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Weighted Distribution of Low-lying Zeros of
GL(2) L-functions

Andrew Knightly and Caroline Reno

Abstract. We show that if the zeros of an automorphic L-function are weighted by the central value
of the L-function or a quadratic imaginary base change, then for certain families of holomorphic
GL(2) newforms, it has the eòect of changing the distribution type of low-lying zeros from orthog-
onal to symplectic, for test functions whose Fourier transforms have suõciently restricted support.
However, if the L-value is twisted by a nontrivial quadratic character, the distribution type remains
orthogonal. _e proofs involve two vertical equidistribution results for Hecke eigenvalues weighted
by central twisted L-values. One of these is due to Feigon and Whitehouse, and the other is new
and involves an asymmetric probabilitymeasure that has not appeared in previous equidistribution
results for GL(2).

1 Introduction

According to the density conjecture of Katz and Sarnak, for any suitable family of
L-functions, the zeros lying close to the real axis are equidistributed according to one
of a handful of possible symmetry types coming from compact classical groups ( [KS1,
KS2]). More precisely, given an L-function L(s, f ), denote its nontrivial zeros by ρ f =
1
2 + iγ f , and deûne the 1-level density

D( f , ϕ) =∑
ρ f

ϕ(
γ f logQ f

2π
) ,

where Q f is the analytic conductor of f , and ϕ is a test function. _e conjecture
predicts that for any suitable family F = ⋃Fn of automorphic forms, with each Fn
ûnite, there exists a family G of classical compact groups (being one of O, SO(even),
SO(odd), Sp, or U) such that for any even Schwartz function ϕ with compactly sup-
ported Fourier transform ϕ̂,

lim
n→∞

∑ f ∈Fn
D( f , ϕ)

∣Fn ∣
= ∫

∞

−∞
ϕ(x)WG(x)dx .

Here,WG(x) is the limiting distribution of the 1-level density attached to the eigen-
values of random matrices in G as the rank tends to∞. Of particular relevance to us
here are

WO(x) = 1 +
1
2
δ0(x) and WSp(x) = 1 −

sin(2πx)
2πx

,
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where δ0 is the Dirac distribution at 0. As a distribution,WSp(x) coincides with 1 −
1
2 δ0(x) when, as will always be the case for us here, ϕ̂ is supported in (−1, 1). _is is
a consequence of the Plancherel formula ( [ILS, (1.34)]).
Averages involving automorphic forms are naturally studied using the trace for-

mula. Many variants of the trace formula involve weighting factors, such as the har-
monic weight ∣a f (1)∣2/∥ f ∥2 that arises in the Petersson formula. In some cases, in-
cluding that ofGL(2) newforms, the presence of thisweight is innocuous in the sense
that it does not aòect the distribution of low-lying zeros [Mi]. However, in the case
of zeros of GSp(4) spinor L-functions, Kowalski, Saha, and Tsimmerman found that
the analogous harmonic weight leads to a symplectic distribution, despite a heuristic
suggesting that the unweighted distribution is orthogonal [KST]. _ey gave a striking
interpretation of this as evidence for Böcherer’s conjecture, according to which the
Fourier coeõcient arising in the weight contains arithmetic information in the form
of central L-values.

_e question thus arises: in the simplest case of holomorphicGL(2) cusp forms, if
we weight the low-lying zeros by central L-values, does it likewise change the distri-
bution from orthogonal to symplectic? _e answer depends on the type of L-function
used in theweight, aswe illustrate below using several familieswith suitably restricted
test functions. We do not use the Petersson formula, but rather the relative trace for-
mulas developed in [FW, JK], in which central L-values appear directly.

In _eorem 1.1, we consider the eòect of weighting by the central L-value and a
Fourier coeõcient. We show for two diòerent families of holomorphic newforms
that the weighted distribution of low-lying zeros is symplectic when ϕ̂ is supported
in (− 1

2 ,
1
2 ). However, if the L-value is twisted by a nontrivial quadratic character,

the weighted distribution is orthogonal. In _eorem 1.3, we show that the zeros of
L-functions attached to newforms of prime level N →∞,whenweighted by an imag-
inary quadratic base change central L-value, have symplectic distribution for ϕ̂ sup-
ported in (−1, 1). We do not assume any version of theGeneralizedRiemannHypoth-
esis, though it motivates the deûnition of one-level density, and its use can enable one
to extend the allowable range of support of ϕ̂ ( [BBDDM], [ILS]). Of course, it would
be of interest to widen the range of support beyond (−1, 1), because the nature of the
measureWSp changes there.

_eorem 1.1 Let χ be a primitive realDirichlet character ofmodulus D ≥ 1. Let r > 0
be an integer relatively prime to D. For a holomorphic newform f (z) = ∑ a f (n)e2πinz ,
deûne the weight

(1.1) w f =
Λ( 1

2 , f × χ)∣a f (r)∣
2

∥ f ∥2

for the completed L-function Λ(s, f × χ) deûned in (2.3) below. Let ϕ be any even
Schwartz function whose Fourier transform ϕ̂(y) = ∫

∞

−∞ ϕ(x)e−2πix ydx is supported
inside (− 1

2 ,
1
2 ). _en

lim
n→∞

∑ f ∈Fn
D( f , ϕ)w f

∑ f ∈Fn
w f

=

⎧⎪⎪
⎨
⎪⎪⎩

∫
∞

−∞ ϕ(x)WSp(x) dx , χ trivial,

∫
∞

−∞ ϕ(x)WO(x) dx , χ nontrivial,
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in each of the following situations:
● n = k and Fn = Fk(1) is the set of newforms of level 1 with the weight k

ranging over even numbers satisfying τ(χ)2 ≠ −ikD for the Gauss sum τ(χ) =

∑
D
m=1 χ(m)e2πim/D .

● Fn = Fk(N)new (with N +k →∞ as n →∞) is the set of newforms of prime level
N ∤ rD, and even weight k > 2 chosen so that τ(χ)2 = −ikD, or equivalently,
χ(−1) = −ik .

Remarks 1.2 (i) Iwaniec, Luo, and Sarnak showed that in the unweighted case,
the distribution is orthogonal [ILS].

(ii) We prove_eorem 1.1 in Section 4. It is shown there that in the second case, if
k is ûxed and N → ∞, the allowable support of ϕ̂ can be widened to [−α, α] for any
0 < α < 1 − 1

k .
(iii) _eweightsw f are nonnegative byGuo’s theorem, [Gu]. In Section 4,we also

show that the statement of_eorem 1.1 remains true if we instead use the weight

w f =
Λ( 1

2 , f × χ)a f (r)
∥ f ∥2 ,

which may be negative. (Hypotheses on Fn imply that a f (r) is real here, though
elsewhere in this paper it may be complex.)

(iv) _e conditions involving τ(χ) come from the functional equation (2.4)when
N = 1. Since χ = χ, the condition (ikτ(χ)2)/D = −1 forces the L-function to vanish
at s = 1

2 . In the ûrst case above (where N = 1), the given condition keeps this from
happening and guarantees that the sumof theweights isnonzerowhen k is suõciently
large. In the second case, where N is prime, the given condition is desirable, since it
causes the weights attached to the oldforms to vanish, leaving us with an expression
involving only newforms.

_eorem 1.3 Fix a quadratic discriminant −D < 0, and let χ = χ−D be the associated
primitive quadratic Dirichlet character of conductor D. Let FN = Fk(N)new be the set
of holomorphic newforms of prime level N and ûxed even weight k > 2. For f ∈ FN ,
deûne the weight

w f =
Λ( 1

2 , f × χ)Λ( 1
2 , f )

∥ f ∥2 .

_en for any even Schwartz function ϕ with ϕ̂ supported inside (−1, 1), we have

lim
N→∞

∑ f ∈FN
D( f , ϕ)w f

∑ f ∈FN
w f

= ∫
∞

−∞
ϕ(x)WSp(x) dx .

Here, N ranges over prime values for which χ(−N) = 1.

Remark 1.4 _e forms f can in fact be taken to range over the family F+N of new-
forms with epsilon factor ε f = 1, since Λ( 1

2 , f ) = 0 when ε f = −1. _e family F+N has
symmetry type SO(even) ( [ILS]).

155

https://doi.org/10.4153/CJM-2018-013-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-013-8


A. Knightly and C. Reno

_e proof is given in Section 6. It uses a special case of the relative trace formula
of Ramakrishnan and Rogawski as extended in [FW] by Feigon andWhitehouse. _e
most general version of their formula (along with the recent improvement [FMP] by
File, Martin, and Pitale) could presumably be used to extend the scope of the above
theorem.

_eorems 1.1 and 1.3 are derived from weighted equidistribution results for Hecke
eigenvalues at a ûxed prime p, described in more detail below. In each case, the rele-
vant measure is dependent on the value χ(p) = ±1. _is dependence plays an inter-
esting role in the proof of the above theorems. From the explicit formula, we need to
consider the sum over p of the weighted average of the p-th Hecke eigenvalue. Be-
cause of the nature of the relevant measure, the contribution of the primes satisfying
χ(p) = 1 diòers from that of the primes satisifying χ(p) = −1. We then apply the
prime number theorem for arithmetic progressions to get the results.

In general, the Satake parameters of holomorphic modular forms are known to
satisfy many equidistribution laws. Foremost is the celebrated Sato–Tate conjecture
(proven in [BLGHT]), which asserts that for a ûxed non-CM cusp form f ∈ Sk(N),
the sequence of normalized Hecke eigenvalues at the unramiûed primes p (in their
natural ordering) is equidistributed in [−2, 2] relative to the Sato–Tatemeasure

dµ∞(x) =
⎧⎪⎪
⎨
⎪⎪⎩

1
π

√
1 − x2

4 dx if − 2 ≤ x ≤ 2,
0 otherwise.

In a diòerent direction, one can ûx the prime p and allow the cusp form to vary
within a family, possibly with weights. In this setting there are strikinglymany diòer-
ent equidistribution results for GL(2) in the literature.2 We summarizemany of these
in Table 1, giving references for the precise statements in each case.

_e last of these examples is new. _eorem 3.3 is a generalized and quantitative
version of the following. Notation is deûned precisely in Section 2.

_eorem 1.5 Let χ be a primitive realDirichlet character of conductor D ≥ 1 coprime
to N , let p ∤ DN be a ûxed prime, and let FN ,k be an orthogonal basis for the space
Sk(N) of cusp forms, consisting of eigenfunctions of the Hecke operator Tp , with ûrst
Fourier coeõcient 1. _en assuming N > 1 and k > 2, the Hecke eigenvalues λ f (p) ∈
[−2, 2] for f ∈ FN ,k , when weighted by the central twisted L-values

w f =
Λ( 1

2 , f × χ)
∥ f ∥2 ,

become equidistributed in [−2, 2] with respect to the probability measure

dµp(x) =
p

(p + 1) − x χ(p)
√

p
dµ∞(x)

as N + k →∞.

2Some of these have been extended to groups of higher rank, e.g., [Z,BBR,ST], [MT]. _ere are also
some hybrid results for GL(2) with both p and the conductor tending to∞, [Na], [W].
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Family span Weights Measure References

Sk(N)
N + k →∞

1 Plancherel:
p+1

(p1/2+p−1/2)2−x2 µ∞
[Se,CDF,Li2]

L2
0(SL2(Z)/H)

λ j ≤ T2 , T →∞
1 Plancherel [Sa]

Sk(N)
N + k →∞

∣a f (r)∣2

∥ f ∥2 Sato–Tate (µ∞) [Li1], [KL2]

L2
0(Γ0(N)/H)

N →∞

∣au j (r)∣
2h(λ j)

∥u j∥2
Sato–Tate [KL4]

L2
0(SL2(Z)/H)

λ j ≤ T2 , T →∞

∣au j (r)∣
2

∥u j∥2
Sato–Tate [Br], [BBR], [BrM]

Sk(N)new

N →∞

Λ( 1
2 , f×χ)Λ( 1

2 , f )
∥ f ∥2

for χ quadratic

Lp(
1
2 ,x , χ)Lp(

1
2 ,x)

Lp(1, χ)
µ∞ [RR1], [FW],

[SuT], and Cor. 5.2
(Also [Su], [T] for
Maass forms of
increasing level)

Sk(N)
N →∞

regular matrix
summation
involving 1

∥ f ∥2

1
2 (1 −

x2

4 )−1µ∞ [GMR]

Sk(N)
N + k →∞

∣a f (r)∣2Λ(s , f×χ)
∥ f ∥2 Lp(s, x , χ)µ∞ _eorem 3.3 below

Table 1: Various ûxed-p equidistribution results forHecke eigenvalues onGL(2). (See
(2.5) for the deûnition of Lp(s, x , χ).)

We emphasize that χ is allowed to be trivial. In the generalized version (_eo-
rem 3.3), χ need not be real, and we do not specialize the L-value in w f to s = 1

2 .
_ere is a natural interpretation of the measure appearing in the above theorem.

See Remark 3.4. Interestingly, the measure is not symmetric, though as expected it
converges to the Sato–Tate measure as p → ∞. It is plotted in Figure 1 in the case
p = 5 when χ(5) = 1. If χ(p) = −1, there is an analogous negative bias.

We give another result of this nature in Corollary 5.2, namely that for newforms
f ∈ Sk(N) with N prime, the λ f (p), when weighted as in _eorem 1.3, become
equidistributed in the limit as N → ∞ relative to the measure ηχp given in the sixth
row of Table 1. _is is essentially themain result of [RR1]. We obtain amore general
statement by keeping track of the dependence on k in their calculations. _emeasure
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Figure 1

ηχp depends on χ. It exhibits a similar positive bias precisely when χ(p) = 1. When
χ(p) = −1, it coincides with the Plancherel measure, which is even.

2 Preliminaries on Modular Forms

Fix a Dirichlet character ψ modulo N , and let Sk(N ,ψ) be the space of holomorphic
cusp forms f on the complex upper half-plane H that transform under the action of
Γ0(N) = {( a bc d ) ∈ SL2(Z)∣ c ∈ NZ} according to

f (
az + b
cz + d

) = ψ(d)(cz + d)k f (z).

We normalize the Petersson inner product on Sk(N ,ψ) by

∥ f ∥2 =
1

ν(N)
∬

Γ0(N)/H
∣ f (z)∣2 yk dx dy

y2 ,

where
ν(N) = [SL2(Z) ∶ Γ0(N)].

For us, a Hecke eigenform is a simultaneous eigenfunction of theHecke operators

Tn f (z) = nk−1
∑
ad=n ,
a>0

d−1

∑
b=0

ψ(a)d−k f (
az + b
d

)

for (n,N) = 1, normalized to have ûrst Fourier coeõcient 1. Given aHecke eigenform

f (z) = ∑
n>0
a f (n)qn (q = e2πiz),

for a prime p ∤ N we ûx a complex square root ψ(p)1/2 and deûne the normalized
p-power Hecke eigenvalue

(2.1) λ f (pℓ) =
a f (pℓ)

ψ(p)ℓ/2pℓ(k−1)/2 (ℓ ≥ 0).

By Deligne’s theorem, λ f (p) ∈ [−2, 2], and our interest is in the distribution of these
numbers as f varies. For any integer ℓ ≥ 0,

λ f (pℓ) = Xℓ(λ f (p)),
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where Xℓ is theChebyshevpolynomial of degree ℓ deûned by Xℓ(2 cos θ) =
sin((ℓ+1)θ)

sin θ
(see, e.g., [KL1, Prop. 29.8], where ω′ corresponds to ψ−1). Equivalently,

(2.2) a f (pℓ) = ψ(p)ℓ/2pℓ(k−1)/2Xℓ(λ f (p)).

Fix an integer D with (D,N) = 1, and let χ be a primitive Dirichlet character
modulo D. _e χ-twisted L-function of f is given for Re(s) > 1 by the Dirichlet series

L(s, f × χ) = ∑
n>0

χ(n)a f (n)

ns+ k−1
2

.

_e completed L-function

(2.3) Λ(s, f × χ) = (2π)−s− k−1
2 Γ(s + k−1

2 )L(s, f × χ)

has an analytic continuation to the complex plane and satisûes a functional equation
relating s to 1 − s, which takes the form

(2.4) Λ(s, f × χ) =
ik

D2s−1
τ(χ)2

D
Λ(1 − s, f × χ)

when N = 1. Here, τ(χ) = ∑D
m=1 χ(m)e2πim/D is the Gauss sum attached to χ.

Given x ∈ [−2, 2] and p ∤ DN , there is a unique unramiûed unitary representation
πx ,p of GL2(Qp) with Satake parameters αp , βp satisfying αp + βp = xψ(p)1/2 and
αpβp = ψ(p). We denote its twisted L-factor by

(2.5) Lp(s, x , χ) = ( 1 − xψ(p)1/2 χ(p)p−s + ψ(p)χ(p)2p−2s)
−1

.

With this notation, the local L-factor of L(s, f × χ) is

Lp(s, f × χ) = Lp(s, λ f (p), χ).

3 Weighted Equidistribution of Hecke Eigenvalues I

Fix a weight k > 2 and a level N > 1, and let

F = FN ,k = Fk(N ,ψ)

be an orthogonal basis for Sk(N ,ψ) consisting of Hecke eigenforms. Fix D and χ as
above, and ûx an integer r relatively prime to D. In this section, we do not assume
that χ2 = 1 unless explicitly stated. For each f ∈ F, deûne the (complex) weight

(3.1) w f =
a f (r)Λ(s, f × χ)

∥ f ∥2 .

_en for all s = σ+ iτ in the strip 1− k−1
2 < σ < k−1

2 and all integers n relatively prime to
DN , by [JK,_eorem 1.1] (which is a twisted version of themain theorem of [KL3]),
we have

(3.2)

1
ν(N)

∑
f ∈F

w f a f (n) =
2k−1(2πrn)

k−1
2 −s

(k − 2)!
Γ(s + k−1

2 ) ∑
d ∣(n ,r)

d2sψ( n
d )χ(

rn
d2 )

+ O( gcd(n, r)
(4πrn)k−1D

k
2 −σφ(D)

N σ+ k−1
2 (k − 2)!

) .
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(We have adjusted for the fact that in [JK] the L-function is normalized to have central
point k

2 , whereas here the central point is 1
2 .) _e implied constant is explicit in [JK],

and depends only on s.
Now ûx a prime p ∤ rND. Taking n = pℓ and substituting (2.2), the above becomes

(3.3)
1

ν(N)
∑
f ∈F

w f Xℓ(λ f (p)) = Fℓ + Eℓ ,

where

(3.4) Fℓ = (ψ(p)1/2 χ(p)p−s)
ℓ 2k−1(2πr)

k−1
2 −s χ(r)

(k − 2)!
Γ(s + k−1

2 ),

and Eℓ is an error term satisfying

(3.5) Eℓ ≪ p
ℓ(k−1)

2
(4πr)k−1D

k
2 −σφ(D)

N σ+ k−1
2 (k − 2)!

.

Proposition 3.1 For any ℓ ≥ 0 and 0 < σ < 1,

(3.6)
∑ f ∈Fk(N ,ψ)w f Xℓ(λ f (p))

∑ f ∈Fk(N ,ψ)w f
= [ψ(p)1/2 χ(p)p−s]

ℓ
+ O(

p
ℓ(k−1)

2 (4πrDe)k/2

N k−1
2 k k

2 −1
) ,

where the implied constant depends only on r, s,D.

Remarks 3.2 (i) When N > 1, it is shown in [JK, §9] that the sumof theweights
is nonzero when N + k is suõciently large. When N = 1, this can only be veriûed
under certain extra conditions mentioned in _eorem 3.3 below.

(ii) By taking n = rpℓ in (3.2) rather than n = pℓ , and using a f (rpℓ) =

a f (r)a f (pℓ), one obtains (3.3) with the diòerent weight

w f =
Λ(s, f × χ)∣a f (r)∣2

∥ f ∥2 .

In (3.4) we then have to replace (2πr) by (2πr2), and χ(r) by∑d ∣r d2sψ( r
d )χ(

r2
d2 ); in

(3.5), r2 replaces r, and one additional factor of r is needed due to gcd(n, r) = r. As
long as the above sum over d is nonzero (for example, if χ2 and ψ are trivial and s is
real), (3.6) holds with the alternative weight upon replacing r by r2 in the error term.

Proof of Proposition 3.1 In the notation of (3.3), the le�-hand side of (3.6) is

Fℓ + Eℓ
F0 + E0

=
Fℓ
F0

+
Eℓ − Fℓ

F0
E0

F0 + E0
.

_is will immediately give (3.6) once we show that the second term on the right-
hand side has the desired rate of decay. If we denote the right-hand side of (3.5) by
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pℓ(k−1)/2C0, then

Eℓ − Fℓ
F0
E0

F0 + E0
=
Eℓ − ψ(p)ℓ/2 χ(p)ℓp−ℓsE0

F0 + E0
≪

(p
ℓ(k−1)

2 + p−ℓσ)C0

F0 + E0

≪
p

ℓ(k−1)
2 C0

F0 + E0
= p

ℓ(k−1)
2

C0
F0

1 + E0
F0

.

In [JK, §9] (taking n = 1), it is shown that

E0
F0

≪
C0

F0
≪

(4πrDe)k/2

N(k−1)/2kk/2−1 ,

where the implied constant depends on r, s,D. _e proposition follows.

Deûne ameasure

(3.7) dµp,s , χ(x) =
∞

∑
ℓ=0

[ψ(p)1/2 χ(p)p−s]
ℓ
Xℓ(x) dµ∞(x),

where, as before, µ∞ is the Sato–Tatemeasure onRwith support [−2, 2], and Xℓ is the
Chebyshev polynomial. _e inûnite series is absolutely convergent provided ∣x∣ ≤ 2
and Re(s) > 0. Indeed, if ∣x∣ ≤ 2 and ∣t∣ < 1, we have the well-known identity

(3.8)
∞

∑
ℓ=0

tℓXℓ(x) =
1

1 − xt + t2
.

_erefore

dµp,s , χ(x) =
1

1 − xψ(p)1/2 χ(p)p−s + ψ(p)χ(p)2p−2s dµ∞(x).

As pointed out to us by Fan Zhou, this gives (in the notation of (2.5))

(3.9) dµp,s , χ(x) = Lp(s, x , χ)dµ∞(x).

_e above is a complex-valued probabilitymeasure, since, by (3.7) and the orthonor-
mality of the Xℓ(x) relative to µ∞, ∫ X0(x)dµp,s , χ = 1. We note that when s = 1

2 , ψ
is trivial, ψ(p)1/2 is chosen to be 1, and χ is real;

dµp, 12 , χ
(x) =

p
(p + 1) − x χ(p)

√
p
dµ∞(x)

is themeasure given in _eorem 1.5.

_eorem 3.3 Fix s in the critical strip 0 < Re(s) < 1, let N > 1 be coprime to rD, let
k > 2, let ψ be a Dirichlet character whose conductor divides N , ûx a prime p ∤ rND,
and a choice of square rootψ(p)1/2. Deûneweightsw f as in (3.1) andHecke eigenvalues
λ f (p) as in (2.1). _en the λ f (p) for f ∈ Fk(N ,ψ) become w f -equidistributed in
[−2, 2] relative to themeasure µp,s , χ as N + k →∞. In other words, for any continuous
function ϕ on R,

(3.10) lim
N+k→∞

∑ f ∈Fk(N ,ψ)w f ϕ(λ f (p))

∑ f ∈Fk(N ,ψ)w f
= ∫

R
ϕ dµp,s , χ .
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Moreover, if ϕ is a polynomial of degree d, then

(3.11)
∑ f ∈Fk(N ,ψ)w f ϕ(λ f (p))

∑ f ∈Fk(N ,ψ)w f
= ∫

R
ϕ dµp,s , χ + O(

p
d(k−1)

2 (4πrDe)k/2

N k−1
2 k k

2 −1
∥ϕ∥ST) ,

where ∥ϕ∥ST is the norm of ϕ in L2(R, µ∞).
When N = 1, the equidistribution assertion (3.10) still holds, provided χ2 = 1, s = 1

2
and ikτ(χ)2/D ≠ −1.

Lastly, if χ is quadratic, ψ is trivial, and s is real, then all of the above statements
hold if instead we use the nonnegative weights given in (1.1) and we replace r by r2 in
the error term of (3.11).

Remark 3.4 _e measure µp,s , χ appearing here is natural for the following rea-
son. _e weight w f depends directly on λ f (p) via the local L-factor Lp(s, f × χ) =
Lp(s, λ f (p), χ) (in the notation of (2.5)). Assuming the remaining L-factors do not
aòect the distribution of the λ f (p), on the le�-hand side of (3.10) we have something
resembling aPetersson-weighted average of the function Lp(s, x , χ)ϕ(x) at the points
λ f (p), which, in view of the equidistribution result [Li1], tends to the integral of this
function against the Sato–Tatemeasure. By (3.9), this is exactly what appears on the
right-hand side of (3.10).

Proof First take N > 1. By the fact that the Chebyshev polynomials are orthonormal
relative to the Sato–Tate measure µ∞, we see from (3.7) that (3.6) gives (3.10) with
ϕ = Xℓ for ℓ ≥ 0. By linearity it holds if ϕ is any polynomial, so by Weierstrass
approximation, (3.10) holds for all continuous functions.

Since ∥Xℓ∥ST = 1 for all ℓ, Proposition 3.1 gives (3.11)when ϕ = Xℓ . For an arbitrary
polynomial ϕ of degree d,we canwrite ϕ = ∑

d
ℓ=0 ⟨ϕ, Xℓ⟩Xℓ , so denoting the le�-hand

side of (3.11) by E(ϕ), we have

∣E(ϕ) − ∫ ϕ dµp,s , χ∣ = ∣
d

∑
ℓ=0

⟨ϕ, Xℓ⟩ (E(Xℓ) − ∫ Xℓ dµp,s , χ) ∣ .

Applying (3.7), (3.6), and the Schwarz inequality ∣ ⟨ϕ, Xℓ⟩ ∣ ≤ ∥ϕ∥ST , the above is

≪ ∥ϕ∥ST
(4πrDe)k/2

N k−1
2 k k

2 −1

d

∑
ℓ=0

p
ℓ(k−1)

2 ,

and (3.11) follows.
Now suppose N = 1, χ2 = 1, and s = 1

2 . _en there is an extra main term in [JK,
_eorem 1.1], so that in place of (3.4), we have

Fℓ = (χ(p)p−1/2)ℓ
2k−1(2πr)

k
2 −1 χ(r)

(k − 2)!
Γ( k

2 )[ 1 + ik
τ(χ)2

D
] .

(_e extra main term contains the factor χ(rpℓ), so we we have imposed χ2 = 1 to
make this equal to χ(p)ℓ χ(r).) _e rest of the argument then goes through as above,
provided the bracketed expression is nonzero.
Finally, if the alternative nonnegative weights (1.1) are used, then in view of Re-

mark 3.2(ii), everything goes through as above.
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4 Low-lying Zeros I

In this section we derive_eorem 1.1 from the results of the previous section by stan-
dardmethods (see, for example, [Ko, §9]). We will use Proposition 3.1, together with
the following consequence of the explicit formula for the L-function of a holomorphic
newform f ∈ Fk(N)new with analytic conductor Q f = k2N :

D( f , ϕ) =ϕ̂(0) +
1
2
ϕ(0) − 2 ∑

p∤N

λ f (p) log p
p1/2 logQ f

ϕ̂(
log p
logQ f

)(4.1)

− 2 ∑
p∤N

λ f (p2) log p
p logQ f

ϕ̂(
2 log p
logQ f

) + O(
log log 3N
logQ f

) .

_is holds for any even Schwartz function ϕ on R whose Fourier transform has com-
pact support, [ILS, Lemma 4.1].
For the remainder of this section, χ is a realDirichlet character, andF denotes one

of the following families given in _eorem 1.1:

(a) F = Fk(1), the set ofHecke eigenforms of level N = 1 and even weight k chosen
so that i k τ(χ)2

D ≠ −1.
(b) F = Fk(N)new, where N ∤ rD is prime. In this case, the even weight k ≥ 4 is

chosen so that i k τ(χ)2

D = −1.

We need to consider theweighted average ofD( f , ϕ) overF. To simplify notation,
given a function A ∶ f ↦ A f on F, we deûne the w-weighted average of A by

Ew
F(A) =

∑ f ∈F A fw f

∑ f ∈F w f
,

where, for all f we take w f to be either the weight deûned in (3.1) with s = 1
2 , or the

weight deûned in (1.1). In the latter case, Remark 3.2(ii) should be borne in mind for
the remainder of this section.

WhenN = 1 and i k τ(χ)2

D = −1, or equivalently, χ(−1) = −ik , the functional equation
(2.4) forces Λ( 1

2 , f × χ) = 0 since χ is real. Hence when N is prime, the conditions
imposed on k and χ ensure thatw f = 0 for all Hecke eigenforms f of level 1 andweight
k. If we set fN(z) = f (Nz) for such f , we have

Λ( 1
2 , fN × χ) =

χ(N)

N k/2 Λ( 1
2 , f × χ) = 0

as well, so that wh = 0 for all h in the span of { f , fN}. _erefore,

(4.2) Ew
F(A) = Ew

Fk(N)(A)

in this case; i.e., the value is unaòected if we average over an orthogonal basis for the
full space Sk(N), rather than restricting to newforms.
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Since Q f = k2N is constant across F, we denote it by Q in what follows. By (4.1),
we have

∑ f ∈F D( f , ϕ)w f

∑ f ∈F w f
= ϕ̂(0) +

1
2
ϕ(0) + O(

log log 3N
logQ

)

− 2 ∑
p∤N

Ew
F(λ⋅(p)) log p
p1/2 logQ

ϕ̂(
log p
logQ

)(4.3)

− 2 ∑
p∤N

Ew
F(λ⋅(p2)) log p

p logQ
ϕ̂(

2 log p
logQ

) .(4.4)

Taking s = 1
2 , ψ trivial, and ℓ = 1, 2 in (3.6), we have (using (4.2) when N is prime)

Ew
F(λ⋅(p)) = χ(p)p−1/2 + O(

p
k−1
2 Rk

N k−1
2 k k

2 −1
) ,(4.5)

Ew
F(λ⋅(p2)) = χ(p)2p−1 + O(

pk−1Rk

N k−1
2 k k

2 −1
)(4.6)

for a positive constant R depending on D and r. It is a consequence of the prime
number theorem that for any real number m > −1,

∑
p≤x

pm log p ∼
xm+1

m + 1

as x →∞. If the support of ϕ̂ is contained in [−α, α], the sum in (4.3) is restricted to
p ≤ Qα . _erefore, the contribution to (4.3) of the error term in (4.5) is

≪
Rk

N k−1
2 k k

2 −1
∑

p≤Qα
p

k
2 −1 log p ≪

Q
αk
2 Rk

( k
2 )N

k−1
2 k k

2 −1
=

2N
αk
2 kαkRk

N k−1
2 k k

2
= O(

1
logQ

) ,

provided α < 1
2 . (If k is ûxed, we only need α < 1 − 1

k .) _e contribution to (4.4) of
the error term in (4.6) is

≪
Rk

N k−1
2 k k

2 −1
∑

p≤Qα/2

pk−2 log p ≪
Q

α(k−1)
2 Rk

(k − 1)N k−1
2 k k

2 −1
≪

N
α(k−1)

2 kα(k−1)Rk

N k−1
2 k k

2
,

which may likewise be absorbed into the error term if α < 1
2 .

It remains to treat the contribution of themain terms of (4.5) and (4.6) to (4.3) and
(4.4), respectively. If χ is trivial, the former yields

−2 ∑
p∤N

log p
p logQ

ϕ̂(
log p
logQ

) = −2∑
p

log p
p logQ

ϕ̂(
log p
logQ

) + O(
log log 3N

logQ
)

(by (4.19′) of [ILS]), which in turn is

= −ϕ(0) + O(
log log 3N

logQ
)

by the prime number theorem, using the fact that ϕ is even.
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On the other hand, if χ is nontrivial, then themain term of (4.5) contributes

−2 ∑
p∶χ(p)=1

log p
p logQ

ϕ̂(
log p
logQ

) + 2 ∑
p∶χ(p)=−1

log p
p logQ

ϕ̂(
log p
logQ

) + O(
log log 3N

logQ
) .

_e value of χ is 1 on exactly half of the primes. By the prime number theorem for
arithmetic progressions, the above is

= −
1
2
ϕ(0) +

1
2
ϕ(0) + O(

log log 3N
logQ

) = O(
log log 3N

logQ
) .

Lastly, for any real χ, the contribution of themain term of (4.6) is

(4.7) ≪ 2 ∑
p∤N

log p
p2 logQ

∣ϕ̂(
2 log p
logQ

) ∣ = O(
1

logQ
) .

Putting everything together, we conclude that when α < 1
2 ,

∑ f ∈F D( f , ϕ)w f

∑ f ∈F w f
=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ϕ̂(0) − 1
2ϕ(0) + O(

log log 3N
log(k2N)

) , χ trivial,

ϕ̂(0) + 1
2ϕ(0) + O(

log log 3N
log(k2N)

) , χ nontrivial,

which proves _eorem 1.1.

5 Weighted Equidistribution of Hecke Eigenvalues II

We recall the setup from _eorem 1.3: −D < 0 is the discriminant of a quadratic
ûeld E = Q[

√
−D], χ = χ−D is the associated primitive quadratic character modulo

D given by the Kronecker symbol n ↦ (−Dn ), and N is a prime number for which
χ(−N) = 1. _e latter condition means that N is inert in E. For k > 2 even, we let
F = Fnew

N ,k be the set of holomorphic newforms of weight k and level N . For f ∈ F, we
deûne the weight

w f =
Λ( 1

2 , f × χ)Λ( 1
2 , f )

∥ f ∥2 =
Λ( 1

2 , fE)
∥ f ∥2 ,

where fE is the base change of f to E.

Proposition 5.1 With hypotheses as above, for any ℓ ≥ 0, and any prime p ∤ ND,

(5.1) Ew
F(λ⋅(pℓ)) ∶=

∑ f ∈F w f Xℓ(λ f (p))

∑ f ∈F w f
= ∫

R
Xℓ dη

χ
p + O(

pℓ(k+
1
2 )Dk

k1/2N k/2−ε ) ,

where

ηχp(x) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

p+1
(p1/2+p−1/2)2−x2 µ∞(x) if χ(p) = −1,

p−1
(p1/2+p−1/2−x)2 µ∞(x) if χ(p) = 1,

and the implied constant depends only on χ, ℓ, D, and ε ∈ (0, 1). Furthermore, if N >
pℓD, then (5.1) holds with no error term:

(5.2) Ew
F( λ⋅(pℓ)) = ∫

R
Xℓ dη

χ
p .
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Equation (5.1) is essentially the main result of [RR1], but we have divided by the
sumof theweights, and shown the dependence on p and k explicitly in the error term.
_e proof is somewhat involved, so we defer it to Section 7.2. Equation (5.2) likewise
follows from a special case of [FW,_eorem 6.1]. Details are provided in Section 7.1.

Corollary 5.2 Assume the hypotheses above. _en themultiset {λ f (p)∣ f ∈ Fnew
N ,k } of

normalized p-th Hecke eigenvalues, when weighted as above, becomes equidistributed
in [−2, 2] with respect to themeasure ηχp as N →∞. _us, for any continuous function
ϕ,

(5.3) lim
N→∞

∑ f ∈Fnew
N ,k

w f ϕ(λ f (p))

∑ f ∈Fnew
N ,k

w f
= ∫

R
ϕ dηχp .

Moreover, if ϕ is a polynomial of degree d, then

(5.4)
∑ f ∈F w f ϕ(λ f (p))

∑ f ∈F w f
= ∫

R
ϕ dηχp + O(∥ϕ∥ST

pd(k+
1
2 )Dk

k1/2N k/2−ε ) .

_e error term in (5.4) vanishes if N > pdD.

Remarks 5.3 (i) In [RR1,_eorem A], amuch stronger claim is made, namely
that in (5.4), byWeierstrass approximationwe can take ϕ to be the characteristic func-
tion of any subinterval of [−2, 2], preserving the error term O(N−k/2+ε). However,
because the error in (5.4) depends in a crucial way on the approximating polynomial
ϕ, their argument is incomplete. Possibly one could use the method of Murty and
Sinha [MS], but we have not investigated this.

(ii) Because of (5.2), the weight k can vary in any fashion as N →∞. However we
cannot obtain the conclusion for ûxed N and k →∞, because the factor (pℓD/N)k/2

in the error term of (5.1) will tend to∞ rapidly with k when ℓ is large.
(iii) It is not hard to show that

ηχp(x) =
Lp(

1
2 , x , χ)Lp(

1
2 , x)

Lp(1, χ)
µ∞(x),

in the notation of (2.5). So the above result can be interpreted in amanner analogous
to the remark a�er _eorem 3.3.

Proof of Corollary 5.2 _e limit (5.3) holds for ϕ = Xℓ by (5.1), and thenWeierstrass
approximation gives it for any continuous ϕ. _e rest of the proof proceeds in just the
same way as that of_eorem 3.3.

6 Low-lying Zeros II

Here we will use Proposition 5.1 to prove_eorem 1.3. First we need to compute the
integrals of the Chebyshev polynomials against the measure ηχp deûned in Proposi-
tion 5.1.
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Proposition 6.1 Let r ≥ 0 be an integer. _en if χ(p) = −1,

∫
∞

−∞
Xr dη

χ
p =

⎧⎪⎪
⎨
⎪⎪⎩

p−r/2 if r is even,
0 if r is odd.

If χ(p) = 1, then

∫
∞

−∞
Xr dη

χ
p = (r + 1)p−r/2 .

Proof _e ûrst assertion is well known ( [Se, p. 79]). For the second, using (3.8) we
have

p − 1
(p1/2 + p−1/2 − x)2

=
1 − 1

p

(1 − p−1/2x + p−1)2 = (1 − 1
p )[

∞

∑
n=0

p−n/2Xn(x)]
2

= (1 − 1
p )[

∞

∑
j=0

X j(x)2p− j + 2
∞

∑
m=1

m−1

∑
n=0

Xm(x)Xn(x)p−(m+n)/2] .

(6.1)

By the Clebsch–Gordon formula (or by induction via Xn+1(x) = xXn(x) − Xn−1(x)),
we have

Xm(x)Xn(x) =
n

∑
k=0

Xm−n+2k(x), (n ≤ m).

So (6.1) becomes

(6.2) (1 − 1
p )[

∞

∑
j=0

j

∑
t=0

X2t(x)p− j + 2
∞

∑
m=1

m−1

∑
n=0

n

∑
k=0

Xm−n+2k(x)p−(m+n)/2] .

For the double sum,

(6.3)
∞

∑
j=0

j

∑
t=0

X2t(x)p− j =
∞

∑
t=0

X2t(x)
∞

∑
j=0

p−( j+t) = (1 − 1
p )

−1
∞

∑
t=0

X2t(x)p−t .

For the triple sum,we observe that themap (m, n, k)↦ (m−n+2k,m−n,m) deûnes
a bijection from

{(m, n, k)∣m ≥ 1, 0 ≤ n ≤ m − 1, 0 ≤ k ≤ n}

to

{(u, b,m)∣u ≥ 1, 1 ≤ b ≤ u, b ≡ u mod 2, m ≥ u+b
2 }
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with inverse (u, b,m)↦ (m,m − b, u−b
2 ). _erefore,

∞

∑
m=1

m−1

∑
n=0

n

∑
k=0

Xm−n+2k(x)p−(m+n)/2

=
∞

∑
u=1

Xu(x) ∑
b≡u mod 2

1≤b≤u

∞

∑
m= u+b

2

p−(2m−b)/2

=
∞

∑
u=1

Xu(x) ∑
b≡u mod 2

1≤b≤u

pb/2p−(u+b)/2(1 − 1
p )

−1

= (1 − 1
p )

−1
∞

∑
u=1

Xu(x)p−u/2
∑

b≡u mod 2
1≤b≤u

1.

_e sum over b has the value u
2 if u is even, and u+1

2 if u is odd. Using this and (6.3),
(6.2) becomes

∑
r≥0 even

Xr(x)p−r/2 + 2 ∑
r≥2 even

r
2Xr(x)p−r/2 + 2 ∑

r≥1 odd

r+1
2 Xr(u)p−r/2 .

In themiddle sum,we can actually take r ≥ 0 because of the r
2 coeõcient. _is proves

that

dηχp(x) =
∞

∑
r=0

(r + 1)p−r/2Xr(x)dµ∞(x).

_e proposition now follows immediately using the orthonormality of the Chebyshev
polynomials relative to dµ∞.

With this proposition in hand, we obtain the following two special cases of Propo-
sition 5.1.

Corollary 6.2 In the notation of Proposition 5.1, for any 0 < ε < 1,

(6.4) Ew
F(λ⋅(p)) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

2p−1/2 + O(
pk+ 1

2

N k/2−ε ) if χ(p) = 1,

O(
pk+ 1

2

N k/2−ε ) if χ(p) = −1,

the error terms vanishing if p < N
D , and

(6.5) Ew
F(λ⋅(p2)) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

3p−1 + O(
p2k+1

N k/2−ε ) if χ(p) = 1,

p−1 + O(
p2k+1

N k/2−ε ) if χ(p) = −1,

the error terms vanishing if p2 < N
D . Implied constants depend on k, D, and ε.

We can now prove _eorem 1.3 following the method in Section 4. Suppose that
Supp(ϕ) ⊆ [−α, α] for some α < 1. _en for all N suõciently large,

(6.6) Qα = Nαk2α <
N
D

.
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In the explicit formula, the sum(4.3) involves only primes p ≤ Qα ,which by the above
means that (6.4) holds with no error term. _erefore, (4.3) is equal to

−2 ∑
p∤N
χ(p)=1

2 log p
p logQ

ϕ̂(
log p
logQ

) = −4 ∑
p

χ(p)=1

log p
p logQ

ϕ̂(
log p
logQ

) + O(
log log 3N

logQ
) .

Because χ is a nontrivial quadratic character, its value is 1 on exactly half of the primes.
By the prime number theorem for arithmetic progressions, the above is

= −ϕ(0) + O(
log log 3N

logQ
) .

_e sum (4.4) involves only primes satisfying p2 ≤ Qα . So for suõciently large
N as above, we may apply (6.5) with no error term. Substituting it into (4.4), one
obtains an expression that can be absorbed into the error term O(log log 3N/logQ),
as in (4.7).

It now follows that if α < 1 and N satisûes (6.6),

∑ f ∈F D( f , ϕ)w f

∑ f ∈F w f
= ϕ̂(0) −

1
2
ϕ(0) + O(

log log 3N
logN

)

for an implied constant depending only on ϕ. _is proves _eorem 1.3.
We remark that if we instead ûx N and allow k →∞, we cannot obtain the analog

of_eorem 1.3 by this method. Indeed, the contribution of the error term in (6.4) to
(4.3) gives an expression involving

∑
p≤Qα

pk log p,

which up to small powers of k grows like kαk . _ere is not enough decay in the k
aspect in (5.1) to cancel this growth as k →∞ for any α > 0.

7 Proof of Proposition 5.1

_e papers [RR1, FW] each use the relative trace formula to develop a formula for an
average of L-values, which in the simplest case takes the form

∑
f ∈Fnew

N ,k

w f f̂p(πp),

where: w f = Λ( 1
2 , f × χ)Λ( 1

2 , f )/∥ f ∥
2 for a quadratic character χ = χ−D ,N is aprime

not dividing D, χ(−N) = 1, k > 2 is even, f̂p is the Satake transform of a compactly
supported bi-GL2(Zp)-invariant local test function fp ∶ GL2(Qp) → C, and πp is
the unramiûed local representation determined by the cusp form f . (In [RR1] the
notation f ∧p (ap(φ)) is used, where ap(φ) corresponds to our λ f (p).)
For our purpose, we need to choose the particular test function fp whose Satake

transform is equal to the Chebyshev polynomial Xℓ . _is function is given as follows.
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For Kp = GL2(Zp) and Zp the center of GL2(Qp), let

M(pℓ) = ⋃
i+ j=ℓ
i≥ j≥0

ZpKp(
p i

p j )Kp = ⋃
i+ j=ℓ
i≥ j≥0

ZpKp( p i− j

1
)Kp

=
⌊ ℓ
2 ⌋

⋃
j=0

ZpKp( pℓ−2 j

1
)Kp .

(7.1)

Deûne fp ∶ GL2(Qp)→ C by

(7.2) fp(g) =
⎧⎪⎪
⎨
⎪⎪⎩

p−ℓ/2 if g ∈ M(pℓ),
0 otherwise.

Proposition 7.1 For fp as above, and any newform f ∈ Sk(N), let πp be the unrami-
ûed principal series representation of GL2(Qp) determined by f . _en

f̂p(πp) = Xℓ(λ f (p)).

Proof Denoting the Satake parameters of πp by {α, α−1}, we have α + α−1 = λ f (p).
By deûnition, f̂p(πp) is the eigenvalue of the operator πp( fp) acting on the unique
Kp-ûxed vector of πp . For themoment, take fp to be the characteristic function of the
set M(pℓ) deûned above. It is shown in [KL2, Propositions 4.4-4.5] that, in our cur-
rent notation, p−ℓ/2 f̂p(πp) = Xℓ(λ f (p)). _erefore, upon scaling the characteristic
function by p−ℓ/2 we get the desired result.

7.1 The Theorem of Feigon and Whitehouse

Equation (5.2) of Proposition 5.1 follows immediately from the special case of [FW,
_eorem 6.1] given in (7.3) below. Following [FW, §6.3],we take F = Q,Ω trivial, and
N primewith N > Dpℓ and χ(−N) = 1. _en taking fp as in (7.2), [FW,_eorem 6.1]
gives

(7.3)
1

ν(N)
∑
f ∈Fnew

N ,k

w f Xℓ(λ f (p)) = ckL(1, χ)∫
∞

−∞
Xℓ dη

χ
p ,

where

ck =
2k

4π
( k

2 − 1)!2

(k − 2)!
=

k − 1
4π

2kB(
k
2
,
k
2
)

for the Beta function B. (Variants of the exact formula (7.3) can also be found in
[MR, FMP,SuT].)

Remarks 7.2 (i) We have adjusted for the fact thatwe havenormalized the com-
pleted L-functions as in (2.3),whereas the normalization in [FW, p. 407] is twice ours.

(ii) We have also adjusted for the fact that the L-value L(1, χ) is theDirichlet series
(not completed by aGamma factor), whereas in [FW] the completed L-value is used,
normalized by L∞(1, χ) = (2π)−1 as seen in [FW, p. 407].

170

https://doi.org/10.4153/CJM-2018-013-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-013-8


Weighted Distribution of Low-lying Zeros of GL(2) L-functions

(iii) _e lower bound for N of Dpℓ comes from the deûnition of J( fp) found
in [FW, p. 386]. Since p ∤ N , we have G(Qp) = PGL2(Qp), and using (7.1) it follows
that for our particular test function, ∣J( fp)∣ = pℓ . _is matches [MR, Corollary 1].

7.2 The Theorem of Ramakrishnan and Rogawski

As powerful as (7.3) is, it is of interest in some situations to have a formula for the av-
erages inwhich N is not required to be large in relation to D and pℓ . In this range, the
error bound given in [FW,MR] is O(N−1) in theN-aspect, so the best bound remains
that found in the original paper ofRamakrishnan andRogawskiwho obtained (7.3) up
to O(N−k/2+ε). By going through their calculations, we will uncover the dependence
of the error on both k and p. _e ûnal result is given in _eorem 7.6.

With the choice of test function (7.2), the spectral side of the relative trace formula
in [RR1, Prop. 4.1] becomes

1
ν(N)

∑
f ∈Fnew

N ,k

w f Xℓ(λ f (p)) = ckL(1, χ)∫
∞

−∞
Xℓ dη

χ
p + Ireg

for ck as above, where
Ireg = ∑

x∈Q−{0,1}
I(x),

is the sum of the so-called regular terms, where, for a certain test function f whose
local components will be recalled below,

I(x) =∬
A∗×A∗

f (( ab axb 1 )) χ(a)−1d∗a d∗b.

Here,we abusenotation andwrite χ for theunitary adelicHecke characterdetermined
by the Dirichlet character χ ûxed earlier. _e integrals I(x) are computed locally
in [RR1, §2.7] and their sum is bounded in §3 of their paper. We shall reexamine
these proofs in order to determine the dependence on p and k.

_e statements of [RR1, Prop. 2.4abcde] each have errors, but this does not aòect
the validity of the trace formula given in §5 of their paper. _e following is a corrected
version of their proposition.

Proposition 7.3 For x ∈ Q − {0, 1} and fv as in [RR1], deûne the local integrals

Iv(x) =∬
Q∗

v ×Q∗
v

fv(( ab axb 1 )) χv(a)−1d∗a d∗b.

_en the following statements hold.
(a) Let v = q be a ûnite prime not dividing pND. _en

● Iv(x) = 0 if v(1 − x) > 0;
● if v(1 − x) = 0 and v(x) = 0, then Iv(x) = 1;
● generally, if v(1 − x) ≤ 0, then

∣Iv(x)∣ ≤
⎧⎪⎪
⎨
⎪⎪⎩

v(x)2 if v(x) ≠ 0,
1 if v(x) = 0.

(b) Let v = q be a prime dividing D, and write c = v(D) ≥ 1. _en
● Iv(x) = 0 if v(1 − x) > c;
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● if v(1 − x) ≤ c, then

∣Iv(x)∣ ≤ 6qc/2(2c + 1 + ∣v(x)∣) ≤ 6qc/2(2c + 1)( 1 + ∣v(x)∣) ;

(c) Let v = N. _en Iv(x) = 0 unless v(x) ≥ 1 (and hence v(1 − x) = 0). In this case,

∣IN(x)∣ ≤ ν(N)∣vN(x)∣.

(d) Let v = p, and let fp be the test function deûned in (7.2). We suppose ℓ > 0 since
the ℓ = 0 case is covered by (i). _en Ip(x) vanishes unless v(1 − x) ≤ ℓ, in which
case

∣Ip(x)∣ ≤ 4p−ℓ/2ℓ( ℓ + 1 + ∣v(x)∣) ≤ 4p−ℓ/2ℓ(ℓ + 1)(1 + ∣v(x)∣).

(e) When v =∞,

∣I∞(x)∣ ≪
∣1 − x∣k/2

∣x∣
for an absolute implied constant.

Proof We follow the proof and notation of [RR1]. We begin with part (e), where
f∞(g) = dk⟨πk(g)v , v⟩ is thematrix coeõcient of the weight k discrete series repre-
sentation of PGL2(R)with lowestweight unit vector v and formal degree dk . In [RR1,
Prop. 2.4e], I∞(x) is expressed in terms of a certain quantity I∞(ε, δ, ν) which is de-
ûned as being independent of x. _is seems to be a typo; as is clear from their proof,
I∞(x) does depend on x. But the proof is �awed for other reasons, so we will not try
to correct the deûnition of I∞(ε, δ, ν). For δ, ν ∈ {±1}, set

I′x(δ, ν) = ∫
∞

0
∫

∞

0

ak/2−1bk/2−1da db
(ax − νb + δi(ab + ν))k .

(_is is I′∞(−ν, δ, ν) in the notation of [RR1].) Following the proof in [RR1] (we cau-
tion that the displayed formula there for f∞(( ab axb 1 )) is incorrect), we ûnd, upon
observing that (−1)k = 1 since k must be even, that

(7.4) I∞(x) =
⎧⎪⎪
⎨
⎪⎪⎩

dk(2i)k(1 − x)k/2[I′x(−1, 1) − I′x(1, 1)] if 1 − x > 0,
dk(2i)k(x − 1)k/2[I′x(−1,−1) − I′x(1,−1)] if 1 − x < 0.

As shown in the proof of [RR1, Lemma 7], we have

(7.5) I′x(δ, ν) = B(
k
2 ,

k
2 )(δi)

k/2 Jx ,

where B(x , y) is the Beta function, and

Jx = ∫
∞

0

ak/2−1da
(ax + δνi)k/2(a + δνi)k/2 .

_e proof in [RR1] now rotates the line of integration to a purely imaginary ray, over-
looking the fact that this ray passes through poles of the integrand in many cases.
(_eir proof is ûxable if one assumes x > 0, but in fact I∞(x) need not vanish if x < 0,
despite the assertion to the contrary in [RR1, §3].) _e integral Jx can presumably be
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computed in terms of special functions even when x < 0, but since ultimately this in-
tegral forms part of an error term,we choose simply to bound it as follows. Observing
that ∣ aa±i ∣ < 1 for a > 0,

∣Jx ∣ ≤ ∫
∞

0

da
∣ax ± i∣k/2∣a ± i∣

≤ ∫
∞

0

da
∣ax ± i∣k/2

=
1
∣x∣ ∫

∞

0

du
∣u ± i∣k/2

= 1
2B(

1
2 ,

k
4 −

1
2) ∣x∣

−1

by [GR, 8.380.3]. By the above, (7.4), (7.5), and noting that for the standard measure
used in [RR1], dk =

k−1
4π (cf. [KL1, Prop. 14.4]), we have

∣I∞(x)∣ ≪ 2kkB( 1
2 ,

k−2
4 )B( k

2 ,
k
2 )

∣1 − x∣k/2

∣x∣

for an absolute implied constant. By Stirling’s formula,

B( k
2 ,

k
2 ) ∼

2
√

π
√

k
2 2

k
and B( 1

2 ,
k−2
4 ) ∼

2
√

π
(k − 2)1/2 .

_is gives ∣I∞(x)∣ ≪ ∣1 − x∣k/2∣x∣−1 for an absolute implied constant, which proves
assertion (e).

To prove (a) and (d), let q be a prime, ûx an integer r ≥ 0, and let fq be the charac-
teristic function of ZqKq(

qr

1 )Kq . _en fq(( ab axb 1 )) is nonzero if and only if there
exists λ ∈ Q∗

q such that ( λab λax
λb λ ) ∈ Kq(

qr

1 )Kq . By the theory of determinantal di-
visors ( [Ne, p. 28]), amatrix g ∈ GL2(Qq) belongs to Kq(

qr

1 )Kq if and only if each
of the following holds:

● det g ∈ qrZ∗q ,
● each entry of g belongs to Zq ,
● some entry of g belongs to Z∗q .

(When r = 0, the third condition is already implied by the ûrst.) So fq(( ab axb 1 )) ≠ 0
if and only if there exists λ ∈ Q∗

q such that:
(1) 2v(λ) + v(a) + v(b) + v(1 − x) = r,
(2) v(λ) + v(a) + v(b) ≥ 0,
(3) v(λ) + v(a) + v(x) ≥ 0,
(4) v(λ) + v(b) ≥ 0,
(5) v(λ) ≥ 0,
and
(5b) equality occurs in at least one of (2)–(5).
Eliminating v(λ), we obtain the following conditions:

(6) v(a) + v(x) − v(1 − x) ≥ −r (from (2)+(3)−(1)),
(7) v(b) − v(1 − x) ≥ −r (from (2)+(4)−(1)),
(8) v(x) − v(1 − x) ≥ −r (from (3)+(4)−(1)),
(9) v(1 − x) ≤ r (from (1)−(2)−(5)),
(10) v(a) + v(1 − x) ≤ r (from (1)−(4)−(5)),
(11) v(b) + v(1 − x) − v(x) ≤ r (from (1)−(3)−(5)),
(12) v(a) + v(b) + v(1 − x) ≤ r (from (1)−2(5)),
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(13) v(b) ≥ v(a) + v(1 − x) − r (from 2(4)−(1)).
_is leads to the following condensed set of conditions, the last of which is from (5b)
and was overlooked in the proof of [RR1, Prop. 2.4]:
(i) v(1 − x) ≤ r,
(ii) v(x) ≥ v(1 − x) − r,
(iii) v(1 − x) − v(x) − r ≤ v(a) ≤ min{r − v(1 − x), r − v(1 − x) − v(b)},
(iv) max{v(1 − x) − r, v(a) + v(1 − x) − r} ≤ v(b) ≤ v(x) + r − v(1 − x),
(v) at least one of the following holds:

(va) v(a) + v(b) + v(1 − x) = r (if v(λ) = 0, using (1)),
(vb) v(a) + v(b) − v(1 − x) = −r (if (2)=0, using 2(2)−(1)),
(vc) v(a) − v(b) + 2v(x) − v(1 − x) = −r (if (3)=0, using 2(3)−(1)),
(vd) v(b) − v(a) − v(1 − x) = −r (if (4)=0, using 2(4)−(1)).

We may now prove part (a). Suppose q ∤ pND. _en fq is the characteristic
function of Kq and we can take r = 0 in the above discussion. _e ûrst part of (a)
follows from (i). If r = v(x) = v(1 − x) = 0, we see from (iii) and (iv) that v(a) =
v(b) = 0, and since χq is unramiûed andmeas(Z∗q) = 1, it follows that Iv(x) = 1. Now
suppose v(1 − x) < 0. _en v(x) = v(1 − x), and (iii) and (iv) become

0 ≤ v(a) ≤ −v(x), v(x) ≤ v(b) ≤ 0.

Using the fact that χq is unramiûed andmeas(Z∗q) = 1, we ûnd

∣Iv(x)∣ ≤
−v(x)

∑
m=0

0

∑
n=v(x)

1,

and the last assertion of (a) follows in this case. Likewise, if v(1−x) = 0, then v(x) ≥ 0,
and (iii) and (iv) become

−v(x) ≤ v(a) ≤ 0, 0 ≤ v(b) ≤ v(x),

and the assertion holds in this case as well. _is proves (a).
Before proving (d), we make some observations about the above conditions for

general r ≥ 0. If v(1− x) ≤ r, we see from (v) that once v(a) is ûxed, there are at most
four possibilities for v(b). Setting m = v(a) and n = v(b), we immediately see that

∣Iv(x)∣ ≤
r−v(1−x)

∑
m=v(1−x)−r−v(x)

∑
n∈{4 values}

1 = 4(2r − 2v(1 − x) + v(x) + 1) .

Observing that if v(1 − x) > 0 (resp. v(1 − x) = 0, resp. v(1 − x) < 0), then v(x) = 0
(resp. v(x) ≥ 0, resp. v(x) = v(1 − x)); it follows easily that in all cases,

(7.6) ∣Iv(x)∣ ≤ 4(2r + 1 + ∣v(x)∣) ≤ 8(r + 1 + ∣v(x)∣).

Now suppose q = p and fp is the test function deûned in (7.2). _en by the above,
Ip(x) vanishes if v(1 − x) > ℓ. When v(1 − x) ≤ ℓ, by (7.1), (7.2), and (7.6), we have

∣Ip(x)∣ ≤ p−ℓ/2
⌊ ℓ
2 ⌋

∑
j=0
8(ℓ − 2 j + 1 + ∣v(x)∣) ≤ p−ℓ/2 8ℓ2 ( ℓ + 1 + ∣v(x)∣) .

_is proves (d).
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Next, consider v = N . _en for

K0(N)N = {( a bc d ) ∈ GL2(ZN)∣ c ∈ NZN} ,

fN is the characteristic function of ZNK0(N)N , scaled by ν(N). So fN(( ab axb 1 )) ≠ 0
if and only if there exists λ ∈ Q∗

N such that ( λab λax
λb λ ) ∈ K0(N)N . _e lower right

entry must be a unit, which means that in fact wemay take λ = 1. _erefore,

( ab axb 1 ) ∈ K0(N)N ,

which means:
(1′′) v(a) + v(b) + v(1 − x) = 0,
(2′′) v(a) + v(b) = 0,
(3′′) v(a) + v(x) ≥ 0,
(4′′) v(b) ≥ 1.
As a result, the integrand vanishes unless:

● v(1 − x) = 0,
● v(a) = −v(b) ≤ −1,
● v(x) ≥ 1.

It follows that IN(x) = 0 unless v(x) ≥ 1, in which case

∣IN(x)∣ ≤
−1

∑
m=−v(x)

ν(N),

which proves (c).
Lastly, take v = q to be a prime divisor of D, and set c = v(D) ≥ 1. _ere are some

oversights in the deûnition of the local test function fq at such a place in [RR1, p. 706]:
the notation χ1,v is not deûned, χv does not deûne a character of the additive group
X, and it is asserted that the integral g(χv) deûned there, which clearly has absolute
value at most 1, coincideswith the classical Gauss sum,which has absolute value qc/2.
A detailed treatment of the local test function with the desired spectral properties
(and giving the samemain termon the geometric side in [RR1]) is given in [JK, (3.11)-
(3.12)]. For our purpose, it is enough to know that

Supp( fq) = ⋃
m mod DZq

q∤m

( 1 −m/D
0 1 )ZqKq ,

and fq = ∑m fm ,q ,where fm ,q is supported on the coset indexed bym and has absolute
value q−c/2 there.

Tomatch the notation in [RR1], let z = m/D (so v(z) = −c) andwrite fz ,v for fm ,q .
_en fz ,v(( ab axb 1 )) ≠ 0 if and only if there exists λ ∈ Q∗

q such that

(
λ

λ)(
1 z
0 1)(

ab ax
b 1 ) = (

λb(a + z) λ(ax + z)
λb λ ) ∈ Kq .

_us,
(1′) 2v(λ) + v(a) + v(b) + v(1 − x) = 0,
(2′) v(λ) + v(a + z) + v(b) ≥ 0,
(3′) v(λ) + v(ax + z) ≥ 0,
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(4′) v(λ) + v(b) ≥ 0,
(5′) v(λ) ≥ 0,

(5′b) equality holds in at least one of (2′)–(5′).
As before, we eliminate v(λ) to get the following:

(6′) v(a + z) + v(ax + z) − v(a) − v(1 − x) ≥ 0 (from (2′)+(3′)−(1′)),
(7′) v(b) + v(a + z) − v(a) ≥ v(1 − x) (from (2′)+(4′)−(1′)),
(8′) v(ax + z) − v(a) − v(1 − x) ≥ 0 (from (3′)+(4′)−(1′)),
(9′) v(1 − x) ≤ v(a + z) − v(a) (from (1′)−(2′)−(5′)),
(10′) v(a) + v(1 − x) ≤ 0 (from (1′)−(4′)−(5′)),
(11′) v(a) + v(b) + v(1 − x) − v(ax + z) ≤ 0 (from (1′)−(3′)−(5′)),
(12′) v(a) + v(b) + v(1 − x) ≤ 0 (from (1′)−2(5′)),
(13′) v(b) ≥ v(a) + v(1 − x) (from 2(4′)−(1′)).
(Only (11′) diòers from the list in [RR1], whose (11′) seems to be an unmodiûed paste
from (11).) We claim that the above implies the following set of conditions:
(x) v(1 − x) ≤ c,
(y) v(1 − x) − c ≤ v(b) ≤ v(x) + c − v(1 − x),
(z) at least one of the following holds:

(zi) v(a) = −v(1 − x) − v(b) (if v(λ) = 0, using (1′)),
(zii) v(a) + v(1 − x) − 2v(a + z) − v(b) = 0 (if (2′)=0, using (1′)−2(2′)),
(ziii) v(a) + v(b) + v(1 − x) − 2v(ax + z) = 0 (if (3′)=0, using (1′)−2(3′)),
(ziv) v(a) − v(b) + v(1 − x) = 0 (if (4′)=0, using (1′)−2(4′)).

It suõces toprove (x) and (y), since (z) follows from (5′b). Toprove (x), if v(a) ≠ v(z),
then v(a + z) = min{v(a), v(z)}, so v(a + z) − v(a) ≤ 0, which, by (9′), gives
v(1 − x) ≤ 0 < c. On the other hand, if v(a) = v(z) = −c, then by (10′), v(1 − x) ≤ c,
as needed.
For (y), note that if v(a) = v(z) = −c, then (13′) gives v(1 − x) − c ≤ v(b) in

that case. If v(a) ≠ v(z), then as before v(a + z) − v(a) ≤ 0, and (7′) then gives
v(1 − x) − c < v(1 − x) ≤ v(b). _is proves the lower bound in (y). For the upper
bound, suppose ûrst that v(ax) ≠ v(z). _en v(ax + z) = min{v(ax), v(z)}, so
v(ax + z) ≤ v(a) + v(x). (11′) then gives v(b) ≤ v(x) − v(1 − x), which is stronger
than the desired upper bound. If v(ax) = v(z), then (11′) is not helpful, because
v(ax + z) =∞ is possible. However, in this case, v(ax) = v(a) + v(x) = −c, so (12′)
gives v(b) ≤ v(x) + c − v(1 − x), as needed.
Finally,we claim that once v(b) isûxed, there are atmost six possible values of v(a)

for which (z) is satisûed. It suõces to show that there are at most two possibilities for
v(a) if (zii) (resp. (ziii)) is satisûed. Suppose a and ã have diòerent valuations and
each satisfy (zii). We claim that v(ã) = 2v(z) − v(a). Write ã = qtua for u ∈ Z∗q and
some integer t ≠ 0. _en

v(ã) − 2v(ã + z) = v(a) − 2v(a + z),

which gives
v(qtua + z) = v(a + z) + t

2 .
By Lemma 7.4 below, we get t = 2v(z) − 2v(a), as claimed. For (ziii), by the same
argument, we get

v(qtuax + z) = v(ax + z) + t
2 ,

176

https://doi.org/10.4153/CJM-2018-013-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-013-8


Weighted Distribution of Low-lying Zeros of GL(2) L-functions

so t is again determined by Lemma 7.4: t = 2v(z) − 2v(ax).
By the above discussion, summing over z (i.e., over m ∈ (Zq/DZq)

∗), and using
∣ fz ,v(g)∣ = q−c/2 if nonzero, when v(1 − x) ≤ c we have

∣Iq(x)∣ ≤ q−c/2φ(qc)
v(x)+c−v(1−x)

∑
n=v(1−x)−c

∑
{6 values}

1 ≤ qc/26(v(x) + 2c − 2v(1 − x) + 1)

≤ 6qc/2(2c + 1 + ∣v(x)∣),

where the latter inequality is obtained by considering the cases v(1− x) being greater
than, equal to, or less than 0. _is proves part (b) of the proposition.

Lemma 7.4 Let a, z ∈ Q∗
q with a + z ≠ 0, and suppose there exist u ∈ Z∗q and t a

nonzero integer such that

(7.7) v(qtua + z) = v(a + z) + t
2 ,

where v = vq . _en t = 2v(z) − 2v(a).

Proof First suppose v(z) = 0. We need to show that t = −2v(a). If v(a) = 0 too,
then v(a + z) ≥ 0, and (7.7) leads to a contradiction if either t > 0 or t < 0. Suppose
v(a) > 0, so that v(a + z) = 0. If t > −v(a), then (7.7) becomes

0 = v(qtua + z) = t
2 ,

a contradiction. If t = −v(a), then (7.7) becomes

0 ≤ v(qtua + z) = t
2

which is also a contradiction. If t < −v(a), then (7.7) becomes

t + v(a) = v(qtua + z) = t
2 ,

which gives t = −2v(a). A similar analysis gives the same conclusion if v(a) < 0.
In the general case, write z = qcw for w ∈ Z∗q . Factoring out qc , (7.7) becomes

v(qtu a
qc +w) = v( aqc +w) + t

2 .

_e special case discussed above then gives t = −2v(a/qc) = 2v(z)−2v(a), asneeded.

Proposition 7.5 With local components fv as in Proposition 7.3, the sumof the regular
terms is

Ireg ≪
ν(N)Dk

N k/2−ε pℓ(k+
1
2 ) ,

for any 0 < ε < 1, where the implied constant depends only on ℓ, D, and ε.

Proof We closely follow [RR1, §3]. Let M = Dpℓ . Suppose I(x) ≠ 0. _en by
Proposition 7.3, vq(1− x) ≤ vq(M) for all primes q. _is means that n ∶= M

1−x ∈ Z. _e
map x ↦ 1

1−x is a bijection from Q − {0, 1} to itself. _erefore, n is not equal to 0 or
M. Since N ∤ M and vN(1 − x) = 0 by Proposition 7.3c, we have

vN(n −M) = vN(M( 1
1−x − 1)) = vN( x

1−x ) = vN(x) ≥ 1,
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where the latter inequality is again from Proposition 7.3(c). _us, N ∣(n − M). Note
that x = n−M

n . So

Ireg = ∑
n∈M+NZ,
n≠0,M

I(
n −M

n
) .

Since N ∤ M, the condition n ≠ 0 is super�uous. As mentioned earlier, the assertion
in [RR1, §3] that I∞(x) = 0 if x < 0 is incorrect. Now by Proposition 7.3,

(7.8) I( n−M
n ) ≪ p−ℓ/2

√
Dν(N)∣I∞( n−M

n )∣ ∏
q∣n(n−M)

Bq(
n−M

n ),

where

Bq(
n−M

n ) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if vq(
n−M

n ) = 0 and q ∤ pDN ,
vq(

n−M
n )2 if vq(

n−M
n ) ≠ 0 and q ∤ pDN ,

∣vq(
n−M

n )∣ if q = N ,
(1 + ∣vq(

n−M
n )∣) if q∣M(= pℓD),

and the implied constant in (7.8) depends only on ℓ and D.
For the archimedean part, by Proposition 7.3(v) we have

∣I∞( n−M
n )∣ ≪ ∣1 − n−M

n ∣k/2 ⋅ ∣ n−M
n ∣−1 =

Mk/2

∣n∣k/2∣1 − M
n ∣

.

Observe that for ûxedM, ∣1− M
n ∣ is as small as possible when n = M + 1, since n ≠ M.

Hence, ∣1 − M
n ∣ ≥ 1

M+1 . So for an absolute implied constant,

(7.9) ∣I∞( n−M
n )∣ ≪

Mk/2+1

∣n∣k/2
.

To treat the product in (7.8), as shown in the proof of [RR1, Lemma 8], for any ε > 0
there exists a constant C depending only on ε such that

∏
q∣n(n−M)

∣vq(
n−M

n )∣ ≤ C∣n∣ε ∣n −M∣ε

for all n ≠ M. _is in turn is

≪ ∣n∣ε ∣nM∣ε ≪ ∣n∣εMε ,

where not all epsilons are the same, but eachmay bemade arbitrarily small. It follows
similarly that

(7.10) ∏
q∣n(n−M)

Bq(
n−M

n ) ≪ ∣n∣εMε

for any ε > 0.
Using (7.9) and (7.10) and recalling that M = pℓD, (7.8) gives

∣I( n−M
n )∣ ≪D ,ℓ ,ε p−

ℓ
2 pℓ(

k
2 +1+ε)Dk/2ν(N)

1
∣n∣k/2−ε

.
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So

Ireg ≪ pℓ(
k+1
2 +ε)Dk/2ν(N) ∑

nonzero m∈Z

1
∣M + Nm∣k/2−ε

=
pℓ(

k+1
2 +ε)Dk/2ν(N)

N k/2−ε ∑
m≠0

1
∣m + M

N ∣k/2−ε
.

(7.11)

Noting that M
N ∉ Z and k ≥ 4, the sum is convergent when ε < 1. We will show that

this sum is O(Mk/2−ε).
Generally, for a > 1 and a noninteger u > 0 with u = ⌊u⌋ + {u},

∑
m∈Z

1
∣m + u∣a

= {u}−a + (1 − {u})−a + ∑
m≥1

1
∣m + {u}∣a

+ ∑
m≤−2

1
∣m + {u}∣a

≤ {u}−a + (1 − {u})−a + 2∑
m≥1

1
ma .

(7.12)

We will apply this with u = M
N . If N < M, then writing M = qN + r, we see that

{M
N } = r

N ≥ 1
M−1 . Likewise, 1 − {M

N } ≥ 1
M−1 , so {M

N }−a + (1 − {M
N })−a ≤ 2(M − 1)a .

If M < N , then {M
N } = M

N , and the ûrst term in (7.12) comes from m = 0, which is
excluded in (7.11). For the second term, (1−{M

N })−a ≤ (1− M
M+1 )

−a = (M+1)a . Taking
a = k

2 − ε, the third term in (7.12) is 2ζ( k
2 − ε) ≤ 2ζ(2− ε). It follows that for any prime

N ∤ M,

∑
m≠0

1
∣m + M

N ∣k/2−ε
≪ Mk/2−ε ,

as claimed. With M = pℓD, (7.11) now yields

Ireg ≪D ,ℓ ,ε pℓ(k+
1
2 )Dk ν(N)

N k/2−ε .

Bywhatwe have shown, alongwith the computation of themain term andmeasure
in [RR1], upon dividing through by ν(N) we obtain the following theorem.

_eorem 7.6 Let k > 2 be an even integer, χ = χ−D be as in _eorem 1.3, N a prime
not dividing D with χ(−N) = −1, and p a prime not dividing ND. _en for all ℓ ≥ 0
and 0 < ε < 1,

1
ν(N)

∑
f ∈Fnew

N ,k

Λ( 1
2 , f )Λ( 1

2 , f × χ)
∥ f ∥2 Xℓ( λ f (p)) =

ckL(1, χ)∫
∞

−∞
Xℓ dη

χ
p + O(

pℓ(k+
1
2 )Dk

N k/2−ε ) ,

where ck = k−1
4π 2kB( k

2 ,
k
2 ), and the implied constant depends only on ℓ, D, and ε.

Remarks 7.7 (i) In [RR1], the formula for the formal degree of the weight k
discrete series of PGL2(R) is given as dk =

k−1
2 . _is should be corrected to dk =

k−1
4π ,

which corresponds to the Haar measure on SL2(R) = H × SO(2) determined by the
measure dx d yy2 on H and themeasure on SO(2) of total length 1.
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(ii) For p ûxed as above, if ∫ Xℓ dη
χ
p ≠ 0, we see from (5.2) that the sum on the

le�-hand side in _eorem 7.6 is nonzero when N > pℓD. _is is stronger than what
can be deduced from the above using (7.13) below.

We can now prove (5.1), and so complete the proof of Proposition 5.1. By _eo-
rem 7.6, we have

1
ν(N)

∑
f ∈F

w f Xℓ(λ f (p)) = Fℓ + Eℓ ,

where Fℓ is the main term and Eℓ ≪ pℓ(k+
1
2 )C0, where C0 =

Dk

N k/2−ε . By the proof of
Proposition 3.1,

∑ f ∈F w f Xℓ(λ f (p))

∑ f ∈F w f
= ∫

∞

−∞
Xℓ dη

χ
p + O( pℓ(k+

1
2 )

C0
F0

1 + E0
F0

) .

(Note that F0 ≠ 0, since ∫ X0 dη
χ
p = 1 as shown in Proposition 6.1.) As noted earlier,

2kB( k
2 ,

k
2 ) ∼

2
√

2π√
k
, so that

(7.13) ck =
k − 1
4π

2kB( k
2 ,

k
2 ) ∼

√
k
2π

.

Now
E0
F0

≪
C0

F0
=

Dk

ckL(1, χ)N k/2−ε ≪
Dk

k1/2N k/2−ε ,

and (5.1) follows.
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