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Abstract

The single largest contributor to humanmortality is cardiovascular disease, the top risk factor for
which is hypertension (HTN). The last two decades have placed much emphasis on the
identification of genetic factors contributing to HTN. As a result, over 1,500 genetic alleles have
been associated with human HTN. Mapping studies using genetic models of HTN have yielded
hundreds of blood pressure (BP) loci but their individual effects on BP are minor, which limits
opportunities to target them in the clinic. The value of collecting genome-wide association data is
evident in ongoing research, which is beginning to utilize these data at individual-level genetic
disparities combined with artificial intelligence (AI) strategies to develop a polygenic risk score
(PRS) for the prediction of HTN. However, PRS alone may or may not be sufficient to account
for the incidence and progression of HTN because genetics is responsible for <30% of the risk
factors influencing the etiology of HTN pathogenesis. Therefore, integrating data from other
nongenetic factors influencing BP regulation will be important to enhance the power of PRS.
One such factor is the composition of gut microbiota, which constitute a more recently
discovered important contributor to HTN. Studies to-date have clearly demonstrated that the
transition from normal BP homeostasis to a state of elevated BP is linked to compositional
changes in gut microbiota and its interaction with the host. Here, we first document evidence
from studies on gut dysbiosis in animal models and patients with HTN followed by a discussion
on the prospects of using microbiota data to develop a metagenomic risk score (MRS) for HTN
to be combined with PRS and a clinical risk score (CRS). Finally, we propose that integrating AI
to learn from the combined PRS, MRS and CRS may further enhance predictive power for the
susceptibility and progression of HTN.

Impact statement

More than half of the world’s adult population suffers from hypertension (HTN), which is the
single largest risk factor for human mortality. Despite available medications, susceptibility to
develop HTN has not decreased because current knowledge on the risk assessment for suscep-
tibility is severely limited. In this context, genome-wide association studies for HTN are
factoring the genetic contributions toward the development of a polygenic risk score (PRS)
for HTN. However, given that nongenetic factors also contribute to the etiology of HTN, PRS
alone may be insufficient to account for the incidence and progression of HTN. One such
nongenetic factor is gut microbiota, which is acquired at birth and demonstrated to be a
definitive link to the etiology of HTN. Therefore, here we discuss the prospects for developing
and integrating a microbiota-based ‘metagenomic risk score’ with PRS, and a clinical risk score
to construct an artificial intelligence-based model for precision diagnosis and management
of HTN.

Introduction

Despite improvements in health care, cardiovascular disease (CVD) remains the leading cause of
human mortality globally (Vos et al., 2020). The propensity to develop CVDs is fueled by
chronically elevated blood pressure (BP) or hypertension (HTN). Among others, essential
HTN is the most frequent type of HTN in adults (accounts for 95%). It is caused when there
is sustained increase in the BP greater than 140/90 mmHg and when no etiology can be
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determined for the HTN (Gupta-Malhotra et al., 2015). According
to the World Health Organization, an estimated 1.28 billion adults
of the age-group 30–79 years worldwide suffer from HTN (https://
www.who.int/news-room/fact-sheets/detail/hypertension). There-
fore, controlling the incidence of HTN is critical for improving the
quality of life and prevention of premature death.

Research on HTN over the last few decades has established that
the susceptibility to HTN is determined both by genetic and envir-
onmental factors. The estimated contribution of heritability of
HTN is ~30%, while environmental factors contribute to ~70%
(Biino et al., 2013). Despite the relatively lower contributions of
genetics to HTN, there has been considerable focus on mining the
genomic contributions to the genesis of HTN. There are two major
factors propelling themomentum for understanding the genetics of
HTN, (i) the desire to find novel druggable targets and (ii) advances
in whole-genome sequencing, which alleviated the technical limi-
tation of detecting human genetic variation on a large scale. Such
efforts have thus far identified over 1,500 loci in human HTN
(Evangelou et al., 2018; Buniello et al., 2019; Cabrera et al., 2019;
Giri et al., 2019). However, while they collectively define the gen-
omic landscape for association with HTN in humans, individually,
they are not druggable targets because each of these loci contribute
very little to BP regulation.

In experimental studies using animal models, the genomic
landscape for association with HTN was similar to that of humans.
Animal model studies identified over 400 BP quantitative trait loci
(https://rgd.mcw.edu/rgdweb/elasticResults.html?term=blood+pres
sure&chr=ALL&start=&stop=&species=Rat&category=QTL&
objectSearch=true). Details on these investigations are documented
in our previous review (Padmanabhan and Joe, 2017) and updated
in recent articles (Warren et al., 2017; Evangelou et al., 2018; Giri
et al., 2019; Surendran et al., 2020; Olczak et al., 2021; Padmanabhan
and Dominiczak, 2021). Meanwhile, research beyond genomic ana-
lyses has led to the profound realization that gut microbiota is an
important nongenomic factor which was not previously accounted
for in the etiology of HTN. Specifically, our group was the first to
report the evidence of gut microbiota dysbiosis in both hypertensive
animal models and patients (Mell et al., 2015; Yang et al., 2015).
Following this pioneering discovery, associations between gut
microbiota are reported between hypertensive and normotensive
animal models and humans (Tables 1 and 2). In this article, we
review the literature on gut microbiota and HTN and propose
developing a gut metagenomic risk score (MRS) for HTN. Further,
we discuss the value of combining MRS with polygenic risk score
(PRS), CRS and artificial intelligence (AI) for clinical management
of HTN (Graphical Abstract).

From GWAS to PRS for HTN

Genome-wide association studies (GWAS) aim to analyze genetic
variants across genomes to detect associations with complex traits
(Dehghan, 2018). GWAS for HTN began in 2007 with the first
report of associations in the Wellcome Trust Case Control Con-
sortium (Burton et al., 2007). GWAS for HTN soon outpaced all
linkage analyses in humans (Figure 1b). Even so, the collective effect
of all BP loci identified through GWAS accounts for ~3.5% of BP
variance (Manolio et al., 2009; Sung et al., 2018). This begs the
question: ‘What is the expectation from continued investments in
GWAS for clinical management of HTN?’ From the perspective of
disease risk prediction, continued research in GWAS for HTN is
essential for developing, defining and refining the predictive power

for HTNusing a genomic index, which is known as PRS (Choi et al.,
2020; Lewis and Vassos, 2020; Padmanabhan and Dominiczak,
2021). It is computed as the sum of an individual’s genome-wide
genotype that is weighted by corresponding genotype effect size
estimates (or Z scores) generated from a relevant GWAS data
(Lewis andVassos, 2020). Although PRSs often explain only a small
portion of trait variance, their link with genetic liability, the single
biggest source of phenotypic variation, has rendered PRS as an
attractive prediction tool in biomedical research (Choi et al., 2020).
PRS is used to assess shared etiologies between phenotypes and to
investigate the clinical applicability of genetic information for
complex diseases (Choi et al., 2020). Previously, a PRS constructed
utilizing genome-wide important single nucleotide polymorphisms
from GWAS for BP showed a significant relationship with heart
failure, left ventricular mass, coronary artery disease and stroke
(Studies, 2011; Ference et al., 2014). Currently, there is considerable
excitement in the field for developing reliable PRS for HTN as
evident frommultiple reports of PRS indices from different cohorts
(Steinthorsdottir et al., 2020; Sapkota et al., 2021; Sato et al., 2021;
Fujii et al., 2022; Parcha et al., 2022; Quintanilha et al., 2022).
Recently, Weng et al. (2022) included 391,366 participants from
the UK Biobank database and established a PRS for HTN assessing
the combined effect of genetic susceptibility and air pollution on
incident of HTN. They demonstrated that long-term exposure to
air pollution is associated with increased risk ofHTNparticularly in
individuals with high genetic risk (Weng et al., 2022). Another
study from Finland revealed that a BP (systolic and diastolic) PRS
could predict HTN in the FINRISK cohort, a Finnish population
survey on risk factors on chronic, noncommunicable diseases
(Vaura et al., 2021, https://thl.fi/en/web/thl-biobank/). This study
highlights the potential of PRS as a predictive tool that may be
better than the established clinical risk factors for the prediction of
HTN (Vaura et al., 2021). But both studies are limited by their
reliance on genetic data from European ancestries, which could
limit the predictive power of a PRS in other populations. With the
availability of recent, large multi-ethnic and non-European GWAS
of BP phenotypes, such as those from theMillion Veteran Program,
the UK Biobank and Biobank Japan (Kanai et al., 2018; Giri et al.,
2019), PRS predictions are now expanded to other demographics,
which is a promising outlook for the construction of multi-ethnic
PRS for HTN risk prediction (Cavazos and Witte, 2021). More
recently, the Trans-Omics in PrecisionMedicine Initiative program
(Stilp et al., 2021; Taliun et al., 2021) reported the assessment of PRS
for HTN across major U.S. demographic segments. This included
African Americans, Hispanic/Latino Americans, Asian Americans
and European Americans in the assessment of PRS associations
with HTN across the lifespan. The final HTN-PRS was compared
with incident outcomes in the Mass General Brigham Biobank as
well as with Multi-ethnic Independent Biobank that included
40,201 subjects, leading to associations that supported the links
between PRS andHTN. The resulting PRS was also predictive of an
elevated risk of type 2 diabetes, chronic renal disease, coronary
artery disease and ischemic stroke (Kurniansyah et al., 2022). Based
on these results, Kurniansyah et al. (2022) proposed a new
approach for tuning parameters for PRS construction including
optimization of the coefficient of variation of the effect size esti-
mates and combining PRS based on GWAS of multiple BP pheno-
types into a single PRS. Collectively, the next phase of GWAS in
HTN should focus on prediction rather than treatment, the imple-
mentation of which will depend on the accuracy for applicability of
a PRS for HTN in a global setting. To this end, the ‘All of Us’
research program in the United States is enrolling a million
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Table 1. The association observed between animal hypertension, gut microbiota and various interventions

References Model Intervention Effect on blood pressure Enriched/decreased in HTN
Enriched/decreased in normotensive or
treatment group

Yang et al., 2015 SHR versus WKY Genetic BP increased in SHR ↑ Lactate-producers (Streptococcus, Turicibacter)
and others Oribacterium, Parabacteroides

↑ Butyrate producers (Coprococcus,
Pseudobutyrivibrio) and others (Allobaculum,
Bifidobacterium, Alistipes, Blautia and
Bacteroidetes)

SD rats 1. Angiotensin II (Ang II)
2. Ang II + Minocycline

Minocycline attenuated
Ang II-induced HTN

Ang II group:
↑ F/B ratio, Firmicutes

Ang II ± Minocycline:
↑ Acetate and butyrate producers; Akkermansia,
Bacteroides, Enterorhabdus and Marvinbryantia
↓ Bacteroidetes

Durgan et al., 2016 Long Evans Rats High fat diet (HFD) and
Obstructive sleep
apnea (OSA)

HFD + OSA increased BP HFD ± OSA:
↑ Coriobacteriaceae, Lactococcus
↓ Ruminococcaceae, Clostridaiales

NA

Cecal content
transplant from HTN
OSA rats on HFD to
normotensive OSA on
chow

Microbiotal transplant
developed HTN in
normotensive OSA on
chow

↑ in Coriobacteriaceae
↓ in Eubacterium

NA

Mell et al., 2015 Dahl salt-sensitive
(DSS) and salt-
resistant (DSR) rats

High salt diet (HSD) BP was elevated on HSD ↑ Bacteroidetes, family S24–7, Lactobacillaceae,
Veillonellaceae
↓Enterobacteriaceae

NA

Cecal content
transplant from DSR to
DSS versus DSS to DSS
transfer

Microbiotal transplant
from DSR elevated SBP in
DSS rats

↓ Clostridiales, Veillonellaceae, Mollicutes NA

Santisteban et al.,
2017

Young pre-
hypertensive SHR
versus young WKY

N/A Young pre-hypertensive
SHR

No significant changes in gut microbiota NA

Santisteban et al.,
2017

Adult SHR versus WKY N/A BP elevated in SHR ↑ Parabacteroides, Porphyromonadaceae,
Lactobacillaceae, Streptococcus,
Streptococcaceae, Latobacillales, Mogibacterium,
Oribacterium, Turibacter

↑ Bifidobacterium, Bifidobacteriaceae,
Bifidobacteriales, Gordonibacter, Bacteroides,
Bacteroidaceae, Prevotellaceae, Alistipes,
Rikenellaceae, Bacteroidales, Anaerotruncus,
Dorea, Blautia, Coprococcus, Lachnospira,
Allobaculum, Coprabacillus, Massilia,
Oxalobacteraceae, Escherichia_Shigella,
Enterobacteriaceae, Enterobacteriales

Adnan et al., 2017 WKY rats FMT from SHRSP SBP increased by FMT ↑ Erysipelotrichaceae, Dorea, Anaerostipes,
Bacteroidales, Micrococcaceae, Ruminococcus,
Deferribacterales, Deferribacteres, Mucispirillum,
Deferribacteraceae, Deferribacteres, Lactococcus,
Desulfovibrio, Deltaproteobacteria,
Desulfovibrionales, Roseburia, Coprococcus,
Lachnospiraceae, Clostridiales, Firmicutes
↓ Bacteroidetes, Bacteroidia, Erysipelotrichi,
Erysipelotrichales, Allobaculum, Actinobacteria,
Bacteroidaceae, Bacteroides, Actinobacteria,
Bifidobacteriales, Bifidobacterium,
Enterobacteriales, Gammaproteobacteria,
Enterobacteriaceae, Betaproteobacteria,

NA
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Table 1. (Continued)

References Model Intervention Effect on blood pressure Enriched/decreased in HTN
Enriched/decreased in normotensive or
treatment group

Sutterella, Alcaligenaceae, Bacillales, Bacillaceae,
Coprobacillus, Coriobacteriales, Coriobacteriia,
Adlercreutzia, Holdemania, Enterococcus

Marques et al., 2017 C57BI/6 mice High-fiber diet and
acetate
supplementation in
Deoxycorticosterone
acetate (DOCA) model

SBP and DBP reduced by
high-fiber and acetate
supplementation in DOCA-
induced HTN

DOCA-control:
↑ YS2

↓ F/B ratio
↑ Bacteroides acidifaciens, acetate-producing
bacteria

Sherman et al., 2018 Wistar rats Prenatal androgen
(PNA) exposure in
induced hypertension
in offspring

Increased BP in PNA-
exposed rats

Actinobacteria:
↑ Yaniellaceae, Geodermatophilaceae,
Microbacteriaceae, Nakamurellaceae,
Corynebacteriaceae, Promicromonosporaceae
and Nocardiaceae
↓ Brevibacteriaceae
and Dermabacteraceae
Bacteroidetes: ↑Rikenellaceae,
Paraprevotellaceae
↓ Bacteroidaceae, Odoribacteraceae and S24–7
were significantly decreased
Firmicutes: ↑ Peptococcaceae, Eubacteriaceae,
Carnobacteriaceae, Tissierellaceae,
Streptococcaceae, Veillonellaceae, Coprobacillus
and Leuconostocaceae
↓ Ruminococcaceae, Lachnospiraceae,
Clostridiaceae, Erysipelotrichaceae,
Dehalobacteriaceae, Lactobacillaceae and
Mogibacteriaceae
Verrucomicrobia: ↑ Verrucomicrobiaceae

NA

Wilck et al., 2017 FVB/N mice High salt diet (HSD) HSD induced HTN ↑ Parasutterella spp., Akkermansia and Alistipes
↓ Lactobacillus,
Oscillibacter, Pseudoflavonifractor, Clostridium
XIVa, Johnsonella and Rothia

↑ Christensenellaceae, Corynebacteriaceae,
Erwinia, Corynebacterium

Robles-Vera et al.,
2018

Wistar rats NG -Nitro-L-Arginine
Methyl Ester (L-NAME)

L-NAME treatment caused
progressive increase in
SBP and DBP

↑ F/B ratio, Propionibacterium
↓ Parabacteroides, Bifidobacterium, Olivibacter,
Dysgonomonas, Pedobacter, Flavobacterium and
Desulfotomaculum

NA

Toral et al., 2018 C57BI/6 J Mice Treatment with
probiotic Lactobacillus
fermentum CECT5716
(LC40) in tacrolimus-
induced hypertension

Tacrolimus increased SBP
and alleviated by LC40
administration

Tacrolimus group:
↑ F/B ratio
↓Butyrate- (including Butyricimonas) and acetate-
producing bacteria in tacrolimus group,
Bifidobacterium

↑ Bifidobacterium, (L. fermentum CECT5716)
↓ Anaerostipes, Hespellia,
Prevotella

Bier et al., 2018 DSS HSD BP levels increased in HSD
group

↑ Christensenellaceae, Corynebacteriaceae,
Erwinia, Corynebacterium

↑ Anaerostipes

Waghulde et al.,
2018

DSS RNA CRISPR (Gper1
deletion)
Gper1�/�

Gper1�/� rats showed
significantly lower BP
effect

↑ unclassified Clostridiales ↑ Parabacteroides, Bacteroidales S24–7,
unclassified enterobacteriaceae
↓ F/B ratio

(Continued)
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Table 1. (Continued)

References Model Intervention Effect on blood pressure Enriched/decreased in HTN
Enriched/decreased in normotensive or
treatment group

Galla et al., 2018 DSS Neomycin Neomycin elevated BP DSS (neomycin):
↑ Bacteroidetes, Cyanobacteria, Fusobacteria and
Verrucomicrobia
↓ in Actinobacteria, Deferribacteres, Firmicutes,
Proteobacteria, TM7 and Tenericutes

NA

DSS Minocycline Minocycline elevated BP DSS (minocycline):
↑Firmicutes, Proteobacteria and Verrucomicrobia
↓ Actinobacteria, Bacteroidetes, Cyanobacteria,
Deferribacteres, TM7 and Tenericutes

NA

DSS Vancomycine Vancomycine elevated BP DSS (vancomycine):
↑ Bacteroidetes, Cyanobacteria, Elusimicrobia,
Fusobacteria, Proteobacteria and
Verrucomicrobia
↓ Actinobacteria, Deferribacteres, Firmicutes, TM7
and Tenericutes

NA

SHR Neomycin No change SHR (neomycine):
↑ Bacteroidetes, Cyanobacteria, Elusimicrobia
and Verrucomicrobia
↓Firmicutes, Proteobacteria, TM7 and Tenericutes

NA

SHR Minocycline Reduced BP SHR (minocycline):
↑Actinobacteria, Cyanobacteria, Deferribacteres
and Firmicutes
↓ Bacteroidetes, Proteobacteria, TM7 and
Tenericutes

NA

SHR Vancomycine Reduced BP SHR (vancomycine):
↑Bacteroidetes, Cyanobacteria, Proteobacteria
and Verrucomicrobia
↓ Firmicutes, TM7, and Tenericutes

Tain et al., 2018 SD rats Resveratrol treatment
in maternal and post-
weaning high fat-
induced (HF/HF) HTN

Resveratrol attenuatedHF/
HF-induced HTN

HF/HF versus control:
↑ F/B ratio, Verrucomicrobia, Tepidibacter,
Lactococcus, Serratia, Enterobacter, Erwinia,
Mucispirillum, Akkermansia municiniphila
↓ Bacteroidetes, Turicibacter, Lactobacillus,
Leuconostoc

HF/HF ± Resveratrol:
↑ Flavobacterium, Tepidibacter, Lactococcus and
Erysipelothrixas
↓ Acholeplasma and Turicibacter

Sharma et al., 2019 SD rats Tetracycline (CMT-3)
treatment in
Angiotensin II HTN

CMT-3 attenuated Ang
II-induced HTN

Ang II versus control:
↑ Proteobacteria, Parabacteroides, Blautia
↓ Ruminococcus

CMT-3 treatment restored altered taxa in Ang
II-induced HTN group

Toral et al., 2019b SHR and WKY FTM
From WKY to SHR

Reduced basal SBP in SHR
after FTM from WKY

↑ Firmicutes
↓ Bacteroidetes, F/B ratio

NA

Hsu et al., 2019 SD rats Maternal and post-
weaning high-fat diet
(HF/HF)

HF/HF diet elevated BP HF/HF:
↑ F/B ratio, Verrucomicrobia, Akkermansia,
Clostridium, Alkaliphilus
↓ Lactobacillus, Parabacteroides, Ruminococcus

NA
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Table 1. (Continued)

References Model Intervention Effect on blood pressure Enriched/decreased in HTN
Enriched/decreased in normotensive or
treatment group

Yang et al., 2019a SHR and WKY Captopril (CAP) CAP decreased BP in SHR NA SHR ± CAP:
↑ Firmicutes, Proteobacteria, Actinobacteria and
Tenericutes, Mucispirillum, Parabacteroides,
Allobaculum

Toral et al., 2019a SHR and WKY FTM from SHR to WKY
(S-W)

Increased basal SBP and
DBP

↑ Odoribacteraceae, Odoribacter NA

FTM from WKY to SHR
(W-S)

BP was reduced NA ↑ Blautia, Peptococcaceae, Lactobacillaceae,
Lactobacillus, Firmicutes

Yan et al., 2020 Wister rats HSD SBP and DBP are
significantly higher in HSD
group

↑ F/B ratio, Spirochates
↓ Verrucomicrobia, Bacteroides fragilis

N/A

Chen et al., 2020 Sprague–Dawley rats 20% fructose and 4%
Nacl (HFS)

Chronic HFS elevated BP ↑ Rikenellaceae, Bacteroidetes
↓ F/B ratio,
Desulfovibrionaceae

NA

Xia et al., 2021 SHR Exercise Exercise significantly
decreased SBP in SHR
resembling
antihypertensive effects

SHR-exercise versus SHR-sedentary:
↑ Acetate and Butyrate producers
↓F/B ratio

NA

Robles-Vera et al.,
2020a

Wister rats Effect of
1. Bifidobacterium
(BFM)
2. Butyrate
3. Acetate in DOCA-salt-
induced HTN

DOCA-salt group with BFM
treatment prevented the
rise in SBP

DOCA-salt versus control: ↑ in Actinobacteria,
Blautia, Peptostreptococcaceae, acetate,
butyrate and lactate producers
↓ in Rikinellaceae

DOCA-salt-BFM group:
↓ Peptostreptococcaceae resembling the level to
that of control group
DOCA-salt-Acetate:
↑ Bacteroides
↓ Blautia, Prevotella

Li et al., 2020 SHR Maternal captopril
effect in SHR offspring

Maternal treatment with
captopril significantly
lowered BP in SHR Male
offspring compared to SHR
control.

SHR:
↑F/B ratio

In offspring with maternal route ± sustained CAP:
↑ Allobaculum, Erysipelotrichaceae and
Erysipelotrichia
In offspring with maternal route only:
↑ Clostridiales, Anaerostipes, Coprococcus,
Oscillospira, Roseburia, Dehalobacterium.
SHR offspring with only maternal route of CAP:
↑ butyrate-producing bacteria, Coprococcus,
Roseburia and Oscillospira

Robles-Vera et al.,
2020

WKY Effect of
mycophenolate (MMF)
in DOCA-salt-induced
HTN

The immunosuppressive
drug mofetil MMF
significantly reduced BP

DOCA:
↑ Bacilli, Lactobacillaceae, Burkhholderiales,
Betaproteobacteria, Alcaligenaceae

DOCA ± MMF
↓ F/B ratio

Hsu et al., 2020 SHR Effect of maternal N-
acetylcysteine (NAC)
treatment in offspring

Maternal NAC treatment
inhibited the rise in SBP

SHR controls:
↑ Bifidobacterium,
Lactobacillus, Turicibacter, Akkermansia
↓ Holdemania compared to WKY

SHR ± NAC:
↑ Actinobacteria, Bifidobacterium and
Allobaculum
↓ Verrucomicrobia, Turicibacter, and Akkermansia

Robles-Vera et al.,
2020b

SHR and WKY SHR treated with
losartan (Angiotensin
receptor antagonist)

Losartan (Los) treated SHR
showed progressive
reduction in SBP

SHR group versus WKY
↑ Lactobacillaceae,
Lactobacillus, and other lactate‐producing
bacteria
↓ Verrucomicrobiaceae,

SHR ± Los versus SHR
↓F/B ratio, Verrucomicrobia,
↑ Bacteroidetes, Lactobacillaceae and
Lactobacillus

(Continued)
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Table 1. (Continued)

References Model Intervention Effect on blood pressure Enriched/decreased in HTN
Enriched/decreased in normotensive or
treatment group

Pedobacter, Akkermansia and other acetate and
propionate‐producing bacteria

Galla et al., 2020 DSS Amoxicillin
administered to young
rats

Amoxicillin administration
reduced BP

NA Amoxicillin versus controls:
↑ Firmicutes, TM7, Tenericutes, Bacteroidia, Beta
Proteobacteria; order: Bacteroidales,
Enterobacteriales, and Burkholderiales,
Prevotellaceae, Enterococcaceae,
Enterobacteriaceae, Alcaligenaceae,
Bacteroidaceae, Blautia, Prevotella, Enterobacter,
Enterococcus, Klebsiella, Sutterella and
Bacteroides
↓ in Bacteroidetes, TM7–3, Clostridia, Delta
Proteobacteria, Bacilli, Erysipelotrichia, Gamma
Proteobacteria and Mollicutes; order: Cw040,
Clostridiales, Desulfovibrionales, Lactobacillales,
Erysipelotrichales, Pseudomonadales,
Turicibacterales and Bacteroidales, F16,
Rumincoccaceae, Clostridiales‐F,
Desulphovibrionaceae, Veillonellaceae,
Lacnosphiraceae, Mogibacteriaceae,
Lactobacillaceae, Erysipelotrichaceae,
Pseudomonadaceae, Clostridiaceae,
Turicibacteraceae and Peptostreptococcaceae,
Ruminococcus, Oscillospira, Anaerovibrio,
(Ruminococcus), Lactobacillus, Pseudomonas,
Coprococcus, Dorea, Clostridium, Roseburia,
Turicibacter and (Prevotella) (from
Paraprevotellaceae family).

Amoxicillin was
administered dams
(Gestation and
lactation)

Amoxicillin administration
reduced BP

Significantly ↓ in the amoxicillin‐treated group
These include; classes Delta Proteobacteria and
TM7_3; orders Cw040 and Bacteriodales; families
Veillonellaceae, F16, Desulfovibrionellaceae and
Porphyromonadaceae and genus Parabacteroide
When compared with their maternal microbiota,
amoxicillin consistently ↓ a few groups of
bacteria in offspring. F16, Cw040, TM7_3,
Veillonellaceae, and Bacteriodales remained
consistently reduced in offspring

Chakraborty et al.,
2020b

DSS High salt and day/night
effect

BP was high during active
(night) phase in both high
and low salt groups. High
SBP in high salt compared
to low salt

High salt (Dark vs. light):
↑Sutterella,
↓ Clostridiales
Low salt (Dark vs. light):
↓ Streptococcaceae and Lactobacillus
High salt dark versus low salt dark:
↑ Sutterella, Erysipelotrichaceae,
Ruminococcaceae,
↓Clostridiales
High salt light versus low salt light:
↓ Lactobacillus ↑ Ruminococcaceae

NA
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Table 1. (Continued)

References Model Intervention Effect on blood pressure Enriched/decreased in HTN
Enriched/decreased in normotensive or
treatment group

Abboud et al., 2021 SHR Cross-fostered SHR by
WKY dams

BP was reduced Cross-fostered SHR
↑ Escherichia-Shigella
↓ Haemophilus, Lactobacillus intestinalis,
Romboustia, Rothia

NA

Shi et al., 2021b SHRSP and WKY Every other day fasting
(EODF)

EODF attenuated BP rise in
SHRSP

SHRSP Control versus SHRSP EODF:
SHRSP Control: ↑ Bacteroides uniformis,
Lactobacillus johnsonii, Lactobacillus reuteri,
Lachnospiraceae bacterium A4, Oscilibacter sp.
SHRSP EODF:
↑ Asaccharobacter celatus, Proteobacteria
bacterium CAG 139, Muribaculum intestinale,
Parasutterella Excrementihominis

WKY Control versus SHRSP Control:
WKY Control:
↑ Mucispirillum schaedleri, Oscilibacter_sp_1_3,
Bacteroides vulgatus, B. uniformis, Escherichia
coli, Parabacateroides goldsteinii, Akkermania
Municiniphila
SHRSP Control:
↑ Proteobacteria bacterium CAG 139, L. johnsonii,
Lactobacillus murinus, A. celatus, Adlercreutzia
equolifaciens, Bifidobacterium animalis,
Bifidobacterium pseudolongum, Turicimonas
muris, Muribaculum intestinale, Parasutterella
Excrementihominis

Yang et al., 2022 SHR Antibiotics + quinapril Enhanced BP lowering
effect of antibiotics +
quinapril

SHR ± quinapril versus SHR ± quinapril ± Antibiotics:
↑ Lachnospiraceae, Ruminococcus, Prevotella,
Oscillibacter, Ruminococcaceae UCG_014,
Lachnospiraceae UCG_006, Coprococcus 3,
Coprococcus 2. Faecalibaculum, Desulfovibrio,
Oscillospira

NA

Shi et al., 2022 SHRSP Genetic SHRSP had elevated SBP
at age 8 weeks

SHRSP versus WKY
↓ Firmicutes, Deferribacterota, Oscillibacter
↑ Bacteroidota, Verrucomicrobiota,
Proteobacteria, Akkermansia, Allobaculum,
Parasutterella

NA

Wu et al., 2022 SD rats Effect of captopril in
DOCA-induced HTN

SBP was significantly
decreased by CAP
treatment in DOCA group

DOCA: ↑ Escherichia_Shigella, Eubacterium
nodatum group, Ruminococcus_2

SHAM: ↑ Staphylococcus,Helicobacter, Candidatus
Saccharimonas and Mucispirillum and genera
Ruminococcaceae UCG007 and Peptococcus
DOCA ± CAP: ↑ Bifidobacterium, Victivallis,
Akkermansia, Aerococcus, Blautia, Tyzzerella_3
and Hydrogenoanaerobacterium
↓ Proteobacteria, Cyanobacteria

Wang et al., 2022 SD rats Cold (4 degree)-induced
HTN

Cold expose for 6 weeks
induced HTN

Cold-exposed group:
↑ Bacteroidetes, Prevotella 1, Quinella,
Butyricimonas, Peptococcus, Rothia,
Senegalimassilia
↓ Firmicutes

Control group:
↑ Lactobacillus, Lachnospiraceae UCG-008,
Ruminococcaceae UCG-013, Pasteurella,
Lachnospiraceae XPB1014 group,
Ruminococcaceae UCG-010, Coprococcus 3,
Lachnospira, Papillibacte, Anaerovorax,
Lachnospiraceae NK4B4 group and
Acetitomaculum

Zheng et al., 2022 Wistar rats HSD HSD-induced HTN High salt:
↑ Bacteriodetes, Tenericutes, B. animalis
↓ Firmicutes
Unique to HSD group

Low salt:
↑ Ruminococcus_2, Butryricoccus, Lactobacillus
acidophilus
↓ Allobaculum
Unique to low salt group

(Continued)
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individuals from diverse populations for building a repository that
includes genomic data, along with variables such as lifestyle, socio-
economic factors, environment and biological factors (All of Us
Research Program Investigators, 2019). The United States is a
melting pot of diverse populations from around the world. It is
therefore particularly interesting to explore this database for further
enhancing the power of PRS for HTN.

Limitations for PRS-based predictions for HTN

Despite the promise and potential of PRS for HTN, there are clear
barriers for its application in a clinical setting. One of the main
concerns is the environmental component, which has larger effects
than the genetic component on BP and may skew the prediction
scores. Additionally, PRS analyses are not well-standardized and
may lead to faulty interpretations (Choi et al., 2020). Thus, the
focus must move from association with case–control status to
individualized PRS for enhancing disease prediction (Lewis and
Vassos, 2020). Additionally, absolute risks for the disease should be
converted from relative risks that compare people across the PRS
continuum with a control group (Torkamani et al., 2018; Sugrue
and Desikan, 2019). When using PRS for HTN prediction, man-
agement and treatment, it is also required to rigorously differen-
tiate between essential HTN and secondary HTN. Finally, as is the
case with all diseases, there are ethical concerns regarding the
application of PRS for HTN, which may escalate health inequities
(Minari et al., 2018; Martin et al., 2019; Vaura et al., 2021).

Progress beyond GWAS: What are we missing?

Asmentioned above, the premise of using PRS alone for HTN lacks
power because of the environmental factors contributing to its
etiology. In this context, it is important to note that a prominent,
previously unknown, and relatively recent factor identified as con-
tributing to BP regulation is the composition of gut microbiota. As
shown in Figure 1a,b, the numbers of studies on microbiota and
HTN is sharply rising in both animal models and humans. Inter-
estingly, the sheer numbers of such studies currently surpasses that
of GWAS studies, indicating its importance. In the following sec-
tions, we review these studies and propose that the inclusion of
microbiota signatures and their functional readouts along with the
genetic makeup of the host may enhance the power of PRS
for HTN.

Gut microbiota and HTN

A large body of evidence has emerged in the last decade support-
ing the role of themicrobiota in BP regulation. Our group has been
at the forefront of this research. In 2010, it was shown that
knockout of toll-like receptor 5 (Tlr5) in mice resulted in elevated
BP (Vijay-Kumar et al., 2010). Tlr5 is a receptor for the bacterial
protein flagellin, suggesting a link between gut microbiota and
HTN. However, the major focus of this report was on metabolic
syndrome, of which BP is a hallmark. The first evidence for a
direct link between gut microbiota and BP regulation in a genetic
model of HTN was reported in 2015 in Dahl salt-sensitive (DSS)
rat (Mell et al., 2015). Shortly thereafter, an association between
gut dysbiosis and HTN in spontaneously hypertensive rats (SHR),
angiotensin II-induced hypertensive rats, sleep apnea-induced
hypertensive rats (Lloyd et al., 2015) and hypertensive humansTa
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Table 2. The association observed between human hypertension, gut microbiota and various interventions

References Model Intervention Taxa positively associated with BP Taxa negatively associated with BP

Munukka et al.,
2012

74 premenopausal women and 11 healthy females NA Genera:
Proportion of Eubacterium rectale- Clostridium coccoides
(compared to nonmetabolic disorder group and
normal-weight women group)

NA

Queipo-Ortuño
et al., 2012

10 healthy male volunteers Red wine polyphenols
and ethanol

Genera:
Enterococcus, Prevotella, Bacteroides, Bifidobacterium,
Bacteroides uniformis, Eggerthella lenta, Blautia
coccoides-E. rectale groups

NA

Gomez-Arango
et al., 2016

86 overweight versus 119 obese women 16 weeks gestation NA Genera:
Blautia, Odoribacter, families Odoribacteraceae
Clostridiaceae
Christensenellaceae. (More blood pressure in obese
women)

Li et al., 2017 41 healthy controls, 56 pre-hypertensives, 99
primary hypertensives

Fecal microbiota
transplant

Genera:
Prevotella, Klebsiella, Porphyromonas, Actinomyces,
Desulfovibrio, Fusobacterium

Genera:
Bacteroides, Faecalibacterium, Oscillibacter,
Roseburia, Bifidobacterium, Coprococcus, Butyrivibrio,
Clostridium, Enterococcus, Blautia

Yan et al., 2017 60 primary hypertensives and 60 controls NA Genera:
Klebsiella, Clostridium, Streptococcus, Parabacteroides,
Eggerthella, Salmonella
Phylum: Proteobacteria

Genera: Faecalibacterium prausnitzii, Roseburia and
Synergistetes
Phylum: Actinobacteria

Wilck et al.,
2017

12 healthy males Dietary salt NA Genera:
Lactobacillus spp.

de la Cuesta-
Zuluaga et al.,
2018

441 men and women Fecal SCFA excretion Genera:
Enterobacter hormaechei, Haemophilus parainfluenzae,
Streptococcus, SMB53

NA

Kim et al., 2018 22 hypertensives and 18 reference cohorts NA Genera:
Alistipes finegoldii, Dorea, Alistipes indistinctus

Genera:
E. rectale, Bacteroides thetaiotaomicron, Klebsiella,
Burkholderiales bacterium, Burkholderiales noname,
Paraprevotella xylaniphila, Bacteroides salyerside,
Veillonella, Paraprevotella clara, Ruminococccus
callidus

Liu et al., 2018 94 hypertensives and 94 healthy controls NA Genera:
E. rectale
Phylum:
Firmicutes

Genera:
B. thetaiotaomicron, Bifidobacterium

Jackson et al.,
2018

756 hypertensives and 1,790 controls Prescription
medication

Family:
Lactobacillaceae, Streptococcaceae, Enterococcaceae

Family:
Dehalobacteriaceae, Christensenellaceae,
Oxalobacteraceae, Rikenellaceae, Clostridiaceae,
Anaeroplasmataceae, Peptococcaceae

Ried et al., 2018 49 participants with uncontrolled hypertension Kyolic aged garlic
extract supplement

NA Genera (increased in garlic supplement group
compared to placebo):
Lactobacillus
Clostridia species
Genera (increased in placebo compared to garlic
supplement group): Faecalibacterium prausnitzi

(Continued)
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Table 2. (Continued)

References Model Intervention Taxa positively associated with BP Taxa negatively associated with BP

Han et al., 2018 99 nontreated hypertensives, 56 pre-hypertensives
and 41 normotensives

NA Genera:
Prevotella copri in HTN and pre-HTN group
Cronobacter phage CR3 in pre-HTN
Cnaphalocrocis medinalis granulovirus in HTN group

Streptococcus virus phiAbc2, Salmonella phage vB
SemP Emek, Mycobacterium phage Toto

Dan et al., 2019 67 normotensives
62 hypertensives

NA Genera:
Acetobacteroides, Alistipes, Bacteroides, Barnesiella,
Christensenella, Clostridium sensu stricto, Cosenzaea,
Desulfovibrio, Dialister, Eisenbergiella, Faecalitalea,
Megasphaera, Microvirgula, Mitsuokella,
Parabacteroides, Proteiniborus, Terrisporobacter

Genera:
Anaerotruncus, Prevotella, Oscillibacter,
Butyricimonas, Acetobacteroides, Acidaminobacter,
Adlercreutzia, Anaerotruncus, Asteroleplasma,
Bulleidia, Cellulosilyticum, Clostridium III, Clostridium
IV, ClostridiumXlVa, Coprobacter, Enterococcus,
Enterorhabdus, Flavonifractor, Gemmiger,
Guggenheimella, Intestinimonas, Lachnospiracea_
incertae_sedis, Lactivibrio, Lactobacillus,
Macellibacteroides, Marvinbryantia, Olsenella,
Paraprevotella, Parasutterella,
Phascolarctobacterium, Prevotella, Romboutsia,
Ruminococcus, Sporobacter, Sporobacterium,
Sutterella, Vampirovibrio, Veillonella, Victivallis

Sun et al., 2019 183 hypertensives and 346 normotensives. NA Genera:
Robinsoniella, Catabacter
Family:
Veillonellacaeae

Genera:
Sporobacter, Anaerovorax, Ruminococcus
Family:
Ruminococcaceae

Li et al., 2019b 63 hypertensives with treatment-naïve
hypertension, 104 hypertensive patients
undergoing antihypertensive treatment, 26 normal
bp patients with hyperlipidemia, 42 healthy
controls

NA Genera:
Megamonas, Megasphaera, Lactococcus, Alistipes,
Subdoligranulum

Genera:
Clostridium sensu stricto 1, Romboutsia,
Erysipelotrichaceae UCG.003, Ruminococcus 2,
Intestinibacter

Mushtaq et al.,
2019

50 patients with grade 3 hypertension, 30 healthy
controls

NA Genera:
Prevotella_9, Megasphaera, Parasutterella, Escherichia-
Shigella, Phascolarctobacterium faecium

Genera:
F. prausnitzii, B. uniformis

Huart et al.,
2019

38 hypertensives, 7 borderline and 9 normotensives 21 hypertensives
under
antihypertensive
medication

Genera:
Clostridium sensu stricto 1

Genera:
Ruminococcaceae_ge_ DQ807686,
Clostridiales_ge_16S_ OTU1343

Bellikci-Koyu et
al., 2019

12 Kefir consuming group and 10 unfermentedmilk
consuming group. All hypertensives

Kefir and unfermented
milk consumption

Phylum:
Bacteroidetes

Genera:
Lactobacillus
Bifidobacterium spp
Phylum:
Actinobacteria
Firmicutes
Verrucomicrobia

Ferguson et al.
n.d.

39 subjects with normal salt intake and 93with high
sodium intake

Dietary salt Genera:
Prevotella, Bacteroides
Family:
Ruminococcaceae
Phylum:
Firmicutes, Proteobacteria

NA
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Table 2. (Continued)

References Model Intervention Taxa positively associated with BP Taxa negatively associated with BP

Verhaar et al.,
2020

1,937 hypertensives and 2,735 normotensives Fecal SCFAs Genera:
Klebsiella spp., Streptococcus

Genera:
Roseburia spp., Reseburia hominis, Ruminococcaceae,
Clostridium sensu stricto 1, Romboutsia,
Enterorhabdus

Shah et al.,
2020

ABO study (Enterotype 1; n = 53 and Enterotype 2;
n = 78) and Fair study (N = 29)

Dietary soy Genus:
Prevotella, Dialister
(in Enterotype 1)

NA

Palmu et al.,
2020

3,291 hypertensives and 3,662 normotensives Dietary sodium Genera:
Anaerostipes, Anaerotruncus, Bacteroides, Blautia,
Citrobacter, Colinsella, Coprobacillus, Coprococcus,
Dielma, Dorea, Eisenbergiella, Enterobacter,
Erysipelatoclostridium, Faecalitalea, Fournierella,
Holdemania, Intestinibacter, Kluyvera, Lactococcus,
Megasphaera, Phascolarctobacterium,
Ruthenibacterium, Mitsuokella, Paraprevotella,
Sanguibacteroides, Sutterella, Turicibacter,
Acidaminococcus, Actinomyces, Lactobacillus salivarius

Genera:
Lactobacillus paracasei, Adlercreutzia, Alloprevotella,
Anaerotruncus, Coprobacillus, Faecalicoccus,
Fournierella, Hungatella, Parasutterella, Prevotella,
Sellimonas, Senegalimassilia, Solobacterium,
Tyzzerella

Chang et al.,
2020

27 Preeclampsia (PE) and 36 healthy pregnant
control

NA Genera (in PE):
Enterobacter, Escherichia_Shigella
Phylum:
Proteobacteria

Genera (in PE):
Blautia, Eubacterium_rectale, Eubacterium_halii,
Streptococcus, Bifidobacterium, Collinsella, Alistipes,
Subdoligranulum
Phylum:
Firmicutes

Tindall et al.,
2020

42 cardiovascular risk adults Standard western diet
run-in and isocaloric
study diets

Genera:
After walnut diet (relative to standard western diet)
characterized by
an elevated blood pressure, LDL cholesterol and BMI
Roseburia, Eubacterium eligensgroup, Lachnospiraceae
UCG001, Lachnospiraceae UCG004, Leuconostocaceae
Relative to walnut fatty acid-matched diet
Gordonibacter
After the walnut fatty acid-matched diet
(relative to standard western diet)
Roseburia, E. eligensgroup
After the oleic acid replaces α-linolenic acid diet
(relative to standard western diet)
Clostridialesvadin BB60group

Genera:
After the whole walnut diet
Lachnospiraceae (inversely correlated with blood
pressure)

Silveira-Nunes
et al., 2020

48 hypertensives and 32 normotensives NA Genera:
L. salivarius, Eggerthella, Bacteroides plebeius

Genera:
Roseburia faecis, F. prausnitzii, Fusobacterium,
Coprococcus

Takagi et al.,
2020

54 controls, 97 hypertensives 96 hyperlipidemia
and 162 type 2 diabetes mellitus

NA Genera:
Collinsella
Bifidobacterium
Phylum:
Actinobacteria

Phylum:
Bacteroidetes

Capper et al.,
2020

36 healthy participants (19 beetroot group and 17
control group)

Whole beetroot
consumption in older
population

Genera:
Prevotella_9
Phylum:
Bacteroidetes

Genera:
Alistipes,
Faecalibacterium, Akkermansia
Christensenellaceae_R-7 group

(Continued)
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Table 2. (Continued)

References Model Intervention Taxa positively associated with BP Taxa negatively associated with BP

Calderón-Pérez
et al., 2020

29 nontreated hypertensives and 32 normotensives NA Genera:
Bacteroides coprocola, B. plebeius and genera of
Lachnospiraceae

Genera:
Ruminococcaceae NK4A214, Ruminococcaceae_UCG-
010, Christensenellaceae_R-7, F. prausnitzii, Roseburia
hominis

Wan et al., 2020 First day versus 2weeks versus 6weeks postpartum
milk from 117 mothers

Mother’s milk NA Lactobacillus is lower in 2 weeks milk in gestational
pre-hypertensive mothers.

Louca et al.,
2021

397 hypertensives and 474 normotensives NA NA Genera:
Ruminiclostridium 6

Wang et al.,
2021

93 hypertensives and 15 healthy controls Effect of
electroacupuncture in
healthy and HTN
group

Genera:
Escherichia-Shigella
Firmicutes/Bacteroidetes lowered after treatment

Genera:
Blautia

Liu et al., 2021b 13 primary aldosteronism (PA) patients, 26 sex-
matched primary hypertensives, and 26 sex-
matched healthy controls

PA and PHTN patients
received
antihypertensive
medications before
recruitment.

Genera:
Megamonas,
Sutterella
Lactobacillus,
Enterococcus
Bacillus,
Bifidobacterium, Phascolarctobacterium, Pseudomonas,
Weissella, Ruminococcus gnavus group, Pediococcus,
Acinetobacter, Lactococcus, Akkermansia, Alloprevotella,
Staphylococcus, Wolbachia, Halomonas, Bradyrhizobium

Genera:
Faecalibacterium, Subdoligranulum, Roseburia,
Coprococcus,
Blautia, Ruminococcus, Agathobacter, Alistipes,
Adlercreutzia, Paraprevotella, Erysipelotrichaceae UCG
003
Christensenellaceae R-7 group
Eubacterium ventriosum group
E. eligens group
Firmicutes/Bacteroidetes ratio
Phylum: Proteobacteria
Family: Lachnospiraceae

Wan et al., 2021 300 healthy controls, 300 hypertensives and 300
coronary heart disease patients

NA Genera:
Enterobacteriales
Escherichia
shigella

Genera:
Acidaminococcaeceae
Phascolarctobacterium
Phylum:
Bacteroidetes, Bacteroidia

Zhong et al.,
2021

73 hypertensives and 187 normotensives Washed microbiota
transplant from
control to HTN

Genera:
Parasutterella. Solobacterium

Genera:
Senegalimassilia

Calderón-Pérez
et al., 2021

29 hypertensives versus 32 normotensives Phenolic compound
(sources such as
coffee, olive fruits and
vegetables)

Genera:
Bacteroides
coprocola
Bacteroides
plebeius

Genera:
Ruminococcaceae NK4A214,
Ruminococcaceae UCG-010,
Christensenellaceae R-7,
F. prausnitzii

Joishy et al.,
2022

37 normotensives and 34 hypertensives NA Genera:
Prevotella (different ASVs), Megasphaera, Butyricoccus,
Prevotellaceae, Faecalibacterium, Lachnoclostridium,
Howardella and g-UCG04

Genera:
Prevotella (other ASVs), Alloprevotella, Streptococcus
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were reported (Yang et al., 2015). Since these initial groundbreak-
ing reports, multiple publications have demonstrated associations
of gut microbiota with BP regulation in animal models and
humans (Tables 1 and 2).

One question of assessing microbiota composition in rats is
whether they are translationally relevant for humans. Human gut
microbiota composition is more similar to rats than to mice
(Flemer et al., 2017), although this question is evolving with con-
tinued development of sequencing methods. Here, we access the
commonalities in taxonomic rearrangements occurring during
HTN in rats and humans. One of the themes emanating from BP
association studies using rat as model organism is the application of
the Firmicutes/Bacteroidetes (F/B) ratio in assessment of gut dys-
biosis in HTN. Increased F/B ratio is regarded as a marker of gut
dysbiosis and is consistently reported both in genetic and induced

hypertensive rat models including the SHR (Yang et al., 2015; Hsu
et al., 2020; Li et al., 2020), DSS rats (Mell et al., 2015; Waghulde
et al., 2018) high-fat diet fed rats (Hsu et al., 2019), NG-nitro--
arginine methyl ester (-NAME) treated rats (Robles-Vera et al.,
2018) and angiotensin II induced HTN rats (Yang et al., 2015). In
further support, normalizing the F/B ratio by administration of the
anti-inflammatory antibiotic, minocycline, alleviated angiotensin
II-induced HTN (Yang et al., 2015). This direct relationship
between F/B ratio and BP has also been documented in various
mouse models (Marques et al., 2017; Toral et al., 2018). Similarly,
human studies (Mushtaq et al., 2019; Silveira-Nunes et al., 2020;
Joishy et al., 2022) also support a direct relationship between F/B
ratio and BP. In contrast, cold-induced HTN (Wang et al., 2022) is
one of the rare contexts wherein F/B ratio was not altered signifi-
cantly. Nevertheless, more robust markers of gut dysbiosis should

Figure 1. (a) The numbers of PubMed publications (2000–2022) related to quantitative trait locus (QTL), genome-wide association studies (GWAS), microbiota, artificial intelligence
in rats and mice hypertension. The search keywords were QTL, hypertension, rats, mice, GWAS, microbiota and artificial intelligence. (b) The numbers of PubMed publications
(2000–2022) related to linkage, genome-wide association studies (GWAS), microbiota and artificial intelligence in human hypertension. The search keywords were linkage,
hypertension, humans, GWAS, microbiota and artificial intelligence.
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be developed to posit strong correlation between decreased micro-
bial diversity and HTN.

Beyond the F/B ratio, remodeling of the overall composition of
gut microbiota has been documented in the context of HTN. For
example, enrichment in gut bacterial lactate producers such as
Streptococcus and Turicibacter (Yang et al., 2015; Toral et al.,
2019b; Robles-Vera et al., 2020b) and depletion of butyrate produ-
cers such asCoprococcus, and Pseudobutyrivibrio (Yang et al., 2015;
Durgan et al., 2016) are reported in hypertensive rodents. Import-
antly, Streptococcus and Coprococcus are also taxa similarly associ-
ated with humanHTN (Yan et al., 2017; de la Cuesta-Zuluaga et al.,
2018; Palmu et al., 2020; Verhaar et al., 2020), and normalizing
abundance of these with minocycline and captopril (Yang et al.,
2015; Li et al., 2020) lowered BP, further supporting their associ-
ations with BP.

Dietary interventions have also been used to study the relation-
ship between gut microbiota and BP. Dietary salt can modulate the
composition ofmicrobiota by depleting the abundance of beneficial
microbiota including several Lactobacilli species (Mell et al., 2015;
Wilck et al., 2017; Bier et al., 2018; Yan et al., 2020). An association
between the depletion of Lactobacillus and HTN has also been
noted in response to maternal and post-weaning high-fat diet,
and it suggested that Lactobacillus may be beneficial in curbing
developmental HTN (Tain et al., 2018; Hsu et al., 2019). Although
the mechanisms remain to be clarified, administration of Lactoba-
cillus murinus prevented the expansion of proinflammatory
IL-17A-producing CD4+ TH17 lymphocytes in small intestine,
colon, and the splenic lamina propria (Wilck et al., 2017). Data
from human studies with Lactobacillus are however conflicting, as
they may be enriched or depleted in hypertensive patients (Wilck
et al., 2017; Palmu et al., 2020; Silveira-Nunes et al., 2020;Wan et al.,
2020; Liu et al., 2021b).

Gut metabolities, derived either from gut microbiota or involv-
ing both gut microbiota and host is of growing interest in the
context of HTN. One such important class of microbial metabolites
is short-chain fatty acid (SCFA). SCFAs such as acetate, propionate
and butyrate are produced by bacterial fermentation of dietary
carbohydrates and have been linked with BP regulation. It is
reported that decreased SCFA production and the supplementation
of SCFA lowered BP in rat and mouse HTN models, indicating the
potential for antihypertensive therapy (Marques et al., 2017; Kim
et al., 2018; Bartolomaeus et al., 2019; Robles-Vera et al., 2020c). In
deoxycorticosterone acetate (DOCA)-salt-induced HTN, high-
fiber diet lowered BP and enriched abundance of gut microbes
producing acetate (Marques et al., 2017). Interestingly, higher fecal
levels of SCFA were associated with hypertensive individuals com-
pared to normotensives (de la Cuesta-Zuluaga et al., 2018; Huart
et al., 2019; Calderón-Pérez et al., 2020). Further, increased fecal
SCFA was accompanied by decreased plasma SCFA and depleted
butyrate-producing bacteria which suggests dysregulated produc-
tion of SCFA in HTN condition (Calderón-Pérez et al., 2020). The
translational relevance and progress of animal as well as clinical
studies in SCFA and BP have resulted in a clinical trial to determine
the full efficacy of SCFA to treat HTN (Australian New Zealand
Clinical Trials Registry ACTRN12619000916145). This phase II
clinical trial used two SCFAs, acetate and butyrate which were
supplemented with high-amylose maize, and the patients receiving
the treatment showed 24-h BP lowering effect with the increase in
gut microbes producing SCFA (Jama et al., 2023), which is another
evidence of the promising potential of targeting gut microbiota in
HTN treatment. Another notable microbial metabolite is
trimethylamine-N oxide (TMAO). Trimethylamine is produced

by gut microbiota, and subsequently oxidized in the liver to form
TMAO. Studies have shown the associations between higher
plasma levels of TMAO and CVDs (Koeth et al., 2013, 2019; Wang
et al., 2014). In a meta-analysis involving human studies, higher
circulating TMAO concentration was positively associated with an
increased risk of HTN (Ge et al., 2020). TMAO feeding further
increased BP and promoted vasoconstriction in angiotensin
II-induced hypertensive mice (Jiang et al., 2021). Besides SCFA
andTMAO, there aremanymicrobiota-derivedmetabolites such as
indole, indole-3-acetic acids and secondary bile acids among others,
that may have significant roles in BP regulation (Huć et al., 2018;
Chakraborty et al., 2020a). The knowledge on the effects of these
microbial metabolites is growing, however, the precise underlying
working mechanisms remain largely unknown.

Gut microbiota restructured in HTN: Cause, consequence or
adaptation?

While an association between the reprogramming of gut micro-
biota and HTN is established, whether gut dysbiosis is a cause or a
consequence of HTN is an important question to focus on. Initial
experiments were designed to address this question by using anti-
biotics to eliminate endogenous gut microbiota. However, such
studies did not provide conclusive evidence for cause or conse-
quence because different antibiotics affected BP differently depend-
ing on both the type of antibiotic and the rodent strain (Galla et al.,
2018, 2020).More convincing evidence formicrobiota to cause a BP
effect was obtained using germ-free Sprague Dawley (SD) rats. We
showed that these rats which lack microbiota are hypotensive, with
a prominent loss of vascular tone (Joe et al., 2020). These findings
are the first to clearly demonstrate that the host requires gut
microbiota for BP homeostasis and maintenance of vascular tone
(Joe et al., 2020). One caveat to these studies is that themodel used is
not hypertensive. To establish the cause-effect relationship between
HTN and gut microbiota, animal models such as germ-free hyper-
tensive rat models can be developed. Such hypertensive germ-free
rats will allow for testing the hypothesis that lack of microbiota will
render them resistant to HTN. Currently, the lack of germ-free
hypertensive rats as tools is a technical barrier to understand
whether microbiota cause HTN.

To examine the causality of gut dysbiosis, Adnan et al. (2017)
performed gut microbiota cross-transplants between WKY and
spontaneously hypertensive stroke-prone rats (SHRSP, a rodent
model of HTN associated with high incidence of stroke. They
observed that a stable transplant of SHRSP gut microbiota to
normotensive WKY recipients, by oral gavage, led to a significant
elevation in BP (Adnan et al., 2017). Similar trend was observed in
another study after fecal microbiotal transplantation from SHR to
WKY (Toral et al., 2019b). As an alternative approach to oral
gavage transplants, which involve exposure to antibiotics, Nelson
et al. (2021) swapped WKY and SHRSP gut microbiota using a
cross-fostering protocol. By fostering newborn rat pups with a dam
of the opposite strain, SHRSP rats were populated with a WKY gut
microbiota and vice versa. Under these conditions, WKY rats
harboring SHRSP gut microbiota developed a significantly elevated
BP in adulthood compared to WKY rats with native WKY micro-
biota. Conversely, adult SHRSP rats harboring theWKY gutmicro-
biota presented with significantly lower BP compared to SHRSP
with their native SHRSP microbiota (Nelson et al., 2021). These
data signify that initial colonization of gut microbiota is critical and
has long-lasting consequences on host pathophysiology.
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As highlighted above, research focus has shifted to better
understanding the mechanisms of host-microbiota interactions.
Emerging studies address molecular mechanisms and demon-
strate how BPmay be regulated by bacterial metabolites via effects
on the aryl hydrocarbon receptor (Natividad et al., 2018; Liu et al.,
2021a), and G-protein coupled receptors (Marques et al., 2018; Xu
and Marques, 2022) among others, which may impact end organ
functions of the kidney, vasculature, brain and heart. Emerging
work from Durgan et al. shows that a new mechanism by which
signals derived from the gut microbiota (i.e., metabolites, neuro-
transmitters, endotoxins) may be distributed throughout the host
via packaging into outer membrane vesicles (OMVs). These
OMVs are lipid-bound vesicles (as known as bacterial liposomes)
released from the gut microbiota that are capable of crossing the
gut barrier and entering the systemic circulation. Bacterial OMVs
can carry a wide range of ‘cargo’ including proteins, lipids, and
small RNA, that can be delivered to and exert effects on distant
host cells. They have shown that OMVs from the SHRSP micro-
biota have unique protein and lipid cargo as compared to OMVs
from the WKY microbiota. Additionally, they find that SHRSP
OMVs gavaged to WKY rats leads to significant elevations in BP
(Shi et al., 2021a).

Previous reports showed no gut dysbiosis in pre-hypertensive
SHR (Santisteban et al., 2017; Yang et al., 2020), suggesting that gut
dysbiosis may arise as a consequence of HTN. However, these
studies demonstrated colonic changes in pre-hypertensive SHR
indicating a dysregulated gut barrier before developing HTN.
Future studies should address this more specifically. Nevertheless,
transplant experiments show that gut dysbiosis contributes to HTN
and that manipulation of gut microbiota can alleviate HTN, sug-
gesting that gut microbiota could be a potential therapeutic target.

Gut microbiota as therapeutic targets

There is considerable excitement of targeting gut microbiota for
translational applications as evident from ongoing clinical trials for
microbiota-guided therapies for HTN (https://clinicaltrials.gov/
ct2/results?cond=hypertension&term=minocycline&cntry=&
state=&city=&dist=). In preclinical studies, our group recently
proposed Faecalibacterium prausnitzii as a novel probiotic to
attenuate chronic kidney disease (CKD) conditions, following
demonstrated depletion of F. prausnitzii in CKD patients in eastern
and western human hypertensive populations. Importantly, sup-
plementation of F. prausnitzii in a CKD mouse model not only
ameliorated renal dysfunction, renal inflammation, and the levels
of uremic toxins, but also improved gut ecology and intestinal
integrity (Li et al., 2022). Since F. prausnitzii has also been reported
to be depleted in CVD (Jie et al., 2017; Aryal et al., 2020), and CVD
and CKD are highly correlated, it is possible that enhancing
F. prausnitzii could be beneficial for CVD, for which HTN is a
major risk factor (Li et al., 2022). Supporting this notion, studies
have shown that F. prausnitzii is significantly abundant in normo-
tensive compared to hypertensive humans, demonstrating strong
correlation of this specific microbe with BP (Yan et al., 2017;
Calderón-Pérez et al., 2020). However, in contradiction, Faecali-
bacterium was more enriched in individuals with high BP (Joishy
et al., 2022). Therefore, there is a need to directly examine the
potential of F. prausnitzii in rigorous animal model studies.

In addition to being considered as therapeutic agents, gut
microbiota may be involved in the modulation of our responses
to antihypertensive medications (Kyoung et al., 2022). The efficacy

of angiotensin-converting enzyme (ACE) inhibitors is reportedly
modulated by the gut microbiota (Kyoung and Yang, 2022; Yang
et al., 2022). Our group has recently demonstrated that quinapril,
which is absorbed in the gut and metabolized by esterases in the
liver to yield an active metabolite in circulation is prematurely
catabolized in the gut bymicrobiota. This led to reduced availability
of the active metabolite, quinaprilatin in circulation, which was
associated with reduced BP responses to oral administration of
quinalapril (Yang et al., 2022). We further identified that a specific
microbiota, Coprococcus comes, contains a bacterial form of ester-
ase and may be one of the culprits for the premature quinalapril
degradation and reduction in its efficacy as a BP-lowering agent.
Interestingly, a higher abundance of C. comes is present in the
African American hypertensive population (Yang et al., 2022)
who are known to respond poorly to ACE inhibitor treatments
compared to Caucasian hypertensive patients (Yang et al., 2022).
This proof-of-concept study implicates that gut microbiota is a
crucial factor defining individualized responses to hypertensive
medications that should be addressed in future efficacy studies of
antihypertensive drugs.

Current limitations in microbiome research for HTN

While such physiological studies are clearly important, drawing
conclusions about the role of individual microbes in BP regulation,
based on 16S analysis alone, can be problematic. The issue stems
from the fact that multiple species can carry out the same function
(e.g., generate the same metabolite), also referred to as functional
redundancy. This redundancy likely contributes to the disparate
candidate bacteria identified across hypertensive models and
research facilities (Table 1). Another limitation of 16S analysis is
that it captures a limited portion of the bacterial genome (Lewis
et al., 2021). These limitations can be addressed by sequencing of
whole bacterial genomes known as metagenomic sequencing,
which is an emerging area in HTN research (Walejko et al., 2018;
Shi et al., 2021b). It should be noted that at the current stage, it is a
misnomer to use the term ‘microbiome’ until metagenomes are
reported. With the advent of rapid and cost-effective technologies,
progress in reporting of metagenomes is anticipated to provide a
platform for association studies of metagenomes with HTN. Meta-
genomics however falls short in assessing activity of the identified
bacterial genes. Thus, combining metagenomics with an assess-
ment of the functional output from themicrobiota (i.e., proteomics,
metabolomics, lipidomics) can be especially powerful. A recent
study by the Durgan laboratory examined the role of gut dysbiosis
in the SHRSP model by combining metagenomics with metabolo-
mics analysis of the cecal bacterial content and the host plasma.
While metabolomics revealed significant reductions in cecal and
plasma primary and secondary bile acids in the SHRSP, metage-
nomics pinpointed that specific genes encoding bacterial enzymes
involved in bile acid transformation were also reduced in the
SHRSPmicrobiota. Thus, assessing changes in microbiota function
will be useful in the development of targeted approaches for the
treatment of HTN.

One other limitation in elucidation of functional consequences
of host-microbiota interactions is addressing the complexity of
such interactions. Gut microbiota and the host have evolved for
centuries to live in complete symbiosis. This means that they are
mutually dependent for survival and homeostasis. For example,
humans are not capable of degrading fiber (Kaoutari et al., 2013;
Cockburn and Koropatkin, 2016). Gut bacteria aid the host by
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fermentation of fiber, thus generating SCFAs which are the main
source of energy for the host colonic epithelium (Koh et al., 2016;
Baxter et al., 2019). Thus, the reduction of beneficial SCFA-
producing bacteria, as seen in human and rodent HTN (Yang
et al., 2015; Gomez-Arango et al., 2016; Kim et al., 2018; Yang
et al., 2019b; Calderón-Pérez et al., 2020; Overby and Ferguson,
2021), disrupts the symbiotic host-microbiota relationship lead-
ing to disease. In return, the bacteria have most likely evolved by
adapting and responding to the host, as evidenced by the effects of
genetic host manipulations on gut bacterial composition (Yang
et al., 2017; Bartley et al., 2018). Recent studies have attempted to
address the complexity of host-microbiota interactions in symbi-
osis and dysbiosis. Of note, a recent study using isotope tracing
found that the host can regulate the composition of gut bacteria by
allowing the passage of host-circulating metabolites into the gut
(Zeng et al., 2022). These host/gut cometabolites were found to be
beta-hydroxybutyrate (BHB), lactate and urea, among other,
which are preferentially utilized as nutrients by certain bacterial
communities. Future studies should investigate how these come-
tabolites contribute to regulation of gut microbiota eubiosis and
how this interaction reflects on BP regulation. We have recently
shown that the circulating BHB and gut microbiota are both salt-
responsive (Chakraborty et al., 2018). Moreover, we found that
circulating BHB was decreased with high salt feeding, and that
supplementation with BHB alleviated salt-sensitive HTN, but the
contribution of gut microbiota to BHB generation or the potential
direct effect of BHB on gut microbiota in BP regulation remains
unknown. Thus, gut microbiota may have coevolved with the host
to produce, utilize and respond to a variety of the same
metabolite-substrate-effectors, reflected in the expression of some
of the same genes by the bacteria and the host (Bartley et al., 2018;
Yang et al., 2018, 2022; Hsu et al., 2022). Thus, the utilization of
combined omics, employed at both microbiota and host levels,
will lead to better predictions and targeting of host-microbiota
interactions for therapeutics.

In conclusion, as noted through the numbers of studies reported
in PubMed, microbiota is an emerging and important research area
in HTN, surpassing that of GWAS and QTL studies of HTN
(Figure 1a,b). Although research is still in early conception, given
that the gut metagenomes co-evolve with the host and are critical
for BP regulation, risk prediction forHTNusing a PRSmay bemore
informative in combination with new bacterial analysis approaches
leading up to a ‘MRS’ that encompass both the metagenomic
profiles and the functional bacterial readouts. The groundwork
required for accumulating metagenomic signatures is admittedly
daunting because of the fluctuating nature of microbiota, but
collecting these data is important for its ultimate convergence with
PRS for enhancing predictive strategies for HTN. Such an endeavor
demands intense computational analyses that may only be address-
able with AI strategies.

An application of AI and machine learning in HTN research

AI refers to methods for transferring human intellect to computers
that can stimulate human learning and thought processes by using
sophisticated algorithms and powerful computing capacity to pro-
cess large amounts of data (Chaikijurajai et al., 2020; Tsoi et al.,
2021). Machine learning (ML) and deep learning (DL) are the two
subclasses of AI (Tsoi et al., 2021).ML finds the association between
the provided training datasets with variables and then performs
predictive analyses on the new sets of data (Tsoi et al., 2021). ML is

further classified into supervised and unsupervised learning
(Chaikijurajai et al., 2020). Supervised ML relies on the labeled
input–output paired data which is then used for the prediction of
known output (Cheng et al., 2011). It employs a variety of methods,
including neural networks, support vectormachines, random forest
and naive Bayes (Cheng et al., 2011). On the other hand, unsuper-
vised ML employs unlabeled datasets to predict unknown outputs
by detecting underlying patterns or correlations among the vari-
ables (Cheng et al., 2011; Chaikijurajai et al., 2020). The principal
use of DL is pattern recognition, such as in voice and image analysis
(Chaikijurajai et al., 2020).

AI is increasingly being used in human HTN research (-
Figure 1b). Recent studies have shown how AI has the ability to
reduce the worldwide burden of HTN and promote the develop-
ment of HTN-related precision medicine (Golino et al., 2014; Ye
et al., 2018; Lacson et al., 2019; Kanegae et al., 2020; López-
Martínez et al., 2020; Soh et al., 2020; Schrumpf et al., 2021). As
a result, the main goal of these investigations is to enhance the
clinical management of HTN. Persell et al. conducted a random-
ized clinical trial of 297 persons with uncontrolled HTN to
examine the impact of AI, smartphone coaching apps monitoring
systolic BP and HTN-associated behavior. At the 6-month
follow-up, the researchers did not discover decreased BP, but
they did create a space for the possibility of different treatment
effects among age subgroups (Persell et al., 2020). Pan et al.
(2019) coupled auscultatory waveforms data with ML to measure
BP from Korotkoff sound recordings and examine the impact of
movement disturbance on BP regulation. Among 40 healthy
volunteers, their brand-new DL-based automatic BP measure-
ment instrument showed encouraging accuracy in BPmonitoring
both when resting and not resting (Pan et al., 2019). In 965 par-
ticipants, Li et al. employed ML to identify genetic and environ-
mental risk factors for HTN. To identify risk factors for HTN in
the Northern Han Chinese population, they created two separate
models for systolic BP (composed of age, body mass index, waist
circumference, exercise [times per week], parental history of
HTN [either or both], and 1 SNP (rs7305099)) and diastolic BP
{composed of weight, drinking, exercise [times per week], trigly-
ceride, parental history of HTN [either or both] and 3 SNPs
(rs5193, rs7305099, rs3889728)} with an AUC (area under the
curve) of 0.673 and 0.817 for the systolic BP and diastolic BP
models respectively (Li et al., 2019a). Future use of these AI/ML
technologies to HTN may be combined to create a ‘clinical risk
score’ (CRS).

To investigate the multifactorial causes of high BP, Louca et al.
recently combined environmental, dietary, genetic, metabolite,
biochemical and clinical data from two different cohorts. Then
they applied the ML XGBoost algorithm to this multimodal
domain. They included 4,863 TwinsUK subjects for the study and
used 2,807 subjects from the Qatari Biobank to validate their
findings. They discovered 30 overlapping features between the
two groups, including age, BMI, sex, dihomo-linolenate, urate,
cis-4-decenoyl cartinine, lactate, glucose, cortisol, chloride, histi-
dine and creatinine to be associated with HTN. These BP biomark-
ers are crucial for prioritizing mechanistic investigations and for
finding effective novel therapies for HTN (Louca et al., 2022).
Although this research examined a number of significant CRS
and PRS domains to pinpoint the critical elements involved in
the regulation of BP, gut microbiota features, which are crucial
for building MRS, were not taken into account. Nakai et al. in their
recent study performed the first gut microbiome multisite study
involving 70 human subjects with HTN and without HTN. The
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authors combined ML with microbiome pathway analysis and
reported differential microbial gene pathways between hyperten-
sive and normotensive participants despite similar gut microbiota
profile (Nakai et al., 2021).

As one of the initial steps toward application of AI/ML in
development of a MRS for HTN, our group had recently interro-
gated if the composition of microbiota may be used to classify
patients with or without CVDs (Aryal et al., 2020). Due to the lack
of information on the status of HTN in the American Gut Project,
we resorted to classification of a broader group of patients. Using
the top operational taxonomic unit features obtained from fecal 16S
ribosomal RNA sequencing data of 478 CVD and 473 non-CVD
human subjects, random forest, a supervised ML algorithm, was
able to correctly classify between patients with CVD and without
CVD, with an AUC value of 0.70. It denotes the prospective
capacity of ML for case and control distinction (Aryal et al.,
2020). Considering the wide range of variability in binning CVD
as a single phenotype, an AUC of 0.7 further signifies that micro-
biota contribute to CVD, and that an association between disease
and microbiota can be identified using AI. To move closer to the
eventual objective of creatingMRS for HTN, such data are required
in the context of HTN.

Beyond its usage in healthcare, AI/ML can be used to under-
stand GWAS results by spotting intricate underlying data patterns
that make predictions easier. Such methodology improved the
prediction of PRS for height, body mass index and diabetes (Paré
et al., 2017). Since there exist high-quality GWAS data for HTN,
there is a possibility that similar AI/ML methodologies will be

merged with CRS and MRS to improve the translational capacities
of PRS for HTN (Figure 2).

Limitations of AI in HTN research

Although the use of AI in HTN has the potential to revolutionize
risk prediction, this goal has significant constraints as listed below:
(i) There are currently no standards for reporting AI investigations
in HTN cases with sufficient rigor. In many publications, for
instance, external validation datasets are not used. Very few
research articles report the model calibration metrics and, bias
brought about by algorithms is typically disregarded (Du Toit
et al., 2023). (ii) There is a paucity of open-access databases that
provide information on the genotypic and phenotypic characteris-
tics of HTN. (iii) a major current limitation is that large cohort data
containing both genomic and microbiota data are lacking.
(iv) AI/ML operates in a ‘black box’ (i.e., it is unclear how it does
what it does), which is claimed to be the main reason why phys-
icians are reluctant to implement AI technology in clinical practice
(Cheng et al., 2011). (v) the interpretability of the AI models, the
absence of cause-and-effect reasoning, the capacity to self-monitor
errors, and the presence of societal biases are a fewmore drawbacks
(Padmanabhan et al., 2021).

Some solutions for the limitations mentioned above could be to
(i) develop easily interpretable AI models which can discern the
relationship between the variables contributing to HTN,
(ii) promote initiatives for setting up large-scale and rapid data-

Figure 2. The integration of polygenic risk score, metagenomic risk score and clinical risk score using artificial intelligence is required for the precision medicine in hypertension.
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sharing of large cohort data specifically pertinent to HTN and
(iii) development of standardized methodologies to control for
rigor of human judgment into the AI systems for determining
errors (Padmanabhan et al., 2021).

In conclusion, this review has summarized the mounting evi-
dence that BP is closely correlated with the microbiota, whichmake
up the second-largest genome after the host genome. In light of this
borgeoning evidence, we propose exploiting such data for the
development of aMRS as a predictive index for HTN. Additionally,
we propose using MRS as part of a larger framework that incorp-
orates PRS and CRS to build an AI-based model. Considerable
research efforts to generate MRS may serve as a tool to enhance the
existing, primarily insufficient predictive capability for the man-
agement of HTN.
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