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STRONG OSCILLATION OF ELLIPTIC EQUATIONS 
IN GENERAL DOMAINS 

BY 

C. A. SWANSON 

Strong oscillation criteria will be obtained for the linear elliptic partial differential 
equation 

x = (x \ JC2, . . . , xn), D ,= d/dx* 

in unbounded domains R of general type in w-dimensional Euclidean space En. 
It will be assumed throughout that B and each Ai3- are real-valued continuous 
functions in R, and that the matrix (A^x)) is symmetric and positive definite in R. 
It is not required that R be quasiconical or quasicylindrical as in earlier work [3], 
[4], [5], [6], or even connected. For example, R is allowed to be a spiral domain 
with decreasing width as |x|->oo. 

The following definition was first introduced by Glazman [2] in the case of the 
Schrôdinger equation Av+B(x)v=0 in all of En. 

DEFINITION 1. The partial differential equation (1) is called strongly oscillatory 
in an unbounded domain R iff for arbitrary r > 0 there exists a nontrivial solution 
vr of (1) with a nodal domain contained in Rr9 where 

Rr = R n {xeEn:\x\ > r}, 0 < r < oo. 

It follows from the «-dimensional version of Sturm's comparison theorem [75 

p. 187] that every strongly oscillatory equation (1) is weakly oscillatory, i.e. every 
solution v of (1) has a zero in Rr for arbitrary r > 0 . 

In the case that R is large enough at oo to contain a cone of the type 

Ca = {xG£n:x*"> |x|cos0} 

for some 0, O < 0 < T T , strong oscillation criteria for (1) were obtained by Headley 
and the author [3]. For example, (1) is strongly oscillatory in En if 

(2) liminfr*g(>)> 2 ) 

r-»oo 4 

Received by the editors June 23, 1971 and, in revised form, July 26, 1971. 

105 

https://doi.org/10.4153/CMB-1973-020-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1973-020-0


106 C. A. SWANSON [March 

where X is an upper bound on the largest eigenvalue A(x) of the matrix (A^x)), 
and 

g(r) == min B(x) 
\x\=r 

IÎR is too "small" at oo, it is clear that (2) is not sufficient for (1) to be strongly 
oscillatory in R. Consider the example that R is the strip 

*-H':5<*'<7)-
Then the Schrôdinger equation Av+B(x)v=0 is not strongly oscillatory in R even 
under the condition that B(x) is uniformly bounded away from zero in R. In fact, if 
the equation àv+v=Q had a nontrivial solution vr with any nodal domain N in 
R, then the solution t?(x)=sinx1 would have a zero in N by the comparison 
theorem. 

For a nonempty regular bounded domain M c: R, let F be the functional 
defined by 

(3) Fh u;M]=f 
JM 

2 Ai/tfDiUDjU—Bfâu2 

.u=i 
dx 

with domain consisting of all real-valued piecewise C1 functions u on M. 

THEOREM 1. Equation (I) is strongly oscillatory in an unbounded domain R c En 

if R contains a sequence of nonempty regular bounded domains Mk, k=l, 2, . . . , 
with piecewise C1 boundaries, having the following properties: 

(i) For arbitrary r > 0 there exists an integer k0(r) such that Mk <= Rr for all 
k>kQ(r); and 

(ii) There exists a piecewise C1 function uk on each Mk such that uk^0 on dMk 

and F[uk; Mk]<0for all sufficiently large k. 

Proof. Let X{N) denote the smallest eigenvalue of the problem 

Lu+fai = 0 in N9 w = 0 on dN 

for an arbitrary subdomain N of Mk with piecewise C1 boundary. Since F[uk; Mk]< 
0, Courant's minimum principle [1, p. 399] shows that X(Mk)<0. It is well known 
that N<= M implies that X(N)>X(M) and that A(JV)-*+ oo as Â  shrinks to a point, 
and hence there exists a subdomain Nk of Mk such that X(Nk)=0. Thus Nk is a 
nodal domain of a nontrivial solution of (1) for sufficiently large k. By assumption 
(i), for arbitrary r > 0 there exists an integer k such that Mk<^Rr, and conse­
quently Nk <= i? r . This completes the proof of Theorem 1. 

For the first application of Theorem 1, let Mk be specialized to the open disk 
defined by 

Mk(xk; ak) = { x e E n : \ x - x k \ < ak) 

xeR, ak>0, fe = l , 2 , . . . 

https://doi.org/10.4153/CMB-1973-020-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1973-020-0


1973] OSCILLATION OF ELLIPTIC EQUATIONS 107 

THEOREM 2. Equation (I) is strongly oscillatory in an unbounded domain R<^En 

if R contains a sequence of open disks {Mk(xk; a^} with the following properties: 

(i) limA:_>00(|x fc |-^)= + c c ; 

(ii) (A{j(x)) is bounded (as a form) in (J* Mk(xk; ak); 

(iii) B(x) is positive in each Mk(xk; ak), and 

lim al~n\ B(x)dx = +oo 
* - + oo JMk(xk>ak/2) 

Proof. It will be shown that hypothesis (ii) of Theorem 1 is satisfied if uk is 
taken to be the piecewise C1 function on Mk(xk; ak) defined by 

uk(x) = 1 if 0 < r < a k\2 

= 20fc-r)jak if akjl <r < ak 

= 0 if ak<r 

where r=\x— xk\. If a is an upper bound on (A^x)) and œn denotes the area of the 
unit (w-l)-sphere in En(co1=l by convention), then 

2 A^D^D^ dx<«.\ \Vuk\
2 dx 

n? JaJ2 
dr 

ak
 Jok/2 

4aco n_2 

= ( 1 - 2 )ak 
n 

Substitution into (3) yields the inequality 

al~nF[uk; Mk(xk; ak)] <: 4acon( l-2"-")-a*- f B(x) dx 
JMk(xk'ak/2) 

Hypothesis (iii) then shows that F[uk; Mk(xk; ak)]<0 for all sufficiently large 
integers k, and therefore hypothesis (ii) of Theorem 1 is satisfied. 

By (i), there exists an integer k0(r) corresponding to each r > 0 such that \xk\ — 
ak>r whenever /c>fc0(r). Then x e Mk(xk; ak) implies that 

M > |x*|-|*-**l > 1**1-0* > r 
so that x e Rry and Mk(xk; ak)^Rr for all k>k0(r). Hence (1) is strongly oscilla­
tory by Theorem 1. 

COROLLARY 3. Equation (1) is strongly oscillatory in an unbounded domain 
R^En under hypotheses (i) and (ii) of Theorem 2 and 

(iii') B(x)>bk>0 in each Mk(xk; ak) where ]hnk->M bkal= + co. 

COROLLARY 4. Equation (1) is strongly oscillatory in R if R contains each open 
disk Mk(xk; a), fe=l, 2 , . . . , a>0 , with the following properties: 

(i) l i m i t a i = +oo 
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(ii) {A{j(x)) is bounded in \Jk Mk(xk; a); and 

(iii) lim^j-.oo B(x)= + co uniformly in R. 

Another application of Theorem 1 arises in the case that the eigenvalue problem 

(4) W^>)uk+Bkuk = Q inMk 

\uk = 0 on dMk 

has a nontrivial eigenfunction uk and associated eigenvalue Bk (necessarily Bk>0) 
such that 

(5) I u2
k(x)B(x)dx>Bk\ uz

k(x)dx 

for all sufficiently large integers k, where a denotes an upper bound for (A^x)). 

THEOREM 5. Equation (1) is strongly oscillatory in an unbounded domain R if R 
contains a sequence of nonempty regular bounded domains Mk, fc=l, 2, . . . , with 
piecewise C1 boundaries, on which (4) has an eigenfunction uk and associated eigen­
value Bk satisfying the inequality (5). 

Proof. Since (5) holds as well as the inequality 

I Mxtfz' < a |z|2 

for all x e R and all z e En, where a is an upper bound on (A^x)), it follows from 
(3) that 

F[uk; Mk] < f (a \Vuk\*-Bku*) dx = 0 
JMk 

upon integration by parts and use of (4). Hence (1) is strongly oscillatory by 
Theorem 1. 

In particular, consider the case that R contains each of the congruent rectangles 
Mk defined by 

(6) Mk = {xe En:cl < xj < c^+M', j = 1, 2 , . . . , n} 

for a sequence of points {ck} with l i m ^ ^ |cfc| = oo, where tj>0 f o r / = l , 2, . . . , n. 
Let Nk denote the subrectangle given by 

Nk = {xeMk:c'k+t' < xj < c'k+3t'9j = 1, 2 , . . . , n) 

THEOREM 6. Equation (I) is strongly oscillatory in R if 
(i) Mk c: Rfor k>k0, where Mk is the rectangle given by (6); 

(ii) JB(X)>0 on each Mk; and 

(7) I B(x) dx > a7724n-Y*2. .". tnf(tj)-\ k > kQ. 
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Proof. The eigenvalues Bk and associated eigenfunctions uk for (4) in this case 
are given explicitly by 

B* = eMj*i(4*r* 
5 = 1 

, , A • R*'-4)1 

Since B(x)>0 on Affc and |wÂ;(x)|2>2~n in Nk9 a routine check shows that (7) implies 
(5), and Theorem 5 applies. 

EXAMPLE. Suppose that JR contains arbitrarily long parallelepipeds in the x1-
direction, i.e. for arbitrary t1=k>09 there exists a point ckeR and numbers 
t*>0 fory==2,.. . , n such that Mk<^R. 

Evidently this condition is fulfilled if JR contains an infinite cylinder parallel to 
the ^-axis, and also for a class of "spiral" domains containing no infinite ray. If 
there exists a nonnegative function g on [c\+k9 c\+2>k] such that B{x)>g{x1) for 
x e Nk9 the criterion (7) of Theorem 6 is implied by the condition 

I g(0 dt > a7722n-3fca&, 

where 

This holds, for example, if l i m ^ ^ g(t)= + oo. 
Theorem 6 generates a hierarchy of analogous oscillation criteria, which generally 

become stronger as the measure of Nk becomes smaller. 
Theorem 1 is particularly easy to apply when R is quasiconical or quasicylin-

drical since uk can be chosen as the same function u for all k. As an example, a 
recent oscillation criterion of Kreith and Travis [5] in En will be derived from 
Theorem 1. The matrix (A^x)) is not required to be bounded above for this 
result. 

Let A(r, 6) denote the largest eigenvalue of the matrix (A^x)), where (r, 6) 
denote hyperspherical coordinates in En, r=\x\, 0 = 0^ . . . , dn_v Let O designate 
the unit (n—l)-sphere in En and define 

fl(r)= \A(r,0)dO 

6( r )= \B(r96)dO, 0 < r < oo. 
Ja 

THEOREM 7 (Kreith and Travis). Equation (1) is strongly oscillatory in En if 
the following ordinary differential equation is oscillatory at r= oo: 

(8) [r^atfz'Y+r^btfz = 0. 
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Proof. Let z(r) be a nontrivial solution of (8) with zeros rk9 rx<r2< 
lim rk= + oo. Take Mk in Theorem 1 to be the annular domain defined by 

Mk = {xeEn:rk < \x\ < rk+1}, k = 1, 2 , . . . 

Then u(x)=z(\x\)=0 on dMk for all k, and it is easily checked that 

F[u; Mk] ^ £ & + 1 [ ^ r ) ( ^ J - & W z 2 rn~x dr = 0 

upon integration by parts and use of (8). 
As pointed out by Kreith and Travis, it is a corollary of Theorem 7 that the 

Schrôdinger equation Av+B(x)v=0 is strongly oscillatory in E2 if 

i B(x) dx = + oo 
#2 

on account of Leighton's oscillation theorem [7, p. 70]. Corresponding to every 
classical oscillation criterion for (8) there is an obvious strong oscillation criterion 
for (1) in En. Analogues of Theorem 7 for quasiconical or quasicylindrical domains 
in En can be established by similar analysis. 
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