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Abstract

The rapid and efficient removal of weeds is currently a research hotspot.With the integration of
robotics and automation technology into agricultural production, intelligent field-weeding
robots have emerged. An overview of the development status of weeding robots based on
bibliometric and scientific mapping methods is presented. Two key technologies of weeding
robots are summarized, and the research progress of precision-spraying weeding robots,
mechanical weeding robots, and thermal weeding robots with laser devices, categorized by
weeding method, is reviewed. Finally, a summary and an outlook on the future development
trends of intelligent field-weeding robots are provided, aiming to offer a reference for further
promoting the development of weeding robots.

Introduction

As the global population continues to grow, the increasing demand for food has made
improving agricultural productivity and reducing resource waste one of the key challenges in
agricultural development. In traditional farming, weeds not only compete with crops for
nutrients and water but also provide habitats for various pests and diseases, leading to a decline
in crop yields. According to data from the United Nations Food and Agriculture Organization
(FAO) in 2023, more than 8,000 species of weeds have been identified worldwide, with greater
than 26% causing crop yield reductions. Given the detrimental effects of weeds, effectively
controlling their growth has become a critical aspect of crop cultivation (Deng et al. 2018).

To eliminate the impact of weeds on crops, various weed control methods have been
explored. Traditional manual weeding methods, such as using hoes, sickles, or push mowers, are
simple to operate but have high labor intensity, low efficiency, and high costs. The effectiveness
of these methods often depends on the skill level of the workers, frequently leading to missed
weeds. Although mechanical weeding improves efficiency, its application in large-scale fields
remains limited (Bloomer et al. 2024). Chemical herbicide spraying is highly efficient, but it can
result in herbicide waste, environmental pollution, and negative impacts on non-target plants
and surrounding ecosystems.

In the face of these limitations of traditional weeding methods, especially with the rapid
advances in sensor technology (Shaikh et al. 2022), machine learning algorithms (Liakos et al.
2018), artificial intelligence (AI) (Sharma et al. 2023), and drone technology in the 21st century
(Wen et al. 2018), intelligent field-weeding robots have emerged. These robots, equipped with
advanced image processing technology and AI algorithms, use vision sensors, GPS systems,
robotic arms, laser tools, and automated control systems to accurately detect, locate, and
eliminate weeds without harming crops. Based on different weeding techniques, intelligent
weeding robots can be classified into precision-spraying robots, mechanical weeding robots, and
thermal weeding robots (Hall et al. 2017; Hu et al. 2012; Quan et al. 2021; Xing et al. 2022).
Among these, laser weeding technology, which allows for precise weed removal, represents a
future trend. Precision weeding, which targets only specific weeds and avoids affecting crops and
soil, relies on sensor technology and AI algorithms. Unlike traditional broad-spectrum weed
control methods, precision weeding significantly improves resource efficiency and reduces
environmental pollution, making it especially suitable for sustainable agriculture and organic
crop production. Sustainable agriculture refers to the practice of conducting agricultural
production in an eco-friendly and economically viable manner to meet the current food
demands while protecting the environment and natural resources. The goal is to ensure that
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future generations can continue farming. Sustainable agriculture
aims to reduce overreliance on land, energy, and water resources;
minimize the excessive use of chemicals and harmful substances;
and promote soil health, biodiversity, and ecosystem balance.

Compared with traditional weeding methods, intelligent field-
weeding robots can significantly reduce labor costs, improve weeding
efficiency, and minimize environmental impacts. Precision weeding
in interrow and near-row areas will be a key area for technological
breakthroughs in future farmland weed control. Under the broader
context of smart agriculture, intelligent field-weeding robots are
becoming a research hotspot in agricultural technology. A review of
key technologies and research advances in intelligent field-weeding
robots will not only provide valuable insights for researchers in
related fields but also offer new perspectives for the intelligent
development of agricultural production.

To understand the development process of intelligent weeding
robots, this study used bibliometric and scientific mapping
methods (Chen et al. 2015) to analyze literature on intelligent
weeding from the core Social Sciences Citation Index database of
the Web of Science (WOS) platform. Keywords such as “weeding
robot,” “weeder,” and “robot platform for weeding” were set in the
search interface, covering the years 2009 to 2023, and literature
types including “article,” “review article,” “early access,” and “book
chapters” were selected. After removal of irrelevant and duplicate
documents, a total of 385 relevant papers were identified. The
number of publications, years, and keyword co-occurrence maps,
as well as country, author, and institution maps were obtained
using CiteSpace 6.2.R4 (64-bit) Basic software (Xu et al. 2023).

As shown in Figure 1, the number of relevant publications has
been increasing exponentially. From 2009 to 2015, the number of
publications was relatively low and stable. After 2016, the number
of publications increased steadily, indicating growing interest and
increasing attention to the research theme of intelligent weeding.

Figure 2 shows the clustering based on keywords such as
“weeding,” “recognition,” “deep learning,” “navigation,” and
“weeding equipment.” The colors range from blue (weakest
relevance) to red (strongest relevance). The clustering was based on
the two key technologies of intelligent weeding and the current
development status, selecting 15 major clusters with 277 nodes and
1,114 links, resulting in a network density of 0.0291, a Q value of
0.7189 (>0.3), and a mean silhouette value of 0.8921 (>0.4),
indicating a reasonable clustering structure and good homogeneity
within clusters. The diagram also shows that researchers focus on
deep learning technology, machine vision, and the development of
weeding robots, with strong interrelations between these content
areas, consistent with practical applications in production.

In recent years, researchers have optimized deep learning
algorithms (Chong et al. 2023; Weyler et al. 2023) to achieve weed
and crop recognition and localization within the machine vision
field. They have also developed mobile robot platforms to plan
navigation routes (Diao et al. 2023; Li et al. 2023c), thereby
achieving automated precision weeding (Guo et al. 2023; Li et al.
2023a; Tran et al. 2023). Analysis of Figure 3 shows that
institutions such as China Agricultural University (Li et al.
2023b), University of California (Su et al. 2020), Indian Council of
Agricultural Research (ICAR) (Pandey et al. 2023), and Consejo
Superior de Investigaciones Científicas (CSIC) (Emmi et al. 2023)
have produced significant research outcomes in recent years.
Scholars from the United States, such as Fennimore (Su et al. 2020;
Raja et al. 2020), Slaughter (Su et al. 2020; Raja et al. 2020), and
Johnson (Johnson et al. 2018); Chinese experts such as Cao (Zhang
et al. 2022; Tian et al. 2021), Tian (Zhang et al. 2022; Tian et al.

2021), and Ge (Tian et al. 2021); Spanish researchers like Ribeiro
Angela (Conesa-Muñoz et al. 2016) and Perez-Ruiz Manuel
(Aravind et al. 2017); and scholars fromGermany, India, Australia,
and Japan have all made notable contributions to international
research.

Overall, the field of intelligent weeding has been a focus of
attention, with substantial research results from countries
including the United States, China, Spain, Germany, India,
Australia, and Japan. Concurrently, deep learning technology
has been applied to address weed removal issues. Future research
will continue to focus on the development of weeding robots.

Recognition based on machine vision is a prerequisite for
effective weed removal, while navigation and localization
technology determine the efficiency of precision weeding. These
two aspects constitute the key technologies of intelligent weeding,
as illustrated in Figure 4. This paper reviews the research status of
intelligent weeding robots and summarizes the critical technolo-
gies of intelligent robots, including an overview of some public
datasets. It elaborates on the research progress of intelligent
weeding robots categorized by weeding methods. Finally, the paper
concludes with a summary and a discussion of future development
trends for intelligent weeding robots.

Research Progress of Key Technologies in Intelligent
Weeding Robots

Accurately and intelligently distinguishing between weeds and
crops in the field is a prerequisite for the precise weeding
operations of weeding robots. Navigation and localization
technology, which determines the efficiency of precision weeding,
is essential. These two aspects constitute the key technologies of
intelligent weeding robots (Yuan et al. 2020). This paper reviews
these two key technologies.

Recognition Technologies Based on Machine Vision

Research on the recognition of farmland weeds has been extensive,
with methods including manual recognition, spectral analysis,
spectral imaging, infrared recognition, and machine vision
recognition (Chen et al. 2013). The proportions of these
recognition methods in the WOS platform are shown in
Figure 5. Manual recognition is inefficient, labor-intensive, and
costly, with no recent references, indicating its eventual phaseout.
With the continuous advancement of science and technology,
computer vision technology has gradually been applied to various
fields. In the 1980s, computer vision technology began to be used in
agricultural applications (Wang et al. 2001). Currently, weed
recognition mainly relies on machine vision technology, and the
research and development of intelligent field-weeding robots
cannot be separated frommachine vision technology. As shown in
Figure 5, other recognitionmethods represent a smaller proportion
and are less commonly used in actual weeding operations.

Weeds are generally found in complex field environments, and
any recognition technology must apply specific characteristics to
the objects being identified. Weed recognition primarily involves
extracting features such as morphology, color, and texture of crops
and surrounding weeds. Researchers provide these extracted
features to machine learning algorithms for recognition, as shown
in Figure 6, which depicts the traditional machine learning–based
recognition workflow. This stage of feature extraction is referred to
as manual feature recognition, which includes recognition
technologies based on color, shape, texture, and spectrum. As
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the cost of computer hardware decreases and central processing
unit (CPU) computing power increases, deep learning, which
requires extensive data computation, has gradually expanded into
the agricultural field. Deep learning methods extract weed features
more effectively than manual feature extraction, and this stage of
feature extraction is referred to as deep learning recognition
technology. The following sections will detail recognition
technologies based on manual features and deep learning.

Color-based Recognition
Compared with other feature-based recognition methods, color
features require less computational effort and aremore effective for

weed detection in fields with crops that have distinctive colors.
Researchers have utilized color indices to segment weeds, crops,
and soil, employing recognitionmethods based on red–green−blue
(RGB) (Chen et al. 2009; Jafari et al. 2006; Nieuwenhuizen et al.
2007), hue–saturation–value (HSV) (Hamuda et al. 2017; Miao
et al. 2020), and hue–saturation–intensity (HSI) color spaces
(Li et al. 2016).

In the RGB color space, the green channel contains more useful
information compared with the red channel, thus requiring the
integration of threshold algorithms to accomplish the segmenta-
tion task. However, it is challenging to segment plant pixels under
low or bright lighting conditions in this space, whereas HSV and
HSI color spaces are more robust to changes in lighting conditions.

Figure 1. Annual publication volume of research literature relevant to intelligent weeding.

Figure 2. Co-occurrence graph of key terms.
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This paper presents some references to color-based recognition
algorithms and their recognition accuracy in Table 1.

Color features are easy to recognize and allow for quick decision
making, making them suitable for real-time image processing.

Additionally, ordinary cameras can meet the requirements for
feature extraction, making this approach applicable to various
crops and weed types. However, variations in lighting and shadows
can affect recognition performance. When the colors of the plants

Figure 3. Research country, author, and institutional affiliation map.
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are similar, relying solely on color features may not provide
satisfactory separation. To improve recognition accuracy, it is
necessary to combine other features.

Shape-based Recognition
Shape features are crucial morphological characteristics in biology
and play a key role in distinguishing between crops and weeds.
Researchers have combined these features with machine learning
algorithms, such as artificial neural networks (ANN), morpho-
logical processing algorithms, and classification algorithms like
support vector machines (SVM) (Bakhshipour and Jafari 2018;
Murawwat et al. 2018). Some studies have integrated shape features

with other features, such as color and spectral features, utilizing a
comprehensive set of morphological characteristics for analysis
(Hussin et al. 2013).

Murawwat et al. (2018) applied SVM and blob analysis
techniques for weed recognition. In non-occluded scenarios, the
recognition accuracy reached 100%; however, in complex scenes
where weeds overlap with carrot (Daucus carota L.) plants, the
recognition accuracy dropped to 90%, as shown in the segmented
image in Figure 7A. Bakhshipour and Jafari (2018) compared the
performance of SVM and ANN in classifying sugar beet (Beta
vulgaris L.) plants and weeds. SVM achieved a crop recognition
accuracy of 96.67% and weed accuracy of 93.33%, while ANN
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weed control
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Figure 4. Key technologies of intelligent weed control.

Figure 5. The proportion of references on each recognition method.
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achieved 93.33% accuracy for crops and 92.5% for weeds. The
classification results are shown in Figure 7B. An autonomous fine-
tuning and feature selection using a genetic algorithm was
proposed by Wong et al. (2013) and tested with the assumption
that the weeds are young and non-occluded. The results show
that solidity of the shapes is the most prominent feature and
alone could be used to achieved 90% recognition rates. One
hundred percent recognition was achieved with the combination
of shape and moment invariants, as shown in the segmented
image in Figure 7C. Kiani and Jafari (2012) combined discriminant
analysis with back-propagation neural networks to classify maize
(Zea mays L.) plants and weeds, achieving a maize recognition
accuracy of 100% and a weed recognition accuracy of 96%, as
depicted in Figure 7D.

Additionally, Jeon et al. (2011) conducted research on
recognizing crops against the soil background using machine
learning algorithms such as ANN, utilizing shape features to
identify weeds. Li et al. (2010) employed morphological operations
and distance transformation–based threshold segmentation to

separate overlapping leaves. They then used the ant colony
optimization algorithm and SVM classifiers for feature selection
and classification, achieving a recognition accuracy of 95%.

Shape features are effective when plant leaves are intact and not
overlapping. However, when there is significant overlap or damage
to the leaves, extracting shape features becomes much more
difficult. Furthermore, when multiple plant species with similar
shapes are present in field images, classification based on shape
features becomes highly complex.

Texture-based Recognition
Textural features represent the spatial arrangement of pixel
grayscale levels in an image region, which are critical for
recognizing objects or regions of interest in images. Researchers
have used the gray-level co-occurrence matrix to extract textural
features of crops and weeds (Mustafa et al. 2007; Wu et al. 2009)
and employed supervised learning algorithms, such as SVM and
ANN, for weed recognition. To address the challenge of significant
leaf occlusion hindering effective textural feature extraction, some

Table 1. Color-based recognition results.

Feature Recognition methodsa Crops Recognition accuracy Reference

Color RGB space þ Otsu automatic threshold
segmentation

— Crop row: 86.35% to 92.8% García-Santillán
et al. (2017)

RGB space þ color-depth fusion algorithm Broccoli (Brassica oleracea L. var.
botrytis), lettuce (Lactuca sativa L.)

Crops: 96.6%, 92.4% Gai et al. (2020)

RGB space þ k-means clustering þ adaptive
neural network algorithm

Beet Weeds: 97%/49% (different
field environments)

Nieuwenhuizen
et al. (2007)

RGB space þ chromaticity method Cotton Crop: 82.1% Chen et al. (2009)
RGB space þ setting brightness threshold þ
discriminant analysis method

Beet Crop: 88.5%
Weeds: 88.1%

Jafari et al.
(2006)

HSV space þ shape erosion and dilation
algorithm

Broccoli Crop: 99.04% Hamuda et al.
(2017)

HSI space þ constructing Mahalanobis
distance classifier

Broccoli Crop: 93.6% Li et al. (2016)

aHSI, hue–saturation–intensity; HSV, hue–saturation–value; RGB red–green−blue.

Figure 7. Classification performance based on shape features.
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studies have adopted wavelet decomposition methods combined
with supervised learning algorithms for recognition (Bakhshipour
et al. 2017).

As shown in Figure 8, the horizontal axis represents crop/weed
recognition methods based on textural features, and the vertical
axis indicates the corresponding crop and weed recognition
accuracy. PCA refers to principal component analysis; GLCM
refers to gray-level co-occurrence matrix; and FFT refers to fast
Fourier transform. The figure shows that the crop recognition
accuracy across different methods ranges from 89% to 92%, and
weed recognition accuracy ranges from 85% to 98%. The method
by Wu et al. (2009) achieves the highest recognition accuracy.
Their image-segmentation process involves converting the original
color image to grayscale based on the statistical values of the red,
green, and blue components. The textural features of weeds and
maize seedlings are then obtained using GLCM and the statistical
properties of the grayscale image histogram. These textural
features are used in the classification process. PCA is employed
to select textural features that contribute best to reducing spatial
dimensions. SVM is used as the classification tool to identify weeds
and maize seedlings in the early growth stages of a maize field. The
results show that the SVM classifiers with different feature
selection strategies can successfully identify weeds and maize,
achieving an accuracy ranging from 92.31% to 100%.

Like shape features, the extraction of textural features is a
computationally intensive image processing task. Typically, feature
selection and dimensionality reduction algorithms are used to
select the most contributory feature parameters for input into
classifiers. Effective texture analysis requires a large amount of
high-quality labeled data for training. The advantage of textural
features lies in their stability when dealing with occluded leaves and
in distinguishing between crops and weeds, even under varying
lighting conditions.

Spectrum-based Recognition
The main challenge in classifying weeds and crops lies in their
similar spectral characteristics. If the weed and crop leaf colors are
different, this recognition technique can effectively distinguish

them; if their colors are similar, other features such as shape must
be included for efficient recognition. Researchers have used
hyperspectral cameras to collect data and then integrated machine
learning algorithms for recognition (Bai et al. 2013; Gao et al. 2018;
Herrmann et al. 2013; Pantazi et al. 2016; Piron et al. 2008).

Gao et al. (2018) explored the feasibility of using a near-infrared
snapshot mosaic hyperspectral camera for weed and maize
classification. They tested random forest (RF) models to build
classifiers with different spectral feature combinations, identifying
an optimal RF model with 30 key spectral features. The average
accuracy for corn, field bindweed (Convolvulus arvensis L.), Rumex
spp., and Canada thistle [Cirsium arvense (L.) Scop.] was 1.0, 0.789,
0.691, and 0.752, respectively, as shown in Figure 9A. Pantazi et al.
(2016) achieved optimal results with active learning by using a self-
organizing map (SOM) and mixture of Gaussians (MOG) single-
class classifiers. The crop recognition performance was 100% for
both methods. For the MOG-based single-class classifier, the
correct recognition rate for different weed species ranged from 31%
to 98%. The SOM-based single-class classifier’s correct recognition
rate varied between 53% and 94%, as illustrated in Figure 9B. Zhao
et al. (2013) proposed a multifeature weed recognition method
based on multispectral imaging and data mining, in which the
multifeature recognition rate was higher than single-feature
recognition. The combination of spectral, textural, and fractal
dimension features yielded the highest recognition accuracy of
96.3%, as depicted in Figure 9C. Bai et al. (2013) used stepwise
discriminant analysis to select spectral reflectance data at four key
wavelength points—710, 755, 950, and 595 nm—for precise weed
recognition. By determining prior probabilities based on category
size, the Bayesian discriminant function model achieved a
recognition accuracy of 98.89%, enabling precise and stable weed
recognition during the early growth stage of winter canola
(Brassica napus L.), as shown in Figure 9D. Herrmann et al. (2013)
used ground-level image spectroscopy data, with high spectral and
spatial resolutions, for detecting annual grasses and broadleaf
weeds in wheat (Triticum aestivum L.) fields. The image pixels were
used to cross-validate partial least-squares discriminant analysis
classification models. The best model was chosen by comparing the

Figure 8. Texture-based crop/weed recognition accuracy. ANN, artificial neural networks; FFT, fast Fourier transform; GLCM, gray-level co-occurrence matrix; PCA, principal
component analysis; SVM, support vector machines.
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cross-validation confusion matrices in terms of their variances and
Cohen’s kappa values. This best model used four classes—broadleaf,
grass weeds, soil, and wheat—and resulted in a kappa of 0.79 and
total accuracy of 85%.

Hyperspectral cameras can capture subtle spectral differences
between crops and weeds. However, pixel-based recognition is
inefficient.Machine learning algorithms, such as SVM and RF, can be
employed tobuildweed recognition classificationmodels, significantly
improving efficiency and accuracy in large-scale crop production.
Nevertheless, these methods also face challenges, such as changing
lighting conditions, the similarity of spectral features between crops
andweeds, and thecomplexityofprocessingandanalyzing imagedata.

Therefore, relying on a single feature for recognition often results
in low accuracy and poor stability, as it fails to fully utilize
multifeature information for recognition. It is essential to consider a
combination of factors, optimize model algorithms, and integrate
other agricultural technologies to achieve more accurate and reliable
weed detection and management. How to optimize the fusion of
features and resolve the contradiction between recognition accuracy
and response time is a critical issue that needs to be addressed.

Analysis of these references and comparison of various feature-
based recognition methods indicates that techniques using color,
shape, texture, and spectral features can achieve high recognition
rates. However, the performance of these techniques in real-time
weed detection is hindered by the complex field environment, as

the recognition rate depends on image acquisition methods,
preprocessing methods, and the quality of feature extraction.

Deep Learning–based Recognition
Deep learning algorithms effectively avoid the subjectivity
introduced by the feature extraction process in traditional machine
learning methods. They can automatically extract deep features
from images, offering stronger representation capabilities and
unique network feature structures, thereby improving weed
recognition accuracy.

On the one hand, deep learning methods can extract weed
features. For instance, Peng et al. (2019) proposed a two-stage
algorithm based on faster region-based convolutional neural
networks integrated with feature pyramid networks, which
achieved good detection performance in complex backgrounds
in cotton (Gossypium hirsutum L.) fields. Fawakherji et al. (2019)
developed a model that accurately classified crops and weeds by
generating patches from binary images for robotic use. dos Santos
Ferreira et al. (2017) trained a neural network using the Caffe Net
architecture, achieving 97% accuracy in weed detection.

On the other hand, deep learning algorithms can directly
recognize weeds. Naveed et al. (2023) proposed a novel weed
detection model that can be executed on CPU systems, reducing
computational costs. Some researchers have optimized deep
learning algorithms for better recognition performance (Bah

Figure 9. Classification performance based on spectral features. MOG, mixture of Gaussians; RF, Random Forest.
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et al. 2019; Krizhevsky et al. 2017; Sun et al. 2018). Other studies
have utilized one-stage object detection algorithms from the YOLO
series for weed detection (Sun et al. 2024; Ying et al. 2021; Zhang
et al. 2023). In deep network research, Li et al. (2023a) proposed
E2CropDet, a deep learning-based crop-row detection network
that achieved end-to-end detection at 166 frames s−1, with a lateral
deviation of 5.945 pixels in centerline extraction, surpassing
semantic segmentation (7.153) and Hough transform–based
methods (17.834). You et al. (2020) continuously improved a
weed/crop segmentation network by integrating four additional
components, reducing weed density. Some experts have achieved
good recognition results in multistage algorithm design (Adhikari
et al. 2019; Huang et al. 2020). Table 2 provides information on
deep learning–based seedling and weed recognition technologies.

Analysis of the experimental results of recognition algorithms
indicates that this technology makes weed detection and
classification more accurate in complex field environments.

Traditional feature-based recognition technologies primarily focus
on image-level classification, while deep learning–based recognition
focuses on pixel-level classification, where each pixel is segmented and
labeled as either weed or crop. In recent years, some scholars have
combineddeep learningmethodswith traditionalmethods, proposing
solutions for different processing steps in fruit and vegetable
recognition against similar color backgrounds. This demonstrates
that the integration of image processing technology and deep learning
technology is a significant research direction for the future.

Navigation and Localization Technologies

Navigation and localization technologies are critical for intelligent
weeding. After seedling and weed recognition, accurate localiza-
tion of weeds is necessary to assist intelligent weeding devices in
completing real-time calculations and weeding tasks. With the
continuous development of AI technology in recent years, this key
technology has been increasingly researched and improved by
experts and scholars. Satellite navigation, visual navigation, and
integrated navigation are the most widely used, and the following
sections will introduce the research and development status of
these three navigation and localization technologies.

Satellite Navigation and Localization
Currently, the application of Global Navigation Satellite System
(GNSS) navigation is widespread and mature. Agricultural
machinery equipped with GNSS can significantly improve

operation quality and efficiency in the field, although GNSS signal
loss can occur in complex environments, such as dense foliage.

Examining the history of satellite navigation development,
GNSS can be applied in three ways.

GPS Localization: Stoll et al. (2000) used GPS as the sole
localization sensor for autonomous driving experiments, achieving
a standard deviation better than 100mm under various conditions,
with a lateral deviation range of 25 to 69 mm during straight-line
driving. Corpe et al. (2013) developed a GPS-based agricultural
robot equipped with multiple sensors for environmental informa-
tion detection, considering complex field conditions.

Real time kinematic (RTK)-GPS Localization: Kise et al.
(2001) applied this localization method to a tractor control system,
reducing heading response and error during trajectory-following
operations. Researchers have used this method for intrarow weed
control (Nørremark et al. 2012; Pérez-Ruiz et al. 2012).

RTK-DGPS Localization: Luo et al. (2009) achieved a
maximum linear-tracking error of less than 0.15 m at a travel
speed of 0.8 m s−1, with an average tracking error of less than 0.03
m using this method. Bakker et al. (2011) conducted autonomous
navigation research in sugar beet fields using an RTK-DGPS-based
agricultural robot platform, achieving centimeter-level precision in
field trials. Subsequently, RTK-DGPS with centimeter-level
localization accuracy has been widely used in agricultural
machinery navigation systems (Hu et al. 2015). Li et al. (2017)
combined dual-loop steering-control technology with this navi-
gation method, achieving a path-tracking error average of less than
1.9 cm and a standard deviation of less than 4.1 cm. Additionally,
some experts have combined satellite localization technology with
other navigation techniques to achieve better localization accuracy.

Visual Navigation and Localization
In the 1980s, the United Kingdom and the United States were the
first to research visual navigation systems. This localization
technology has been a great success, and to this day, experts and
scholars continue to use visual navigation systems for precise
pesticide spraying, intelligent mechanical weeding, and physical
weeding, despite some drawbacks during usage. This localization
technology is often used in combination with intelligent robots.

Marchant et al. (1996) developed a weeding robot based on
visual navigation and localization technology using a grayscale
band-pass filter. At a traveling speed of 1.6 m s−1, the lateral
localization error was 15.6 mm. Lee et al. (1999) developed an
intelligent weeding robot based on machine vision. This robot is
equipped with two cameras, one for navigation and the other for

Table 2. Experimental results of deep learning algorithms.

Deep learning algorithms Crop
Recognition
accuracy Reference

Mobile robots þ YOLOv5
PC/BC-DIM

Vegetable
—

Crop: 95.7%
Crop: 94.38%

Zhang et al. (2023)
Naveed et al. (2023)

Machine vision algorithms Tomato Crop: 99.19% Raja et al. (2020)
Improvements to the Xception model Corn Crop: 98.63% Xu et al. (2021)
SegNet model þ CNN
YOLOv4 þ attention mechanisms

—

Carrot
Crop: 93.58%
—

Bah et al. (2019)
Ying et al. (2021)

Deep backbone network Rice Crop: 93.22% Huang et al. (2020)
Semantic graphs and deep convolutional
encoder-decoder networks for data annotation

Echinochloa crus-galli — Adhikari et al. (2019)

Caffe Net architecture for training neural networks — Weeds: 97% dos Santos Ferreira
et al. (2017)

DIM, decisive input modulation; PC, predictive coding; BC, biased computation; CNN, convolutional neural networks.
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weed recognition. Kise et al. (2005) applied stereovision to the
navigation system of agricultural vehicles in the field, enabling
accurate localization of crop rows in weedy fields and guiding the
tractor to travel precisely along both straight and curved lines.
Zhang and Ying (2006) also proposed a field automatic navigation
system based on machine vision. Meng et al. (2013) used visual
navigation and localization technology and proposed a crop-row
centerline detection method constrained by linear correlation
coefficients, solving the problems of slow detection algorithms and
susceptibility to external interference. García-Santillán et al. (2018)
developed a system for detecting crop and weed rows in early
growth stages of cornfields using a camera mounted at the front of
a tractor, based on visual navigation and localization technology.

Some researchers have applied machine learning algorithms to
visual navigation systems. Hiremath et al. (2014) proposed a
vision-based navigation algorithm using particle filtering, and
experiments demonstrated that this algorithm has good robust-
ness, enabling accurate navigation in the field. Zhou et al. (2014)
applied a self-learning visual navigation method to a wheeled
mobile robot. Yao et al. (2016) proposed a navigation control
algorithm based on binocular vision, and experiments showed that
the system had a small navigation offset. Wang et al. (2019) applied
deep learning algorithms to orchard environment navigation
systems, extracting new orchard road navigation lines that solved
issues of susceptibility to other conditions.

Li et al. (2022) proposed an Aster-U-Net model to address
issues such as complex image backgrounds in visual navigation
systems in both field and greenhouse environments, as well as weed
and light interference. Thakur et al. (2023) published an academic
work aimed at using acquired knowledge to guide the construction
of practical agricultural machine vision systems. This work
thoroughly examined the components of machine vision systems;
investigated image acquisition, processing, and classification
techniques; and explored themethods adopted by each technology.
Additionally, it studied how to integrate these processes to perform
various agricultural activities, such as weeding, seeding, harvesting,
fruit counting, overlapping, and sorting.

Integrated Navigation and Localization
A combined navigation system typically consists of two or more
subsystems based on different navigation technologies. By
leveraging the error characteristics and advantages of each
navigation technology, a continuously operating combined
navigation system can provide continuous and comprehensive
navigation parameters. In recent years, researchers have mainly
employed the following three methods to achieve integrated
navigation and localization functions.

First, the combination of GPS navigation technology and
machine vision navigation technology has been applied to weeding
systems. Francisco et al. (2005) fused these two navigation
technologies with a fuzzy logic model, utilizing the relative
information from vision to correct GPS errors. Bakker (2009)
combined these navigation technologies in a multifunctional
automatic weeding robot, enabling row navigation and herbicide
spraying. Zhang et al. (2015) designed a system that integrates
these two navigation technologies and uses corn crop row
information captured by cameras for interrow mechanical
weeding.

Second, the combination of laser navigation and inertial
navigation systems has been explored. Kim et al. (2012) designed a

paddy field-weeding robot based onmultisensor fusion, combining
laser navigation and inertial navigation systems, and achieved a
maximum operational deviation of 6.2 cm.

Third, the GPS/Dead Reckoning (DR) integrated navigation
system has been applied to weeding robots. Ding et al. (2006)
applied aGPS/DR integrated navigation system to a weeding robot,
improving the navigation accuracy and addressing the issue of
signal interruptions.

Additionally, Ding et al. (2015) combined GPS localization
technology with a fuzzy control navigation system. Simulation
results showed that this method is feasible, with the system
achieving rapid and stable performance. Currently, the most
widely used integrated navigation system is the GNSS/Inertial
Navigation System (INS) integrated navigation system. This
system combines satellite navigation and inertial navigation
technologies to achieve high-precision localization, speed mea-
surement, attitude determination, and timing functions.
Developing a highly reliable navigation system is a challenge
rather than a simple task. Furthermore, some researchers have
developed autonomous robots with integrated navigation and
localization systems based on total stations and 2D LiDAR laser
scanners for plant phenotyping studies. Reiser et al. (2018)
combined a 2D laser scanner with a four-wheel autonomous robot
to navigate between corn rows, achieving differential steering at a
30° downward angle and collecting concurrent timestamped data.
Data fusion generated a 3D point cloud, which can be used for
various applications and navigation purposes, particularly for
phenotypic analysis, individual plant treatment, and precise
weeding. As shown in Figure 10, the robot platform used for
data collection is represented in the robot operating system (ROS)
visualization tool rviz (Kam et al. 2015) during LiDAR data
assembly. Reiser et al. (2019) also developed a rotary weeding
implement for autonomous electric robots to address weeding
between orchard and vineyard rows. This implement autono-
mously followed rows based on 2D LiDAR data at a forward speed
of 0.16 m s−1 and a working depth of 40 mm. In the future, the
combination of autonomous navigation and weeding can improve
weeding quality and reduce power consumption.

It should be noted that high-precision GPS and increasingly
popular LiDAR technology provide new options for field-weeding
robot navigation systems. Combining machine vision with GPS or
LiDAR to design efficient weeding robot navigation systems could
be a significant trend in future developments.

Establishing Public Datasets

Images of crops and weeds are generally required to be acquired
and processed in real time, with cameras mounted on mobile
robots operating in the field. Most datasets comprise RGB images
of crops and weeds taken with high-resolution digital cameras
from around the world, with some datasets containing information
on multiple weed species. Table 3 introduces the sources and
contents of the obtained public datasets.

Progress in Research on Intelligent Weeding Robots

Precision spraying and physical weeding are currently the
mainstream methods for intelligent weeding. This section reviews
intelligent spraying weeding robots, mechanical weeding robots,
and thermal weeding robots, focusing on these two weeding
methods.
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Precision-Spraying Weeding Robots

The Smart Sprayer combines sensors, AI algorithms, and
automated control systems to optimize the use of pesticides and
herbicides. In the late 20th century, Lee et al. (1999) developed a
prototype robot for precision herbicide spraying on tomato
(Solanum lycopersicum L.) plants based on a machine vision
system, achieving real-time identification accuracy of 73.1% for

tomatoes and 68.85% for weeds. Åstrand and Baerveldt (2002)
developed an autonomous agricultural robot for mechanical weed
control in outdoor environments, utilizing a grayscale vision
system. This system could detect crop-row structures and guide the
robot with an accuracy of ±2 cm. It also employed a color-based
vision system capable of identifying single crops among weeds,
allowing the robot to manage weeds within crop rows.

Figure 10. Robot platform (left) and data visualization (right). Kinect v2, a sensor (Microsoft n.d., Redmond, WA, USA); MT900, machine target prism (Trimble n.d., Sunnyvale, CA,
USA); Sick LMS111, 2D-LiDAR laser scanner (SICK n.d., Waldkirch, Germany); SPS 930, universal total station (Trimble).

Table 3. Public datasets.

Classifications Description of the dataset Source Reference

Applied to
deep learning
models

Annotated carrot and weed image dataset https://github.com/cwfid/dataset Haug et al. (2015)
Six publicly available datasets containing 22 different plant
species

— Dyrmann et al. (2016)

Image dataset of sugar beet and weeds https://www.ipb.uni-bonn.de/2018/10/ Chebrolu et al. (2017)
Crop and weed image dataset with 7,853 annotations, including 6
food crops
and 8 weeds, totaling 1,118 images

https://www.ncbi.nlm.nih.gov/pmc/arti
cles/PMC7305380/

Sudars et al. (2020)

A dataset of plant and weed images was from 47 different species.
The data originated from Denmark and contains 315,038 plant
objects representing 64,292 individuals, totaling 7,590 RGB images

https://gitlab.au.dk/AUENG-Vision/
OPPD

Leminen Madsen et al.
(2020)

Based on
different
industrial
cameras

Point-and-shoot industrial cameras https://vision.eng.au.dk/leaf-counting-
dataset/

Teimouri et al. (2018)

Multispectral camera Carrots: https://lcas.lincoln.ac.uk/ne
xtcloud/index.php/s/RYni5xngnEZEFkR
Onions: https://lcas.lincoln.ac.uk/ne
xtcloud/index.php/s/e8uiyr
ogObAPtcN

Bosilj et al. (2020)

Includes a
large number
of images

CNU Weed Dataset containing 21 weed species from 5 families,
totaling 208,477 weed images

https://www.sciencedirectcom/science/
article/pii/S0168169919319799#s0025.

Trong et al. (2020)

GrassClover image dataset containing 31,600 unlabeled and 8,000
synthetic datasets for red clover (Trifolium pratense L.), white
clover (Trifolium repens L.), and other related weeds

https://vision.eng.au.dk/grass-clover-da
taset/

Skovsen et al. (2019)

Standardized
weed data sets

ImageNet Deng et al. (2009)
MS COCO Lin et al. (2014)

Others DeepWeeds dataset evaluating encoder–decoder architecture to
distinguish crops from weeds

DeepWeeds: https://github.com/Ale
xOlsen/DeepWeeds

Olsen et al. (2019)

Carrot–weed dataset https://github.com/lameski/rgbweedde
tection

Lameski et al. (2017)

Corn, lettuce, and weed datasets https://github.com/zhangchuanyin/wee
d-datasets

Jiang et al. (2020)

Plant Seedling dataset containing 12 different plant species. https://www.kaggle.com/vbookshelf/v2-
plant-seedlings-dataset

Giselsson et al. (2017)
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Subsequent designs focused on site-specific weed management
for smart sprayers. Hussain et al. (2020) designed a variable-rate
smart sprayer that achieved the highest accuracy using the
YOLOv3-tinymodel, it was able to save 43% spraying liquid during
weeds and simulated diseased plant detection experiments. Partel
et al. (2019) developed a low-cost spraying system that utilized AI
and YOLOv3 for weed recognition and classification, with an
NVIDIA GTX 1070 GPU achieving 71% accuracy in detecting and
locating weed species. Upadhyay et al. (2024) designed and
developed a YOLOv4-based smart spraying system, achieving an
average effective spray rate of 93.33%, with 100% precision and a
recall rate of 92.8% in indoor experiments. In contrast, field trials
showed a slightly lower spray rate of 90.6%, while maintaining
95.5% precision and an 89.47% recall rate.

The See and Spray robot (Commercial promotion can be traced
back to 2021) developed by John Deere combines a vision system
with a precision-spraying system, achieving an identification
accuracy of greater than 98%. It classifies weeds and crops using
vision technology. Powered by tractors, it can operate continuously
for long periods, working up to 12 h in large-scale crop fields such
as cotton and soybean [Glycine max (L.) Merr.], covering 200 ha d−1

at 16 km hr−1. This robot reduces herbicide usage by 50-90%,
significantly minimizing environmental impact (Figure 11A).

Figure 11B is the Greeneye Technology weeding robot (Gained
widespread attention, can be traced back to 2021), whose core
technology is its AI-based selective spraying system (SSP). It uses
onboard cameras to capture real-time field images. Combined with
deep machine learning algorithms, the system accurately identifies
and locates various types of weeds, enabling selective spraying on
each plant. Compared with traditional weeding methods, SSP
reduces herbicide usage by greater than 87% on average.

The SprayBox robot (Earliest appearance can be traced back to
2022), developed by Verdant Robotics, is equipped with 50 nozzles

and a sophisticated computer system that integrates computer
vision and machine vision technology. It targets individual weeds
and crops at a rate of 20 times per second, spraying herbicides or
fertilizers with millimeter precision. The system can spray up to
1.52 ha h−1 and identify and process more than 500,000 plants,
reducing chemical herbicide usage by approximately 95%
compared with traditional spraying techniques. It has been scaled
for use in carrot cultivation.

On the other hand, demand-driven spraying (DoD) is a novel
approach that applies calculated doses of herbicides to target
weeds. Utstumo et al. (2018) used DoD technology to apply 5.3 μg
of glyphosate per droplet, reducing herbicide usage 10-fold. Spaeth
et al. (2024) reported savings of 10% to 55% in herbicide usage
through weed recognition using digital image processing technol-
ogy. Liu et al. (2021) integrated a deep learning model and a
variable-rate sprayer for targeted weed control, with VGG-16
demonstrating the best performance, achieving an F1 score of 0.88
in weed classification, and 86% of weed targets were completely
sprayed under actual field conditions. Jin et al. (2023) presented a
smart sprayer system with ResNet, achieving F1 scores of 92% or
higher, enabling precise weed control in dormant bermudagrass
[Cynodon dactylon (L.) Pers.] grass lawns.

These systems improve weed and crop identification accuracy,
allowing for targeted herbicide application. EcoRobotix, a Swiss
company, developed a solar-powered weeding robot (Earliest
appearance can be traced back to 2017) that applies machine vision,
GPS, and other sensors to autonomously track crop rows and detect
weeds with 95% accuracy. It then uses a parallel robotic arm to quickly
and precisely spray small doses of herbicide directly onto weeds,
reducing pesticide usage by 20 times (Figure 12A).

The integration of remote sensing technology has undoubtedly
enhanced the efficiency of precision spraying. Gerhards et al.
(2022) used airborne and ground-based remote sensing technology

Figure 11. Precision-spraying robots.

Figure 12. Drone weeding and weeding robots.
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to gather weed information and applied multifeature fusion
technology to identify weeds, enabling precise herbicide applica-
tion. The combination of sensors and drone technology effectively
improves identification efficiency. Figure 12B shows the Precision
AI Weeding Drone (Earliest appearance can be traced back to
2022), equipped with 0.5-mm-resolution cameras capable of
distinguishing weeds in a short time and accurately spraying them
with herbicides.

The application of smart sprayers in global agriculture is rapidly
expanding. Precision-spraying equipment combined with AI
technology provides farmers with efficient, low-consumption
solutions. In addition to reducing chemical herbicide usage, these
systems can increase crop yields and reduce soil and water
contamination. As AI models continue to improve, smart sprayers
are becoming adaptable to different crop types and climate
conditions, providing greater flexibility and accuracy in real-world
applications.

The soil and water pollution caused by excessive use of
herbicides and the pesticide residues on cultivated crops have
become hidden dangers to human health. The machine vision
subsystem cannot distinguish between plants with similar
characteristics, resulting in misidentification and thus mis-
spraying. During weeding operations, small-sized weeds may later
regenerate in the targeted spraying area. Although the position
error caused by the change in the nozzle angle can be reduced
through calibration, key factors such as the sensitivity and stability
of the servomotor still need to be considered. When the robot
turns, it reduces the speed of the vehicle, while the flow of
chemicals remains unchanged, making it easier for weeds to
develop resistance at the place where the machine turns. The best
time to apply herbicides is when the weed canopy is still
developing. Once missed, the weeds can tolerate larger doses of
herbicides, and this timing is elusive. In addition, the realization of
further precision-spraying technology requires a high investment
cost, and future technological improvements need to reduce costs.

Public concerns about the relationship between chemical
herbicides and food safety, farm worker health, biodiversity, and
the environment in general have renewed interest in alternative
weed control measures, primarily physical weed control methods.
The subsequent sections will review intelligent weeding robots that
utilize physical weeding methods.

Mechanical Weeding Robots

In the past century, the commercialization of interrow mechanical
weeding technology was limited due to the continued dominance
of cost-effective chemical weeding methods, leading to low market
demand for expensive intelligent interrow mechanical weeding
equipment. However, recent advances in domestic electronic
information, automatic control, and AI technologies have spurred
extensive research into interrow mechanical weeding by research-
ers, driving the emergence of intelligent interrow mechanical
weeding equipment. Table 4 details the mechanical weeding robot
actuators and their characteristics.

Mechanical weeding robots face challenges in removing
interrow weeds and eliminating perennial weeds. Low accuracy
in weed and crop identification and positioning increases the risk
of crop damage during the weeding process, necessitating further
optimization of identification and positioning algorithms. High-
efficiency weeding operations can cause severe soil disturbance,
damaging crops. Therefore, the design must strike a balance
between operational speed, reducing costs, and minimizing crop

damage. Different soil conditions present varying levels of
resistance, requiring weeding devices to adapt to different types
of soil to reduce operational resistance. For example, heavy clay
soils often result in poor weeding and soil fragmentation effects.
Mechanical weeding also demands rapid tool movement, meaning
the hardware needs to have a higher response speed. After
completion of weeding tasks, weed entanglement between the
weeding components can affect efficiency, so further optimization
of these components is necessary.

Thermal Weeding Robots

Modern physical weeding methods include flame weeding, laser
weeding, steam weeding, infrared radiation weeding, and hot-
water weeding, with laser weeding being the latest invention
among thermal weeding methods.

Laser weeding is an effective physical weeding method that
involves emitting high-energy laser beams at weeds over a short
period, directly transferring thermal energy to selectively heat
plant material, causing the moisture within plant cells to rise and
inhibiting weed growth. The penetration of specific-wavelength
laser radiation into tissues, the thermal effects within irradiated
tissues, and the associated damage mechanisms are critical for the
successful laser control of weeds. Hoki (2000) irradiated young rice
(Oryza sativa L.) plants with lasers of different wavelengths (532
and 1,064 nm), discovering effect and dose–effect relationships
that were neither uniform nor consistent. Targeting stems can be
challenging for some weed species. Mathiassen et al. (2006) studied
the effects of lasers on the apical meristems of certain weed species
at the cotyledon stage using a handheld system under three
different potted weed conditions, testing two lasers and two spot
sizes, and applying different energy doses by varying irradi-
ation times.

In recent years, laser weeding technology has increasingly relied
on the overall regulation of laser weeding equipment. Xiong et al.
(2017) designed a prototype robot for indoor performance testing,
achieving a hit rate of 97% with a laser penetration speed of
30 mm s−1 and a dwell time of 0.64 s weed−1. Considering the high
dynamic advantages of parallel mechanisms (PM), Wang et al.
(2022) proposed a novel laser weeding frame based on a two-
degrees-of-freedom, five-rotation parallel mechanical arm for
dynamic laser weeding. Fatima et al. (2023) designed a lightweight,
deep learning–based commercial autonomous laser weeding robot
weed detection system (Figure 13A). LaserWeeder, a weeding
robot developed by Carbon Robotics (n.d.) in the United States
(Commercial promotion can be traced back to 2022), uses lasers
instead of herbicides. Combined with AI and visual technology,
it achieves a recognition accuracy of 99%. Consuming about
30 kWh d−1, it can work continuously for 8 to 10 h per charge, with
a range of 1.5 to 3 km h−1, depending on the weed density. The CO2

laser module array emits once every 50 ms with an accuracy of
3 mm and can perform laser weeding on 8 targets at the same time.
It can handle 6 to 8 ha d−1, and the laser system can handle up to
100 weeds s−1 without the need for chemical agents, making it
particularly suitable for organic farmland that needs to avoid
chemical residues (Figure 13B). The WeedBot Laser Weeder
(Earliest appearance can be traced back to 2022) (n.d.), developed
by the European-based company WeedBot (n.d.), is designed for
organic farming and high-precision weeding scenarios, ensuring
healthy crop growth. It precisely targets weeds and eliminates them
with lasers, with a recognition accuracy of greater than 98%.
Battery-powered, it consumes around 25 kWh d−1 and can work
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continuously for 8 h, covering 1.5 to 2 km h−1 and processing
approximately 10 ha d−1, depending on terrain and weed density.

Additional references for laser weeding machines are listed in
Table 5. Analysis of Table 5 reveals that the organic combination of
laser generators and mechanical arms has been a research focus for
laser weeding machines. Some scholars have also conducted
research on laser generators. Notably, in recent years, more experts
and scholars have focused on the whole-machine aspects of
weeding machines.

The accuracy of weed centroid positioning is often inadequate,
impacting the precision of weeding operations. The diversity in
weed species and shapes makes detection challenging, leading to
potential misidentifications. Robots may also miss some weeds,
affecting the overall weeding effectiveness. During laser weeding,
there is a risk of crop damage, especially when positioning is
inaccurate. Optimizing laser energy usage and improving energy

efficiency are significant technical challenges. Laser weeding may
also cause reflection issues, increasing safety risks, and caremust be
taken to ensure that reflections do not harm crops or surrounding
equipment. These challenges represent key technological hurdles
for the future development of laser weeding robots. Future
progress must address improvements in recognition accuracy,
operational efficiency, environmental impact, and energy utiliza-
tion across these systems.

Discussion

In the rapid development of smart agriculture today, intelligent
weeding equipment, as an important component of intelligent
agricultural machinery, is bound to undergo further reconstruction
and upgrades with the promotion of new production operation
models and the introduction of advanced intelligent technologies.

Table 4. Characteristics of mechanical weeding implementations.

Mechanical
actuators Specificities Reference

Rotary nylon
brush

Suitable for removing small grass; horizontal weeding between rows, vertical weeding between rows and
between plants

Melander (1997)
Fogelberg et al. (1999)

Claw tooth High assembly accuracy required; rotation required to avoid seedlings; damage rate to seedlings < 8%. Hu et al. (2012)
Weed whacker Uses laser sensors and motor control to avoid seedlings along the sine wave; seedling damage rate of

23.7%
Cordill and Grift (2011)

Oscillating hoe
shovel

Cam swing rod swings to avoid seedlings; can incorporate GPS localization technology Wang et al. (2021)

Rotating hoe
shovel

Good mechanical properties; seedling damage rate of 4.54% Quan et al. (2021)

Eight-claw style Taking the distance between the weeding blade teeth and the crop as the threshold, seedling damage
rate <10%

Chen et al. (2010)

In-line weeding
knife

Utilization of machine vision technology for the detection of seedling position information and the control
of the movement trajectory of the hoe

Pérez-Ruiz et al. (2014)

Rotary-press
type

Based on real-time detection by ultrasonic sensors, avoids seedlings through hydraulic means Saber et al. (2015)

Notched disk
knife type

Knife setting and crop rotation weeding via traverse mechanism Garford (n.d.);
Tillett et al. (2008)

Spring-tooth
type

Simple structure; causes damage to crops in the seedling stage Midtiby et al. (2012)

Finger weeding
knife

Applicable to small areas and soft soil conditions to remove weeds Riemens et al. (2007)

Comb type Corn seedling avoidance during the intertillage period, one-way intermittent rotation movement Jia et al. (2018)
Oscillating hoe Using cameras to determine crop positions and achieve weeding between plants Frank Poulsen

Engineering (n.d.)

Figure 13. Laser weeding robots.
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Smart agriculture refers to the use of advanced technologies such as
the Internet of Things (IoT), AI, big data, sensors, and robotics to
enhance the efficiency, productivity, and sustainability of
agricultural operations. It involves data-driven decision making,
precision agriculture techniques, and real-time monitoring to
optimize crop management, reduce resource waste, and improve
farm management systems. Smart agriculture focuses on increas-
ing yields, minimizing environmental impact, and enabling
automation and remote control of agricultural processes.

Although weeding robots are still in the prototype development
stage, companies like FarmWise (n.d.) and Carbon Robotics (n.d.)
are gradually moving toward commercialization. This section
reviews two major technical issues of weeding robots—weed
detection and vision-based navigation—as well as mainstream
weeding robots. Currently, intelligent weeding still requires in-
depth research in the following areas.

Optimization of Recognition Algorithms and Precision
Weeding Efficiency

To further improve the operational efficiency of intelligent
weeding, advanced deep learning technologies need to be
optimized, including data augmentation, feature extraction,
attention mechanisms, and model simplification. These improve-
ments are essential to address the challenges in recognizing
overlapping stems or leaves between weeds and crops.
Additionally, data annotation, particularly the labeling of massive
weed datasets, deserves more attention. Researchers must enhance
the robustness and generalization of deep learning algorithms.
Reinforcement learning and transfer learning algorithms can be
used to achieve better results with less data.

The recognition of crop and weed characteristics such as
color, shape, texture, and spectral features still requires an
integrated approach combining novel image processing techniques
and AI. Current algorithms face complexity and long processing
times, and future optimization is needed to overcome these
drawbacks.

The emergence of new physical weeding technologies, such as
laser weeding, offers a promising outlook for intelligent weeding.

Intelligent weeding devices need to be closely integrated
with AI technology, using different combinations of navigation
technologies for different application scenarios, to further
address the challenge of weed removal in interrow regions. The
performance of various intelligent weeding equipment developed
for different weed-handling conditions must be further improved
to enhance operational efficiency. For instance, small-
and medium-sized weeding robots need to improve in terms
of cooperative operation, autonomy, and human–machine
coordination.

Intelligent Sensing and Equipment Generalization

The operation of sensors is required for navigation data, image
recognition data, and more. In recent years, multimodal sensors,
such as visual, infrared, and ultrasonic sensors, have seen rapid
development, providing valuable assistance in obtaining compre-
hensive and real-time information from complex field environ-
ments. Future research should further explore multisensor fusion
technology, machine vision, field navigation technology, and
multidisciplinary integration to achieve intelligent sensing func-
tions. Through intelligent sensing, efficient identification and
location of crops and weeds can be realized, enabling intelligent
weeding.

With the extensive application of AI, intelligent weeding
devices are also evolving toward wide-area operations, group
intelligence, and multifunctional operations. For example, equip-
ment for sowing, weeding, and fertilization can be quickly
swapped. The generalization of robotic platforms can lower
production costs. Additionally, an open-platform structure with
compatibility will significantly increase operational efficiency.
Intelligent weeding systems may also integrate crop disease and
pest monitoring for pesticide management and, through intelligent
sensing of crop growth and maturity, facilitate automated
fertilization and harvesting.

Integration of Agricultural Machinery and Agronomy

In some countries, a few fields have already achieved a leveled
furrow environment suitable for intelligent weeding equipment.

Table 5. Circuit design and characteristics of laser weeding device.

Main circuit design or components Specificities Reference

Conveyor þ two-axis deflector This laser weeder uses a stereo camera to identify plants and
simulates a moving vehicle to destroy weeds.

Nadimi et al. (2009)

Laser generator þ robotic arm This laser weeder uses a robotic arm to aim a laser beam at
weeds with little error.

Ge et al. (2013)

Four-degree-of-freedom parallel mechanism The 3UPS-RPU (The novel 3UPS-RPU PM is composed of three
UPS-type active legs and one RPUtype active leg) parallel
mechanism is synchronized in real time during the panning
motion; there are no sudden changes or breakpoints during the
motion.

Wang et al. (2016)

Mobile platform þ camera þ laser pointer This weeder used a two-degree-of-freedom laser beam to
simulate static laser weeding in the laboratory and proposed a
new weeding path planning algorithm.

Xiong et al. (2017)

Two-axis deflector for mirrors þ lenses This weeder was unable to achieve stable performance
requirements and was affected by complex field conditions.

Rakhmatulin et al.
(2020)

A novel laserweeding gimbal is proposed based on a two-
degree-offreedom 5-revolute rotational parallel manipulator
to perform a dynamic intrarow laser weeding operation.

For dynamic laser weeding, the average error in accuracy was
0.62 mm, and the dynamic weeding efficiency was about 0.72 s
per weed with a dwell time of 0.64s.

Wang et al. (2022)

Tracked mobile platform þ weed recognition module þ
robotic arm þ laser generator

The feasibility of blue-light laser as a non-contact weed control
tool was verified with an average detection rate of 92.45% and
88.94% for corn seedlings and weeds, respectively, and an
average seedling injury rate of 4.68%.

Zhu et al. (2022)
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Considerations for optimal interrow spacing and leveled furrows
can reduce crop and weed occlusion and clustering, which lowers
the complexity of deep learning networks and facilitates the
application of intelligent weeding technologies. Through integra-
tion of agricultural machinery and agronomy, the weeding
environment can be improved and operational efficiency
increased. Rational close planting, intercropping, and mixed
cropping can fully utilize solar energy and spatial structure,
enhancing crop growth while controlling weed density and
damage.

Further Integration of Drone Technology

The development of agricultural drones provides new solutions for
smart agriculture and represents a major trend in agricultural
equipment development. Drones have natural advantages, such as
obtaining ultra–high resolution images at low altitudes, which
allows for the detailed observation of crops and weeds. In addition,
drones generate vast amounts of imagery during aerial photog-
raphy, providing datasets for training and applying deep learning
algorithmmodels. Equipped with different sensors and perception
systems, drones can capture spectral information from crops and
weeds, which, combined with machine learning algorithms,
significantly improves weed identification accuracy. Drones also
offer flexibility in scheduling flights and can generate digital
surface models with 3D measurements. Currently, drones are
widely used in field weed identification and intelligent spraying.
Future integration of sensor, deep learning, communication, and
drone technologies can achieve higher weed identification
efficiency.

Integration of 5G, Digital Twin Technology, and IoT
Technologies

The integration of 5G, IoT, and digital twin technologies is rapidly
driving weed control robots toward becoming smarter and more
efficient. This convergence not only enhances the performance and
decision-making capabilities of robots but also provides precise
and visualized operational support for agricultural management,
contributing to the overall intelligence level of farming operations.

Digital twin technology creates a digital replica of the physical
weed control robot, enabling full life-cycle management through
virtual–physical interaction. By building digital models that
correspond to the physical robot and the farm environment,
digital twins provide real-time status monitoring, simulation
optimization, and predictive maintenance. In a virtual environ-
ment, robots can simulate path planning and weed control
strategies to optimize paths, reduce energy consumption, and
ensure crops are not damaged.Monitoring through the digital twin
model allows real-time simulation and analysis of the operational
status of the robot’s components. By combining historical data and
algorithms, the system can predict when the robot may experience
failure, enabling timely preventive maintenance and reducing
downtime. Simultaneously, the farm environment, crop condi-
tions, and the robot’s actual working status can be visually
displayed. Operators can monitor the robot’s work process via a
virtual interface, offering remote guidance and adjustments.

IoT facilitates the intelligent scheduling of weed control tasks
and supports decision making by integrating climate conditions
and weed growth patterns with agronomy to determine the
optimal weeding time. Weed control robots can connect to sensors
installed in the field, such as soil moisture, weather, and crop
growth status sensors, to collect environmental and crop condition

data. These data enable robots to more accurately identify weed
growth areas and optimize weeding strategies. Under the IoT
framework, basic data processing for weeding tasks can be handled
by edge computing devices (e.g., local servers), while more complex
analyses and model inference tasks are transferred to the cloud for
computation. Through IoT networks, farm management systems
can monitor the status of the weed control robots (battery life,
mechanical wear, software condition, etc.) in real time and carry
out equipment scheduling, fault alarms, and automatic main-
tenance when necessary.

With its ultra-low latency, 5G technology ensures real-time
remote operation of weed control robots over large farmlands, even
supporting cross-regional control of multiple robots working in
collaboration. Multiple weed control robots can share data via 5G
networks to perform coordinated operations, avoiding repeated
weeding or missed weeds, thereby improving efficiency. This
technology supports real-time data transmission from robots using
high-definition cameras or other sensors (e.g., LiDAR, depth
cameras), enabling a central system to analyze and make decisions
regarding weed control.

The integration of 5G, IoT, and digital twin technologies
significantly enhances the real-time performance and decision-
making capabilities of weed control robots, enabling them to
operate with higher precision and efficiency in complex farm
environments. This reduces the risk of damaging crops or missing
weeds. These technologies empower weed control robots with
intelligent perception, remote control, and autonomous decision-
making capabilities, supporting large-scale farm operations where
robots can collaborate intelligently, achieving unmanned and
automated weeding operations. Through continuous data collec-
tion and feedback, robotic systems can optimize their operational
processes in different environments and crop conditions, provid-
ing personalized and precise weeding services.

However, these integrated smart field-weeding robots also face
risks and challenges. The vast amount of data involved raises
security and privacy concerns, necessitating robust cybersecurity
measures. The interoperability between different IoT devices and
systems is also a challenge, requiring the establishment of common
standards and protocols. Furthermore, managing the complexity
of these weeding robot systems and ensuring scalability will require
ongoing innovation and investment.

Moreover, for specific target users, that is, non-technical
personnel, the operation should be sufficiently safe and simple to
facilitate quick user adoption and proficient operation. After-sales
and technical support services should also be provided in the later
stages.
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