inverse map is given by CTsy.

We will write
g8 — P?

instead of @|z|. Let H and H' be the pull-backs of a general line of P? by 3 and 73,
respectively. We put
Mz/ = Bl(Ml)v
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which is a non-singular conic curve containing X’ \ {p.} and not passing through p;. We
also put

U:=5)\ (QMUQM)

The morphisms 8 and 3’ induce isomorphisms

P2\ UN! = U = P?\ UM]. (7.8)
The Picard group PicS of S is a free Z-module of rank 7, and is generated by
the linear equivalence classes [H],[Mi],...,[Msg], or by the linear equivalence classes
[H'],[N1],...,[Ng]. They are related by
6 6
[H'] =5[H] -2 [M]], [Ni] = 2[H] = Y [M;] + [M;], i=1,....6.
j=1 j=1
In particular, we have
6 6
B[H) = Y _[M;] = 3[H] = ) IN)] (7.9)
j=1 j=1

in Pic S.

7.3. Cremona transformations of supersingular K3 surfaces

Let G be a homogeneous polynomial in U, and let X = {p;,...,ps} be a subset of
Z(dG) with |X] = 6. We assume that X' satisfies the condition (X'1) and

(X2)' for each p; € X, the non-singular conic curve N] containing X \ {p;} satisfies
N/ Z(dG) = £\ (i}

Then the subset
Z'=CTx(Z(dG)\ X)u X’

of P2 is well defined and consists of 21 points.
Proposition 7.8. There exists G’ € U such that Z' = Z(dG').
For the proof of Proposition 7.8, we first prove the following lemma.

Lemma 7.9. There exists G € U that satisfies Z(dG) = Z(dG1) and G1(p;) = 0 for
each p; € X.

Proof. By (X1) and (X2)’, the points of X' impose independent linear conditions on
the linear system |Op2(3)| (see [6, p. 715]). Hence, there exists a homogeneous cubic
polynomial H such that (G + H?)(p;) = 0 holds for each p; € X. Then Gy := G + H>
satisfies Z(dG) = Z(dGy). O
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We replace G by G; in Lemma 7.9. Then the sextic curve D defined by G = 0 is
reduced and has an ordinary node at each point of X. Hence,

6
D:=p"D-2) M,
j=1

is a reduced effective divisor of S, and it contains no Mj.

Proof of Proposition 7.8. Let D’ be the image of D by 3. Since DH’ =6, D’ is a
reduced curve of degree 6. Let G’ = 0 be the defining equation of D’. We will show that
7' = Z(d@"). Tt is enough to show that Z(dG’) is of dimension 0 and that Z’ C Z(dG").

Since DNj = 2 for each N;, we have

6
D:=pg"D'-2) N;.

j=1
Because D is effective, we have Sing D’ D X’. Hence, X' C Z(dG"). We put

VL(H) = os<3HiMj> os(gH’iNj)

Jj=1

Let G be a global section of
L(H)" = L(H) = OS(GH - 2ZMJ~) = Os(6H’ - QZNj)

such that G' = 0 defines D. Let m and n be global sections of Og(3" M;) and Og(>" N;)
such that >~ M; = {m =0} and )  N; = {n = 0}. We can choose these in such a way

that } )
B*G=Gm? and [B*G =Gn? (7.10)
hold. We define isomorphisms
B 0p(3) | U = /I(H) | U = §*0p:(3) | U (7.11)

of line bundles on U by multiplications by m and n. We can define dG, d(B*G) and
d(8"*G") as global sections of the vector bundles

QLo VIH) ", 0L©50:03)%2 and QLo 8%0p(3)%,
respectively. By (7.10) and (7.11), we get

ZdG))NU
Z(dG") N (P? \ UM])).
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Hence, we get
Z(dG") N (P* \ UMj) = CT5(Z(dG) \ ).

In particular, we have CTx(Z(dG) \ X) C Z(dG").

If dim Z(dG’) > 0, then one of the conic curves M} is contained in Z(dG'). Suppose
that M}, C Z(dG"). Then M, C Z(dG) holds. We choose affine coordinates (z,y) of P?
such that py, = B(Mj) is the origin. Let

z,y) = Z aijxiyj

1+j<6

be the inhomogeneous polynomial corresponding to G. Since py = (0,0) € X' is contained
in Sing D, we have
ai;; =0 fori4+j<1

Let the blowing up § be given by
(u,v) = (2,y) = (uv,v)

around a point of My. Then G is written in terms of the coordinates (u,v) as

*
§(u,v):ﬂg: Z ajulvlﬂ 2,

v2 L
2<i+5<6

Since dG is zero along the curve M = {v = 0}, we have
%
Ou
This contradicts the fact that py is a reduced point of Z(dG). O

(’U,70) = a1 = 0.

Proposition 7.10. Let G and G’ be as above. Then the Cremona transformation
CTyx of P? lifts to an isomorphism

é\TE : XG 1) XG/
of supersingular K3 surfaces.

Proof. Let Y be the subvariety of the total space of the line bundle \/L(H) defined
by W2 = G, where G is the global section of \/L H ) mtroduced in the proof
of Proposition 7.8, and W is the fibre coordinate of \/ . From (7.10) and (7.11), we
obtain the isomorphisms

Xo | (B*\UN)) =V | U= X¢ | (B*\ UM))

that are compatible with the isomorphisms (7.8). Since K3 surfaces are minimal, the
isomorphism between Zariski open subsets of X and Xg extends to an isomorphism
between X and Xg. [l
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Remark 7.11. We describe the action of CT 5 on the numerical Néron—Severi lattices
of the supersingular K3 surfaces. We number the points of Z(dG) and Z(dG’) in such a
way that

E:{p17~~~ap6}a Z(dG):EU{p7a"'ap21}a
X ={pl,...,ps} ZdG) = X" J{ph,...,p5},

where p; = CTx(p;) for i« = 7,...,21. Let E; C Xg be the (—2)-curve that is con-
tracted to p; € P?, and E C X be the (—2)-curve that is contracted to p € P2. Then
NS(X¢) ®z Q is generated by [E1],...,[F21],[Lc], and NS(Xg/) ®z Q is generated by
[Ef], ..., [E51], [Le]- Since CTx(p;) = p} for i > 6, we have

CTy([E)]) = [Ei] fori > 6.

The exceptional curve N; on S contracted to p; by 8’ : S — P? is mapped by 3: S — P2
to the non-singular conic curve N/ such that N/ N Z(dG) = X'\ {p;}. Hence,

6
CTy([E)]) =2[Lc] ~ Y [Ej] +[B] fori=1,....6.
j=1

The pull-back of a general line of P2 by CTyx : P?--. — P? is a quintic curve @ such that
QN Z(dG) = X and that the multiplicity of @ at each point of X' is 2 (see Remark 7.5).
Thus,

CTx((Le) =5lLa] 2 [E;)

These formulae completely describe the homomorphism (?’T; ®z Q from NS(X¢) @7 Q
to NS(X(;) ®7 Q.

Remark 7.12. Suppose that the point [G'] € M corresponding to G’ € U in Proposi-
tion 7.8 coincides with the point [G] € 9. Then the Cremona transformation CT s defines
a right coset in Aut(Xg) with respect to the subgroup Aut(X¢, Lg) C Aut(Xg). Indeed,
the assumption [G] = [G'] implies the existence of a linear isomorphism g : P2 = P? such
that ¢(Z(dG")) = Z(dG). Let g € GL(3,k) be a lift of g € PGL(3, k). There then exists
c € k* and H € H°(P?, Op2(3)) such that §*G = ¢G’ + H?. Let X and X be defined
by W2 = G(X,Y,Z) and W’ = G'(X,Y, Z), respectively. We have a lift §: Xg = Xg
of g given by

gW =cW'+ H.

The composite goﬁ » is an automorphism of Xq. Since the linear isomorphism g is
unique up to the group

{h € PGL(3,k) | (Z(dG)) = Z(dG)} = Aut(Xe, L),

the automorphism jo CTy € Aut(X¢) is also unique up to Aut(Xg, Lg)-
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8. The isomorphism correspondences by Cremona transformations

8.1. The action of Cremona transformations on the moduli space

Let C be a code satisfying the conditions in Theorem 2.4(ii). For v € G, we denote by
G., € U a homogeneous polynomial such that v(P) = Z(dG,). Let ¢ € Pow(P) be a word
of weight 6. Recall from Definition 1.11 that v(c) is a centre of Cremona transformation
for G if no three points of v(c) are collinear and there are no non-singular conic curves
C C P? such that |C'Ny(c)| = 5 and |C N~(P)| = 6. By Propositions 2.9, 2.10 and 2.17,
we see that the following conditions on a word ¢ € Pow(P) of weight 6 are equivalent:

(i) the word c satisfies

(a) |enl] < 2 for any linear word ! of C,
(b) |eNgq| < 4 for any quadratic word g of C;

(ii) there exists v € G¢ such that y(c) is a centre of Cremona transformation for G.;
(iii) for arbitrary v € Ge, y(c) is a centre of Cremona transformation for G.,.

Definition 8.1. A word ¢ € Pow(P) of weight 6 is called a centre of Cremona trans-
formation with respect to C' if the above conditions are satisfied.

Let ¢ be a centre of Cremona transformation with respect to C. For v € Go, we put

X =7(c),

and consider the Cremona transformation CTsx. We put

Z, . ={CTs(v(P)) | P €P\c}U{py,....p},

where p is the image of the strict transform N; C S of the conic curve N/ that con-
tains y(c) \ {p:}. By Proposition 7.8, there exists a polynomial G’ . €U such that
7! .= Z(dG’, ). Even though the polynomial G, . is not uniquely determined, the corre-
sponding point [G, | € 90 is uniquely determined by ¢ and . The map v ~ [G/, ] gives
a morphism from G to 9. It is obvious that this morphism descends to the morphism

cte : PGL(3,k) \ Go — M.

8.2. The case where the Artin invariant is 2

Let T be A, B or C, and let ¢ € Pow(P) be a centre of Cremona transformation with
respect to Cp. The image by ct. of the connected component

(PGL(37 k) \gT)Jr = {[7)\] ‘ Ae Al \ {07 1,0),@}}

of PGL(3, k) \ Gr is a connected component of My = M4 U M p UM and, hence, there
exists T" € {A, B, C} such that ct. yields a morphism

Ct'-]t,c : (PGL(35 k) \gT)+ — EIRT/.
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Table 30. Isomorphism correspondences by Cremona transformations
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T c N7 -c| T' Drqrid
A {1,2,8,10,15,16} 12 A A=0
A {1,7,8,15,18,21} 144 A DI=0
A {2,4,8,11,14,16} 576 B D2=0
A {1,4,6,9,12,20} 72 A D3=0
A {2,8,10,12,14,21} 72 A D3=0
A {5,8,9,10,14,16} 8 A A=0
A {4,9,12,16,17,18} 24 A A=0
A {1,2,9,10,16,19} 36 A A=0
A {7,12,13,14,19,20} 36 A A=0
A {2,6,9,10,13,21} 48 C Di=0
A {2,5,11,13,17,21} 576 A DI=0
B {2,7,8,9,10,17} 216 B A=0
B {1,2,11,12,13,18} 72 B D5=0
B {4,5,6,10,13,19} 54 B A=0
B {4,7,12,15,20,21} 6 B A=0
B {1,2,6,10,14,16} 5 B A=0
B {3,5,14,16,19,20} 108 B A=0
B {1,3,8,12,13,17} 108 B A=0
B {1,5,6,16,20,21} 216 A D6 =0
B {2,6,9,13,16,18} 36 B A=0
B {3,7,8,10,19,21} 216 B D5=0
B {2,5,9,16,18,19} 108 B A=0
B {1,3,5,15,19,21} 72 B D5=0
B {2,6,7,16,20,21} 108 B A=0
C  {3,5,9,13,17,21} 960 A D7=0
C  {3,510,14,17,21} 64 C D8=0
C  {1,5,8,10,14,18} 960 C A=0
c {1,2,58,18,19} 20 C A=0

AI: JT+JT/

D1:=JS J2 + Jh Jb + J2 J8 + T3 T3+ T3 Tk + T8 T2+ T3 T3+ T2 Tk
+ T Jr 4 Jp J5 4 T3 Jp + JR TR+ Jp Ja 4+ T3 4 J2 Jp + o JE + T3

D2 = J} + J3 Jr + Jpi JE + Jp Jr + I
D3 = J3 J2 + J2 I3+ J2 2+ I dr + 1
D4 := J2, 0} + Jp J2 + Jprdr + Jp + Jr

D5 = Jpdr + J J2 4+ J2 T3+ I Jr 4 T3 Jr + J o+ I J3 + 1

D6 = Jb + J2 Jr + Jpi J2 + Jpi Jp + Jr
D7 = JJ2 + J2 Jr + Jpi Jr + Jpo + Jr

D8 = Ji Jb + T dr + J2 J2 + Jpr I3+ T30 + J20 Jr + I J2 + T3
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Table 31. Generators of H°(P?, T%(5))

FI:=X*Z 4+ X37Z2020+ X372 0+ X2Y2 Zw + X?Y Z2\%w + X2Y Z%Dw
+ XY 220+ X223 N+ X223\ + X2 2302 + X223 \w + X228
+XY2Z2 N0+ XY 22 w4+ XY 220+ XY Z2w + Y322 N2w + Y322 )\w
+ Y223\ 0w+ Y2230 4 Y223 N + Y223 )\

Fy = XY3Z 2w+ X322 02+ XY Z2A + X223 N+ XY2 2202 + XY 23 + X227
+X2Z3N YR ZEN YN YR 23N+ XY 220 + X322
+ XY 2PN+ XY + XY2Z2 + Y3 22N+ Y2 Z3 N 3w + X2 Z3 05w
+ X223 03w+ Y2Z3 0w+ Y223 2w 4+ Y223 4+ Y223 000w + X2V 3w
+X3YZN 0w+ X223\ w4+ XY 2P w + Y3 22w + XY 2 Z%0w + X2 Z3 )0
+ XY3Zw+Y3Z2 X+ XY3 ZAw + Y2230 w4+ X3Y ZAw + XY 2 Z)w
+ XY Zw + XY ZNw + X2Y Z2 M\ w

F3 = XY3Z 2w+ X2Y 22020 4+ X3Y 2w+ X322 + X?Y Z° N+ X2 230+ XY Z3
+ XY 22+ X2Y2Z + X223 N+ Y3 22N+ Y223\ Y2230 + X Y2220\
+X3Z2N X3P A+ XY2 2PN+ X2Y 2202 + XY2 22 + Y322
+Y2Z303w+ X5+ X2Z3M\w+ X2 Z3 03w+ Y2 Z3 05w 4+ X2 2302w
+ Y223 w0+ X3 22N+ Y223 000 + X3Y Zw + X3Y Z 02w + X2Y 22w
+ Y32 A0+ Y3 22N+ XY2 220 + XY Z3w + X2 Z3X\0w 4+ XY 3 Z)w
+XY2Z2 N 0+ X3Y ZAw+ X322 N0+ X2Y2 20w+ XY 2 22 N0+ X2Y 2 Z N0

Using ctJTr’c and the quotient morphism
pT - (PGL(?), k) \ QT)+ — My
by Ny = Ker(Aut(Cr) — T), we obtain an irreducible isomorphism correspondence

D[] = {(pr(7]): etz (W) | V] € (PGL(3, k) \ Gr) "} € My x M.

For o € Np, we have
cte([y o 0]) = cto(e) ([1])-

Hence, the type T” and the correspondence D 7/ [c| depends only on the orbit of ¢ under
the action of Np. We present in Table 30 the decomposition of the set of centres of
Cremona transformation with respect to Cr into the orbits under the action of Np. For
each orbit, the type 7" and the defining equation of the isomorphism correspondence
Dy 1|c] are also given.

We will explain the algorithm for obtaining the defining equation of Dy 1[c]. For
example, consider the case where T = A and ¢ = {Py, Py, Ps, Py, P12, Poo}. The six
points X' = y,(¢) = {p1,...,ps} are as follows:

P1 = ’YA(PI) = [1,&),0], P4 = 'YX(PQ) = [17 1a 1]7
b2 = ’Y)\(PAL) = []- + A7>\, ]-]; D5 = P)/)\(P12) = [Oa 170]3
p3 = fY/\(PG) = [)\71 + )‘7 1]) Pe = 7A(P20) = [ana 1]
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Table 32. Points q;

q1 = CTE('}’)\(PQ)) = [07 17‘”]

q2 := CTs(7a(Ps3)) = [w, A2+ @A+ 1, A\ +@))
g3 := CTxs(7a(Ps)) = [w, 2+ @A+ @, ( A+ 1)\ + w)]
ga = CTx(w(Pr)) = [w,)\2 +wd+w, (A +u3)2]
¢ = CTs(7a(Fs)) = [w, A+ 1% A2 +wr +1]

g6 := CTx((Po)) = [w, (A +w)*, A+ 1)(A + ©)]
g7 := CTs(7a(P11)) = [w, A+ w) A+ @), A2 + A 4]
q8 = CTZ(VA(PB)) = [07 1, 1]

qo 1= CTL‘(’YA(Pm)) = [w,)\2 +wA+1, (A +w)2]
g0 := CTx(ya(P15)) = [w,)\2,>\2 + WA + w]

g1 = CTs((Prs)) = [w, (A + @)%, A(A + w)]

q12 == CTe((Pri7) = [w, A(A + w), A’

q13 := CTx(7a(Ps)) = [0,0,1]

qi4 1= CTE(’y,\(Plg)) = [w,)\2 + A+ Q,)\()\ + 1)}

@15 = CTe(n(P21)) = [0, A+ DA + @), (A +1)?]
qi6 ‘= /(Nl) = [07170]

@17 = B (N2) = [w, A+ @)X\ A2 4+ o\ + @]

qis = B (N3) = [w, A+ DA +w), A + oA+ 1]

qio := B'(N1) = [0, > + A+ w, A* + X + @]

q20 = ('(N5) = [0,1,&]

g21 = ' (Ne) = [w, \(A+ 1), A+ w)(A + @)]

Solving linear equations, we see that the three-dimensional linear space H°(P?,7%(5)) is
generated by the homogeneous quintic polynomials in Table 31.
The Cremona transformation CTy : P2-.. — P? is given by

(XY, Z] = [F1, Fy, F3].

The points v (P;), P; ¢ ¢, is mapped by CTx to the points in Table 32.
The conic curve Ni C P? containing X'\ {p1} is defined by

Ei =X+ (N +NYZ+ (N +A+1)ZX =0.

Let V4 be the vector space of cubic homogeneous polynomials C' such that EiC is a
member of H°(P?,Z%(5)). Then we have dim V; = 2, and the image of the linear map
Vi — HO(P?,7%(5)) given by C + E;C is spanned by F; and Fj. Hence, the image
B'(Ny) of the strict transform Ny C S of Ny is [0,1,0]. In the same way, we calculate
B'(N;) as in Table 32.

The set LW of collinear 5-tuples of the points in Z' = {¢1,...,¢21} and the set
QW of 8-tuples of the points in Z’ that are on a non-singular conic curve are given in
Table (33), where {1, 3,5,11, 17} means {q1, g3, g5, q11, ¢17 }, for example. Since |[LW| = 13
and |QW| = 28, we see that the type T of the target moduli curve is A. Let o be the
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Table 33. Sets LW and QW

LW = {{1,3,5,11,17}, {4,5,6,8,12}, {1,2,6,10,18}, {2,3,8,19, 21},
{1,4,9,14,21}, {8,9,10,11,15}, {6,7,11, 20,21}, {1,7,12, 15,19},
{3,9,12,18,20}, {1,8,13,16,20}, {7,8,14,17,18}, {5,10, 14, 19,20},
{2,4,15,17,20}}

QW = {{2,3,4,5,9,10,13,16}, {2,3,4,7,10,11,12,14}, {2,3,5,6,7,9, 14, 15},
{2,4,5,7,9,11,18,19}, {3,4,5,7,10,15,18,21}, {3,4,6,7,9, 10, 17, 19},
{2,5,6,7,13,16,17,19}, {2,3,6,11,12,13,15,16}, {3,4,6, 11,14, 15,18, 19},
{3,5,6,13,14,16,18,21}, {2,5,7,9,10,12,17,21}, {4,6,7,10,13,14, 15,16},
{3,4,7,12,13,16,17,21}, {5,7,9,11,12,13, 14,16}, {2,6,9,11,12,14,17,19},
{4,6,9,11,13,16,17,18}, {2,7,9,13,15,16, 18,21}, {5,6,9,15,17, 18, 19, 21},
{3,7,10,11,13,16, 18,19}, {6,9,10,12,13,16,19,21}, {3,6,10,12,14,15,17,21},
{2,5,11,12,14,15,18,21}, {4,10,11,12,17,18,19,21}, {2,10, 11, 13, 14, 16, 17, 21},
{4,5,11,13,15,16,19, 21}, {2,4,12,13, 14,16, 18,19}, {5,10,12,13,15, 16,17, 18},
{3,9,13,14,15,16,17,19}}

following permutation:

13 16 2 6 21 4 18 17 3 7 12
12 13 14 15 16 17 18 19 20 21)

(1234567891011

1 8 9 11 15 14 20 5 19 10
Then the map

v P — P?
defined by v'(P;) = ¢, (;) yields bijections from the set of linear words in C'4 (see Table 10)
to LW and from the set of quadratic words in C'4 (see Tables 13 and 14) to QW . Hence,
the map 7’ is an element of G4. We make the linear change of homogeneous coordinates
of P? so that

71(P18> = (g20 = [17070]7 7/(P12) =q1 = [07170]7 7/(P13) =(qg = [17170]7
7' (Pao) = qi9 = [0,0,1], 7' (Pro) = g5 = [1,0,1]

hold (see (4.6)); that is, we multiply the vectors ¥'(P;) = ¢,(;y by the matrix

A2 4+ A 1 @
AX4+A+1 o 1
wA+1 0 0

from the left. Then we have

’}/(Pl) = q13 = [17(")’0]
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Therefore, the projective equivalence class [y'] € PGL(3,k)\ Ga of +' is contained
in the connected component (PGL(3,k)\ Ga)", because otherwise we would have
v'(P1) = [1,@,0]. Since

’Y/(Plo) =dqr = [07 ]-7)\ +L:}],
the point [y/] corresponds to 1/(A+ @) under the isomorphism (PGL(3,k)\ Ga)T =
A\ {0,1,w,@}. Substituting 1/(\ + ©) for X in

A2+ A+1)3

Ja=Tanre

we see that the J4-invariant of [y'] is equal to

g NN +1)°
AT (24 A +1)2

Eliminating A from J4 and J/, we obtain the defining equation
L+ Jady + J3J2 + I3+ J3JE =0

of the isomorphism correspondence given by the Cremona transformation with the centre
Cc = {P17P4aP67P97P127P20}'
Putting

Daaq:={D3=0},
Dy ag:={D1=0},
Dp.p1:={D5=0},
De.oq = {D8 =0},
Dapi:=1{D2=0}=Dga,* ={D6=0}",
Dacy:={D4=0}=Dca," ={D7=0}",

we obtain Theorem 1.13. The composite D, * Do of correspondences
Dl = {fl(JTaJT’) = 0} C mT X mTI

and
D2 = {fQ(JT’vJT”) - 0} - mT/ X mTU

is obtained by eliminating the variable Jp from f1(Jr, Jr/) = fo(J7r, J7) = 0. Starting
from the eight isomorphism correspondences above and making composites, we obtain
irreducible isomorphism correspondences listed in Table 4, which have the relations given
in Appendix A. This table also shows that the isomorphism correspondences A4, Ap,
Ac, and those in Table 4, are closed under compositions of correspondences.
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Appendix A. Relations between non-trivial isomorphism correspondences

Daag1*Daa1=284+Da s,
Dpga1*xDaa2=Daar~+Daap,
Dpap*Daa1=Daar+Daas,
Daag*Daaos=As+Daa1~+Daaz,
Dy a1*Dap1=Dapo2,
Dya1xDapo=Dapi1+Danpo,
Daap*Dapir=Dapi1+Dano,
Dga2*xDapo=Dapi1+DaBo,
Dpai1*Daci=Dac,,
Daag*Daca=Daci+ Dac,e,
Dpag*Daci=Daci+Dac,e,

Dpap*Daco2=Daci+ Dac,o,

Dppi1*Dppi1=Ap+ DB,
Dp p1*Dpa1=Dp a1+ Dpaa,
Dp p1*Dpa2=Dp a1+ Dp,az,
Dp.p1*Dpci1 = Dp,c,o,

D p1*Dpc2=Dp,c1+ Dpc,e,

Dcci*Deci=Ac+ Do,
Dc.c1*Dc,1 = Dc,,o,
Dc.ci1*De.p2=Dc,p1+ DcB.2,
Dc.ci*Dc,a1 = Dc,aq+ De,ao,

Dc,c1*Dca2=Dca1+ Dc,ao2,

Dy pi1*Dp,p1=Dap1+Dan,o,

Dy p2*Dpp1=Dap1+Daga2,
Dapi1*Dpai=Aa+Daap,
Dapi1*Dpa2=Daa1+Daap,
Dap2*Dp a1 =Daar~+Daag,
Dapo*xDpas=Aa+Daas+Daas,
Dap1*Dpci1=Dac,
Dap1*Dpc2=Dac1+Daco,
Dap2*Dpci=Dace,
Dap2*Dpca2=Dac1+Daca,
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Dpa1*Da a1 =Dpap,
Dpai1*Daa2=Dpa1+Dpags,
Dpa2*Daa1=Dpa1+Dpag,
Dpa2*Daaz=Dpayr+ Dp.ap,
Dpa1+*Dap1=Ap+Dgpa,
Dpa1*Dap2=Dpgp,
Dpa2*Dap1=Dppa,
Dpao*xDap2=Ap+Dppn,
Dp a1*Daci=Dpci+ Dpco,
Dp.ag*Daca=Dgca,

Dp a2*Dacy=Dpco2,

Dpa2*Daco=Dpci+ Dp,co,

Dp.c,1*Dc,c1 = Dpo,e,
Dpc2*Dc,ci1=Dpci1+ Dp,cpo,
Dp,cy*Dep1 = Ap,
Dp,ci1*Dc,p2=Dg.pB1,
Dp.c2*Dcp1=DgB,
Dpc2*Dcp2=Ap+Dpp1,
Dpc1*Dc,a1=Dpa,
Dp,c1*Dc,a2=Dp ag,
Dpco*Dca1=Dpa1+ Dpag,
Dpco2*Dca2=Dp a1+ Dp 4,

D¢c.p1*Dp 1= Dc,B,2,

D¢ p2*Dp 1= Dcp1+ DcBppe,
Dcp1*Dp.a1=Dca,
Dcp1*Dp.a2=Dc a2,
Dcp2*Dpay=Dcai+Dcap,
Depo*Dpa2=Dca1+ Dc a,o,
Dcp1*Dpci=Ac,

D¢ p1*Dpc2=Dcc,i,
Dc,g2*Dpci=Dcc,,
D¢.p2*Dpca2=Ac+ Do,

Dc.ai*Daar=Dc,ap,

Deo,anr*xDa a2 =Dc a1+ Dcoaz,
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Do a2+ Daga1=Dcai+ Dcoap,
Dco,ap*Daaz=Dcai+ Dcoap,
Do a1+ Dap1 = Dcp1+ De,p,o,
DcagxDap2=Dc e,
Dc a2+ Dapir=Dc B2,
Dca2xDapo=Dcp1+ Dc B2,
Dceai*Dacyi=Ac+ Dec,
Dc,a1*Dac2=Dc,c,
Dc,a2+Dac1=Dc,c,
Dca2*Daco=Ac+ Do,
Dyci*Deci=Daci+Dac,pe,
Dyco2*Deci=Daci+Dac,pe,
Dyci*Dep1=DaBn,
Dyci*Dcp2=Dap1+Dapa,
Dac2xDcpyr=DaBba,
Daca2xDcp2=Dapi1+Danpa,
Daci*Dcar=A04+Danaz,
Dyci*Doa2=Daar+Daas,
DacoxDeair =Daair+Daag,
Daco*Dceaa=084+Daa1+Dyap.
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