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Abstract. A possible acceleration mechanism by the magnetic force is 
suggested for a plasmoid, modeled as a spherical body with a magnetic 
dipole situated in its center of mass. The governing equations of the mo­
tion of a dipole in an inhomogeneous magnetic field are solved analytically 
and numerically. Both methods show the possibility for the plasmoid to 
be accelerated in the direction of the external field gradient. 

1. Introduction 

Magnetically isolated clouds of ionized gas, or coronal plasmoids, have been 
theoretically described by many authors, for example, by Priest (1982), Cargill 
and Pneuman (1986), Pneuman (1983) and Mullan (1990). A possibility to 
test these theories experimentally appeared after the observation of the coronal 
plasmoid by the Canada-France-Hawaii Telescope (CFHT) during the July 11, 
1991 total solar eclipse (Vial et al. 1992, Koutchmy et al. 1994). The dynamics 
of the plasmoid were described in Delannee and Koutchmy (1996), and it was 
reported in this paper that the plasmoid seen during 230 s at 90,000 km above 
the solar limb moved at a high velocity (about 75 km s - 1 ) . Its dimension 
was around 1 Mm; it was denser (3xl09 cm- 3) and colder (2xl04 K) than 
the surrounding corona (3xl08 cm - 3 , 2x l0 6 K). To support the external gas 
pressure the plasmoid had to be more magnetized than the corona; estimates 
give Bpiasmoid = 2 G and Bcorona = 1G . 

In the present paper we discuss a possible acceleration mechanism - the ac­
celeration due to the magnetic force, which is probably dominant in the plasmoid 
dynamics (Delannee et al. 1998). 

2. Outline of the Problem 

The plasmoid is assumed to be solid, i.e., incompressible. Inside the magnetic 
field can be produced by a ring current, which is equivalent to a magnetic dipole 
if the radius of the ring current is small enough versus the radius of the plas­
moid. Outside the magnetic field is produced at the center of the sun or in an 
active region; both kinds of magnetic field can be modeled by a magnetic dipole 
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Figure 1. Diagram of the problem. 

but of different sizes and strengths. Additionally, we consider the dipole field 
frozen inside the plasma contained in the plasmoid. Finally, we fully neglect 
the influence of the external plasma. So we solve the problem of the motion of 
a magnetic dipole inside an inhomogeneous magnetic field, see Figure 1. The 
equation of motion is: 

mi> = V(jl-B), (1) 

where m is the mass of the plasmoid, v its velocity, /z the magnetic dipole 
moment inside the plasmoid and B the magnetic field outside the plasmoid. 
The magnetic dipole moment can oscillate around the external magnetic field 
vector. The equation of conservation of energy is: 

mvci 1 , , „ „ mv? 1 , . . „ .„. 
- y 1 + -zHkVioho - M-o cos a0 = —±- + -Iik6n6kl - fiB cos ax, (2) 

where / is the inertia momentum of the dipole, 0 the oscillation angle of the 
dipole in the spherical coordinates of the reference frame of the external magnetic 
field, a is the angle between the external magnetic field vector and the magnetic 
dipole moment vector, the subscripts, 0 and 1, correspond to the values of the 
quantities taken at two different times, ti and t2, and the subscripts, i and k, 
correspond to the two angular coordinates of the spherical coordinates of the 
problem. 

3. Equilibrium, Oscillation and Rotation 

The equilibrium of the dipole versus its oscillation in the external magnetic field 
is reached when its potential energy of the oscillations (Ep = —ft • B) is maximal 
or minimal. There are two configurations, see Figure 2. The stable configuration 
is such that the force is directed toward the stronger magnetic field. 

When the dipole moves in an inhomogeneous magnetic field, it feels the 
change in the magnetic field direction and starts to oscillate around the magnetic 
field direction. We solve the equations of conservation of energy in the reference 
frame of the center of the dipole. The problem is axisymmetric. The change in 
direction of the magnetic dipole moment due to the change of the magnetic field 
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Figure 2. Equilibrium configurations of the magnetic dipole in the 
external magnetic field, a) is the stable equilibrium and b) is the un­
stable equilibrium. 

direction is considered very small. So, the two components of the oscillation are 
equal to the angle a. The solution is: 

t = ±—F(\a/2\,k) (3) 

where fc2 = 4ft2/<io; ft = \/jiB~J7 is the characteristic proper frequency of the 
plasmoid; F(\a/2\,k) is the incomplete Legendre elliptic integral of the first 
kind. The two different regimes of the oscillations are described in this solution: 
if | k |> 1, the function F(\a/2\, k) is complex and the motion is a rotation, and 
if | k |< 1, the function jP(|a/2|, k) is real and the motion is an oscillation 

4. Motion 

We develop the gradient of the potential energy. We see in the solution of the 
problem given in the previous section that a = a(t). This leads to: Vcosa = 0. 
Projecting the equation of motion on the axes parallel and perpendicular to the 
magnetic field gradient direction, we obtain that the velocity perpendicular to 
the external magnetic field gradient is constant during the motion and only the 
velocity parallel to it can be accelerated with the equation: 

mi — fi cos aVB (4) 

If cos a < 0 (i.e., TT/2 < \a\ < ir), the velocity of the plasmoid increases. 
In the case of oscillations, we integrate the equation of motion over a period 

of oscillation, T. The solution is: 

2\piuS!B ,, 
<T) = V0+ J o V>(«max), mil 

with 

^m„) = V2hE(]f^ cos amax _ / l - cos amax ^ 

(5) 

(6) 
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where E and K are respectively the complete Legendre elliptic integrals of the 
second and first kind. 

"max is the maximal angle reached during an oscillation. Using the equation 
a2 

of conservation of the energy, we find cos amax = 1 — ^ - . We define a^ax* t n e 

critical value of the maximal angle of the oscillations, such as VK^max) = 0- I n 

the case of the plasmoid seen in during the 1991 total solar eclipse, Q^ax w 131° 
(or «max w 2.29). If amax > a^ax, then ip(ama,K) is negative, so the motion 
is accelerated. If am a x < «max> then ^(amax) is positive, so the motion is 
decelerated. 

In case of fast rotation, the function of the angle versus time can be written 
as: a = aot. We average the equation of motion over a period of rotation 
(T = 27r/ |d0|). The solution is: 

V(T) = V 0 - J ^ - ( ^ - ) \ B (7) 
\a0\m \a0J 

5. Numerical Simulation 

We solved the equations of the motion in the case of an external magnetic field 
produced by a magnetic dipole situated just under the photosphere, i.e., at 90 
Mm. The equations useful to describe the motion are: 

m{f-r02-r sin2 9<p3) = -3^MJosaVl + Zcos28 

m (2r() + r8-r sin 6cos6<p2) = -3t*M™<* .c°^sin
2*fl 

V / T VI+3cos2 8 

m \2rsin6<p + 2r cos86<p + rsinBCpJ = 0 
I& = UMJ$™^1 + 3COS29 

where M = Br^/y/l + 3cos2#0 « 3.1 X 1032 G cm3 is the value of the external 
magnetic moment. We solve this system using the forth order Runge-Kutta 
method, including the correction due to the changes of the magnetic field direc­
tion during the plasmoid center of mass motion. We computed the equations 
using physical quantities close to the ones of the observed plasmoid (Delannee 
et al. 1998). 

The results give the two regimes of oscillations and rotation. The dipole 
can be accelerated, in this case its motion is such that 0 increases. In the case 
of a decelerated motion, 9 decreases. In all initial cases, if there is a speed high 
enough, the oscillation moves to a rotation and the motion is accelerated. 

6. Conclusion 

This simple model of a dipole inside a plasmoid shows that the plasmoid can 
be accelerated out of the corona. The main remarks are about the distribution 
of the current inside the plasmoid. This current is more complicated and some 
current surface can exist which modifies this internal force. Furthermore, we 
have to think about the way that the current ring can support the oscillations or 
the rotations of their axis of symmetry. Finally, we have to detail the differences 
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between the two theories and compare the two forces computed in these two 
theories. 
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