ON THE NILPOTENT RANKS OF CERTAIN SEMIGROUPS OF
TRANSFORMATIONS

by G. U. GARBA

(Received 5 November, 1991)

1. Introduction. Let \(P_n \) be the semigroup of all partial transformations on the set \(X_n = \{1, \ldots, n\} \). As usual, we shall say that an element \(\alpha \) in \(P_n \) is of type \((k, r)\) or belongs to the set \([k, r]\) if \(|\text{dom } \alpha| = k\) and \(|\text{im } \alpha| = r\). The completion \(\alpha^* \) of an element \(\alpha \in [n - 1, n - 1] \) is an element in \([n, n]\) defined by

\[
ia^* = j, \quad x\alpha^* = x\alpha \text{ otherwise},
\]

where \(\{i\} = X_n \setminus \text{dom } \alpha \) and \(\{j\} = X_n \setminus \text{im } \alpha \).

For \(n \) even, the subsemigroup \(\text{SI}_n \) of \(P_n \) consisting of all strictly partial one–one transformations was proved to be nilpotent-generated by Gomes and Howie [2]. If \(n \) is odd, they showed that the nilpotents in \(\text{SI}_n \) generate \(\text{SI}_n \setminus \text{W}_{n-1} \), where \(\text{W}_{n-1} \) consists of all \(\alpha \in [n - 1, n - 1] \) whose completions are odd permutations.

Simultaneously and independently, Sullivan [7] showed that the subsemigroup \(\text{SP}_n \) of \(P_n \) consisting of all strictly partial transformations of \(X_n \) is nilpotent-generated if \(n \) is even. If \(n \) is odd, the nilpotents in \(\text{SP}_n \) generate \(\text{SP}_n \setminus \text{W}_{n-1} \).

The rank of a semigroup \(S \) is the cardinality of any subset \(A \) of minimal order in \(S \) such that \(\langle A \rangle = S \). If the generating set \(A \) consists of nilpotent elements only, then we shall refer to the cardinality of \(A \) as the nilpotent rank of \(S \). Since one of the semigroups we will be considering is an inverse semigroup, we would like to clarify the notion of a generating set in an inverse semigroup. Given a subset \(A \) in an inverse semigroup \(S \), we shall always want to consider the smallest inverse subsemigroup containing \(A \). In effect this is the set of all finite products of elements of \(A \) and their inverses. Following [3], we shall use the notation \(\langle \langle A \rangle \rangle \) for this inverse subsemigroup. Accordingly, by the rank of an inverse semigroup \(S \) we shall mean the cardinality of any subset \(A \) of minimal order in \(S \) such that \(\langle \langle A \rangle \rangle = S \).

Let \(N \) and \(M \) be the sets of all nilpotent elements in \(\text{SI}_n \) and \(\text{SP}_n \) respectively. In [3], Gomes and Howie proved that the rank and the nilpotent rank of \(\langle \langle N \rangle \rangle \) are both equal to \(n + 1 \) for all \(n \), and in [1], Garba showed that the rank and the nilpotent rank of \(\langle M \rangle \) are both equal to \(n + 2 \) for all \(n \). In Section 2 we generalize the results of Gomes and Howie [3] (in line with Howie and McFadden [6]) by showing that if \(1 \leq r \leq n - 2 \) then the rank and the nilpotent rank of the inverse semigroup

\[
U(n, r) = \{ \alpha \in \text{SI}_n : |\text{im } \alpha| \leq r \}
\]

are both equal to \((\binom{n}{r}) + 1 \). In Section 3 we generalize the results of Garba [1] by showing that if \(1 \leq r \leq n - 2 \) then the rank and the nilpotent rank of the semigroup

\[
V(n, r) = \{ \alpha \in \text{SP}_n : |\text{im } \alpha| \leq r \}
\]

are both equal to \((r + 1)S(n, r + 1) \), where \(S(n, r + 1) \) is the Stirling number of the second kind, defined by

\[
S(n, 1) = S(n, n) = 1, \quad S(n, r) = S(n - 1, r - 1) + rS(n - 1, r).
\]

For standard terms in semigroup theory see [4]. In all that follows, we consider \(n \geq 3 \).

2. One-one partial transformations.

Lemma 2.1. For all \(r \leq n - 2 \), we have
\[
J_r \subseteq (N \cap J_r)^2,
\]
where \(J_r = \{ \alpha \in \text{SL}_n : |\text{im} \alpha| = r \} \) is the \(\mathcal{J} \)-class of all elements in \(\text{SL}_n \) with rank \(r \).

Proof. The result is trivial for \(r \leq 1 \). If \(r \geq 2 \) then the result follows from Remark 3.16 in [2], where the authors prove that \(J_{n-2} \subseteq (N \cap J_{n-2})^3 \), and from Lemma 4.1 in the same paper, which states that if \(J_r \subseteq (N \cap J_k)^k \) then \(J_{r-1} \subseteq (N \cap J_{r-1})^k \) for \(2 \leq r \leq n - 1 \).

It follows from this lemma that the nilpotents in \(J_r \) generate \(U(n, r) \).

Denote by \(P_r \) the principal factor \(U(n, r) / U(n, r - 1) \). Then \(P_r \) may be thought of in the usual way as \(J_r \cup \{0\} \). Also, \(P_r \) has \(\binom{\gamma}{r} \) non-null \(\mathcal{R} \)-classes corresponding to the \(\binom{\gamma}{r} \) possible domains of cardinality \(r \), and \(\binom{\gamma}{r} \) non-null \(\mathcal{L} \)-classes corresponding to the \(\binom{\gamma}{r} \) possible images. It is a Brandt semigroup isomorphic to \(B(S_r, \{1, \ldots, m\}) \), where \(S_r \) is the symmetric group on \(X_r \) and \(m = \binom{\gamma}{r} \). Hence, since the rank of \(S_r \) is known to be 2, it follows by Theorem 3.3 in [3] that \(P_r \) has inverse semigroup rank \(\binom{\gamma}{r} + 1 \).

From [2], we borrow the notation \(\langle a_1, a_2, \ldots, a_{r+1} \rangle \) (\(1 \leq r \leq n - 1 \)) for the nilpotent \(\alpha \) with domain \(\{a_1, \ldots, a_r\} \) and image \(\{a_2, \ldots, a_{r+1}\} \) for which \(a_i \alpha = a_{i+1} \) \((i = 1, \ldots, r)\). We shall refer to these type of nilpotents as primitive in the next section.

Theorem 2.2. Let \(n \geq 3 \) and let \(r \leq n - 2 \). Then
\[
\text{rank} \langle \langle U(n, r) \rangle \rangle = \text{nilrank} \langle \langle U(n, r) \rangle \rangle = \begin{cases} \binom{\gamma}{r} + 1 & \text{if } r \geq 3, \\ \binom{\gamma}{r} & \text{if } r = 2, \\ n - 1 & \text{if } r = 1. \end{cases}
\]

Proof. From the fact that \(P_r \) (as an inverse semigroup) has rank \(\binom{\gamma}{r} + 1 \) it follows that rank \(\langle \langle U(n, r) \rangle \rangle \geq \binom{\gamma}{r} + 1 \). To complete the proof we must find a generating set of \(\langle \langle U(n, r) \rangle \rangle \) consisting of \(\binom{\gamma}{r} + 1 \) nilpotents.

Let \(A_1, A_2, \ldots, A_m \) be a list of the subsets of \(X_n \) of cardinality \(r \). Thus \(m = \binom{\gamma}{r} \). Let \(H_{A_i, A_j} \) denote the \(\mathcal{H} \)-class in \(J_r \) consisting of all the elements whose domain is \(A_i \) and image \(A_j \). Suppose that \(A_1 = \{1, 2, \ldots, r\} \). Then the \(\mathcal{H} \)-class \(H_{A_1, A_i} \) is the symmetric group on \(\{1, 2, \ldots, r\} \), and if \(r \geq 3 \) then it is generated by the elements \(\sigma \), \(\tau \), where
\[
\sigma = (1 2), \quad \tau = (1 2 \ldots r).
\]

We now show that each of \(\sigma \), \(\tau \) can be expressed as a product of nilpotents. For this purpose, we will suppose that \(A_2 = \{2, \ldots, r, r + 1\} \), \(A_3 = \{1, \ldots, r - 1, r + 1\} \) and \(A_4 = \{2, \ldots, r - 1, r + 1, r + 2\} \). The proof depends on whether \(r \) is odd or even. For \(r \) odd we have
\[
\sigma = \alpha_2^{-1} \beta \alpha_3 \quad \text{and} \quad \tau = \gamma_2^{-1} \alpha_2,
\]
where
\[
\begin{align*}
\alpha_2 &= \langle r + 1 r r - 1 \ldots 2 1 \rangle \in H_{A_2, A_1}, \\
\beta &= \langle r r - 2 r - 4 \ldots 3 r + 1 r - 1 \ldots 4 2 1 \rangle \in H_{A_2, A_3}, \\
\alpha_3 &= \langle r + 1 1 2 \ldots r \rangle \in H_{A_3, A_1}, \\
\gamma_2 &= \langle r + 1 r - 1 \ldots 2 r r - 2 \ldots 3 1 \rangle \in H_{A_2, A_1}.
\end{align*}
\]
NILPOTENT RANKS OF SEMIGROUPS

If for this case we now choose a nilpotent \(\alpha_i \in H_{A_i, A_1} \) for \(i = 4, \ldots, m \) in an arbitrary way, we see that

\[
\sigma, \tau, \alpha_2, \ldots, \alpha_m \in \langle \langle \alpha_2, \ldots, \alpha_m, \beta, \gamma_2 \rangle \rangle.
\]

By the remark before Theorem 3.3 in [3], the elements \(\sigma, \tau, \alpha_2, \ldots, \alpha_m \) generate \(P_r \). It follows that \(P_r \) and hence also \(U(n, r) \) is generated by the \(m + 1 \) nilpotents \(\alpha_2, \ldots, \alpha_m, \beta, \gamma_2 \) provided \(r \) is odd.

For \(r \) even we have

\[
\sigma = \alpha_3^{-1} \beta \alpha_4 \quad \text{and} \quad \tau = \gamma_4^{-1} \alpha_4,
\]

where

\[
\begin{align*}
\alpha_3 &= \| r + 1 \| 2 \ldots r - 2 r - 1 \| r \| \in H_{A_3, A_1}, \\
\beta &= \| r + 1 - 2 r + 3 \| 2 \ldots r - 5 \| 6 \ldots - 3 r - 4 r - 1 \| r - 2 \| \in H_{A_3, A_2}, \\
\alpha_4 &= \| r + 2 \| 2 4 \ldots r \| \cup \| r + 1 \| r - 1 \ldots 3 \| 1 \| \in H_{A_4, A_1}, \\
\gamma_4 &= \| r + 1 \| r - 2 \| r - 1 \| r - 4 \| 3 \| r - 6 \| 6 \ldots 3 \| 9 \| 6 \| 4 \| 5 \| 2 \| 3 \| r \| \cup \| r + 1 \| \in H_{A_4, A_1}.
\end{align*}
\]

In this case \(P_r \) and hence \(U(n, r) \) is generated by the \(m + 1 \) nilpotents \(\alpha_2, \ldots, \alpha_m, \beta, \gamma_4 \), where \(\alpha_i \in H_{A_i, A_1} \) are chosen arbitrarily for \(i = 2, 5, 6, \ldots, m \).

It now remains to show that the result is true for \(r = 2 \) and \(r = 1 \).

If \(r = 2 \), \(S_2 \) is cyclic and thus has only one generator. For this case we will suppose that \(A_1 = \{1, 2\} \) and \(A_m = \{n - 1, n\} \). The \(\mathcal{E} \)-class \(H_{A_1, A_1} \) is the symmetric group on \(A_1 \) and is generated by

\[
\sigma = (1 \ 2).
\]

Now,

\[
\sigma = \gamma_1^{-1} \alpha_m,
\]

where

\[
\begin{align*}
\alpha_m &= \| n - 1 \| 2 \| \cup \| n 1 \| \in H_{A_m, A_1}, \\
\gamma_m &= \| n - 1 \| 1 \| \cup \| n 2 \| \in H_{A_m, A_1}.
\end{align*}
\]

So, if we choose nilpotents \(\alpha_2, \ldots, \alpha_{m-1} \) as in the above cases, we see that \(\alpha_2, \ldots, \alpha_m, \gamma_m \) generate \(U(n, r) \). Thus \(U(n, r) \) has rank \(1 + m - 1 = m \).

If \(r = 1 \), the symmetric group \(S_1 \) has rank 0, and it is easy to verify that the following \(n - 1 \) nilpotents generate \(U(n, r) \):

\[
\| 2 \ 1 \|, \| 3 \ 1 \|, \| 4 \ 1 \|, \ldots, \| n \ 1 \|.
\]

3. Partial transformations. The semigroup \(V(n, r) \) has \(r + 1 \) \(\mathcal{J} \)-classes, namely \(J_r, J_{r+1}, \ldots, J_0 \) (where \(J_0 \) consists of the empty map). For each \(t \) such that \(1 \leq t \leq r \) we have

\[
J_t = \bigcup_{k=t}^{n-1} [k, t].
\]

The number of \(\mathcal{L} \)-classes in the \(\mathcal{J} \)-class \(J_t \) of \(V(n, r) \) is the number of image sets in \(X_n \) of cardinality \(r \), namely \(\binom{n}{r} \), and the number of \(\mathcal{R} \)-classes in \(J_t \) is the number of equivalence relations \(\rho \) on each of the subsets \(A \) of cardinality \(k \) (where \(n - 1 \geq k \geq r \)) for
which $|A/\rho| = r$, and this number is

$$
\sum_{k=r}^{n-1} \binom{n}{k} S(k, r) = \sum_{k=r}^{n} \binom{n}{k} S(k, r) - S(n, r) \\
= S(n + 1, r + 1) - S(n, r) \\
= (r + 1)S(n, r + 1).
$$

Like $U(n, r)$, the semigroup $V(n, r)$ is generated by the nilpotent elements in J, (see Lemma 2.3 in [1]). We also have from Lemma 3 in [6] that for $2 \leq r \leq n - 2$,

$$\text{rank}(V(n, r)) \equiv (r + 1)S(n, r + 1).$$

Theorem 3.1. For $n \geq 3$ and $2 \leq r \leq n - 2$, we have

$$\text{rank}(V(n, r)) = \text{nilrank}(V(n, r)) = (r + 1)S(n, r + 1).$$

The proof depends on the following lemma.

Lemma 3.2. Suppose that we can arrange the subsets A_1, \ldots, A_m (where $m = \binom{n}{r}$ and $2 \leq r \leq n - 2$) of X_n of cardinality r in such a way that $|A_i \cap A_{i-1}| = r - 1$ for $i = 1, \ldots, m - 1$ and $|A_m \cap A_1| = r - 1$. Then there exist nilpotents $\alpha_1, \ldots, \alpha_p$ (where $p = (r + 1)S(n, r + 1)$) such that $\{\alpha_1, \ldots, \alpha_p\}$ is a set of generators for $V(n, r)$.

Proof. Notice first that every element $\alpha \in [k, r], r < k \leq n - 1$, is expressible as a product of a nilpotent in its own \mathcal{R}-class and an element in $[r, r]$. For

$$\alpha = \begin{pmatrix} A_1 & A_2 & \cdots & A_{r-1} & A_r \\ a_2 & a_3 & \cdots & a_r & x \end{pmatrix} \begin{pmatrix} b_1 & b_2 & \cdots & b_{r-1} & b_r \end{pmatrix},$$

where

$$\alpha = \begin{pmatrix} A_1 & \cdots & A_r \\ b_1 & \cdots & b_r \end{pmatrix},$$

$a_i \in A_i$ for all $i \in \{2, \ldots, r\}$ and $x \in X_n \setminus \text{dom } \alpha$.

In the arrangement of our subsets A_1, \ldots, A_m we shall assume that $A_1 = \{n - r + 1, n - r + 2, \ldots, n\}, A_2 = \{n - r, \ldots, n - 1\}$ and $A_m = \{1, n - r + 2, \ldots, n\}$. We shall also represent any two adjacent subsets A_i, A_{i+1} by the two subsets $\{x_1, \ldots, x_{r-1}, y_i\}$ and $\{x_1, \ldots, x_{r-1}, z_{i+1}\}$, where $z_{i+1} \neq y_i$, and $z_{i+1}, y_i \neq x_i$ for any i. Define H_{A_i, A_j} to consist of all elements $\alpha \in [r, r]$ for which $\text{dom } \alpha = A_i$ and $\text{im } \alpha = A_j$. For $i = 1, \ldots, m$ define a mapping $\xi_i \in H_{A_i, A_m}$ as follows:

$$\xi_1 = \begin{pmatrix} n - r + 1 & n - r + 2 & \cdots & n \\ 1 & n - r + 2 & \cdots & n \end{pmatrix},$$

$$\xi_2 = \begin{pmatrix} n - r & n - r + 1 & n - r + 2 & \cdots & n - 1 \\ n - r + 2 & 1 & n - r + \cdots & n \end{pmatrix},$$

and for $i = 2, \ldots, m - 1$ if

$$\xi_i = \begin{pmatrix} x_1 & x_2 & \cdots & x_{r-1} & y_i \\ t_1 & t_2 & \cdots & t_{r-1} & t_r \end{pmatrix}.$$
NILPOTENT RANKS OF SEMIGROUPS

define

\[\xi_{i+1} = \begin{pmatrix} x_1 & x_2 & \ldots & x_{r-1} & z \\ t_2 & t_3 & \ldots & t_r & t_1 \end{pmatrix}. \]

Then it is easy to see that the mapping

\[\phi : B(S_r, \{1, \ldots, m\}) \to Q_r \]

defined by \((i, \eta, j)\phi = \xi_i \eta \xi_j^{-1}\) is an isomorphism. Here \(S_r\) is the symmetric group on \(\{1, n-r+2, \ldots, n\}\), \(Q_r\) is the principal factor

\[[r, r]/\bigcup_{l=0}^{r-1} [l, l] = [r, r] \cup \{0\}. \]

From Proposition 2.4 in [1], the set

\[T = \{(1, g_1, 1), (1, g_2, 2), (2, e, 3), \ldots, (m-1, e, m), (m, e, 1)\}, \]

where \(g_1 = (1 n-r+2 \ldots n)\), \(g_2 = (1 n-r+2)\) and \(e\) is the identity permutation in \(S_r\), generates \(B(S_r, \{1, \ldots, m\})\). Thus \(T\phi\) generates \(Q_r\) and hence \([r, r]\). If we now define

\[\alpha_1 = \xi_1 g_2 \xi_2^{-1}, \alpha_i = \xi_i \xi_{i+1}^{-1} \quad \text{for } i = 2, \ldots, m-1 \]

and

\[\beta = \xi_m \xi_1^{-1}, \quad \delta = \xi_1 g_1 \xi_1^{-1}, \]

we obtain a generating set \(\{\beta, \delta, \alpha_1, \ldots, \alpha_{m-1}\}\) of \([r, r]\), where

\[\alpha_1 = \|n n-1 \ldots n-r+1 n-r\|, \]
\[\alpha_i = \|y_i x_{r-1} \ldots x_1 z_{i+1}\| \quad \text{for } i = 2, \ldots, m-1 \]

are all nilpotents. On the other hand,

\[\delta = \begin{pmatrix} n-r+1 & n-r+2 & \ldots & n-1 & n \\ n-r+2 & n-r+3 & \ldots & n & n-r+1 \end{pmatrix} \]

is clearly non-nilpotent. However if \(r\) is odd we have

\[\delta = \alpha_1 \lambda_1, \quad (3.3) \]

where

\[\lambda_1 = \|n-r n-r+2 \ldots n-1 n-r+1 n-r+3 \ldots n-2 n\|. \]

If \(r\) is even, and is of the form \(4q + 2(q \geq 0)\), then

\[\delta = \alpha_1 \eta_1 \eta_2, \quad (3.4) \]

where

\[\eta_1 = \|n-r+1 n-r+5 \ldots n-1 n-r+3 n-r+7 \ldots n-3 n-r n-r+4 \ldots n-2 1\|
\]
\[\cup \|n-r+2 n-r+6 \ldots n\| \]

and

\[\eta_2 = \|n-r n-1 n-3 \ldots n-r+3 n-r+1\|\cup \|1 n n-2 n-4 \ldots n-r+2\|. \]

If \(r\) is even and of the form \(4q(q \geq 1)\) then

\[\delta = \alpha_1 \psi_1 \psi_2, \quad (3.5) \]
where
\[\psi_1 = \|n - r + 1 n - r n - r + 3 n - r + 2 n - r + 5 n - r + 4 \ldots n - 1 n - 2 1\| \]
and
\[\psi_2 = \|n - r n - r + 3 n - r + 2 n - r + 5 \ldots n - 2 n - r + 1\| \cup \|1 n\|. \]

Next, \(\beta \) may or may not be nilpotent. However, as \(\beta \in [r, r] \), if \(\beta \) is non-nilpotent, then by Lemma 2.1 it is expressible as a product of two nilpotents in \([r, r]\), say
\[\beta = \xi \xi_2. \]

It is clear that \(\beta \xi_1 \) and \(\beta \xi_2 \), that is \(R_{\xi_1} = A_m \) and \(L_{\xi_2} = A_1 \).

We now define \(\lambda, \eta, \eta_2, \psi, \psi_2 \) and \(\xi_2 \) as follows:
\[
\begin{align*}
\lambda & = \lambda_1 \cup (1, n), \\
\eta & = \eta_1 \cup (n, 1), \\
\eta_2 & = \eta_2 \cup (n - r + 1, n), \\
\psi & = \psi_1 \cup (n, n - 2), \\
\psi_2 & = \psi_2 \cup (n, n - r + 1).
\end{align*}
\]

Before we define \(\xi_2 \), we note that from Theorem 2.8 in [2], \(\xi_2 \) can be expressed as a disjoint union of \(k \) primitive nilpotents, say
\[\xi_2 = \mu_1 \cup \mu_2 \cup \ldots \cup \mu_k. \]

If \(k \geq 2 \), then assume
\[\mu_1 = \|x_1 \ldots x_r\| \quad \text{and} \quad \mu_2 = \|y_1 \ldots y_r\| \]
and define \(\xi_2 \) as
\[x_\xi_2 = x_\xi \quad \text{if} \quad x \in \text{dom} \xi \]
and
\[x_\xi_2 = y_r. \]

On the other hand if \(k = 1 \) then \(|\text{dom} \xi_2 \cup \text{im} \xi_2| = r + 1\), and since \(r \leq n - 2 \) we have \(X_n \setminus (\text{dom} \xi_2 \cup \text{im} \xi_2) \) to be non-empty. Then define \(\xi_2 \) as
\[\xi_2 = \xi_2 \cup (x, n - r + 1), \]
where \(x \in X_n \setminus (\text{dom} \xi_2 \cup \text{im} \xi_2) \).

Note that \(\lambda, \eta, \eta_2, \psi, \psi_2 \) and \(\xi_2 \) are distinct, and belong to \([r + 1, r]\). If we now replace \(\lambda, \eta, \eta_2, \psi, \psi_2 \) and \(\xi_2 \) by \(\lambda', \eta', \eta_2', \psi', \psi_2' \) respectively in equations (3.3)–(3.5) then it is easy to see that the equations remain unaltered. Since \(\beta, \xi_1, \xi_2 \) are all one-one and of the same height, we must have
\[\text{dom} \beta = \text{dom} \xi_1, \quad \text{im} \xi_1 = \text{dom} \xi_2, \]
and since \(x, x \notin \text{dom} \xi_2 = \text{im} \xi_1 \) we conclude that
\[\xi_1 \xi_2 = \xi_1 \xi_2'. \]

Now, if \(\beta \) is nilpotent then \(V(n, r) \) is generated by
\[\{\beta, \lambda_1, \alpha_1, \ldots, \alpha_{p-3}\}, \quad \{\beta, \eta_1, \eta_2, \alpha_1, \ldots, \alpha_{p-3}\} \]
or

\{β, ψ', ψ'', α_1, \ldots, α_{p-3}\}

according to whether \(r\) is odd, even and of the form \(4q + 2\) \((q \geq 0)\) or even and of the form \(4q\) \((q \geq 1)\), and \(α_m, \ldots, α_{p-k}\) \((k = 2, 3)\) are chosen arbitrarily to cover all the \(R\)-classes in \(J_r\).

If \(β\) is non-nilpotent, then \(V(n, r)\) is generated by

\{ξ_1, ξ_2, λ', α_1, \ldots, α_{p-3}\}, \quad \{ξ_1, ξ_2, η_1, η_2, α_1, \ldots, α_{p-4}\}

or

\{ξ_1, ξ_2, ψ', ψ'', α_1, \ldots, α_{p-4}\}

according to whether \(r\) is odd, even and of the form \(4q + 2\) \((q \geq 0)\) or even and of the form \(4q\) \((q \geq 1)\), and \(α_m, \ldots, α_{p-k}\) \((k = 3, 4)\) are chosen arbitrarily to cover all the \(R\)-classes in \(J_r\).

To conclude the proof of Theorem 3.1, it remains to prove that the listing of the subsets of \(X_n\) of cardinality \(r\) as postulated in the statement of Lemma 3.2 can actually be carried out. Let \(n \geq 4\) and \(2 \leq r \leq n - 2\), and consider the following proposition.

\((P(n, r))\): there is a way of listing the subsets of \(X_n\) of cardinality \(r\) as \(A_1, A_2, \ldots, A_m\) \((m = \binom{n}{r})\), \(A_1 = \{n - r + 1, \ldots, n\}\), \(A_2 = \{n - r, \ldots, n - 1\}\), \(A_m = \{1, n - r + 2, \ldots, n\}\) such that \(|A_i \cap A_{i+1}| = r - 1\) for \(i = 1, \ldots, m - 1\) and \(|A_m \cap A_1| = r - 1\).

We shall prove this by a double induction on \(n\) and \(r\), the key step being a kind of Pascal’s Triangle implication.

\[P(n, 2) \quad \text{and} \quad P(n - 1, r - 1) \Rightarrow P(n, r).\]

First, however, we anchor the induction with two lemmas.

Lemma 3.7. \(P(n, 2)\) holds for every \(n \geq 4\).

Proof. Consider the following arrangement of the subsets of \(X_n\) of cardinality 2.

\[
\begin{align*}
\{1, 2\}, & \quad \{1, 3\}, \ldots, \quad \{1, n - 1\}, \quad \{1, n\}, \\
\{2, 3\}, & \quad \ldots, \quad \{2, n - 1\}, \quad \{2, n\}, \\
& \quad \vdots \\
\{n - 2, n - 1\}, & \quad \{n - 2, n\}, \\
& \quad \{n - 1, n\}.
\end{align*}
\]

If we denote the first row by \(R_1\), second row by \(R_2\), etc., then we note that the first entry in \(R_i\) is \(\{i, i + 1\}\) and the last entry is \(\{i, n\}\). Thus the number of elements in \(R_i\) is \(n - i\), and the total number of subsets in all the rows is

\[\sum_{i=1}^{n-1} (n - i) = \frac{n}{2} (n - 1) = \binom{n}{2}.\]

Hence above is a complete list of the subsets of \(X_n\) of cardinality 2.

Note that for any two subsets \(A_i, A_j\) in \(R_i, A_j \cup A_r = \{i\}\), and the intersection of the last entry in \(R_{i+1}\) with the first entry in \(R_i\) is \(\{i + 1\}\). Hence the following arrangement satisfies \(P(n, 2)\):

\[R_{n-1}, R_{n-2}, \ldots, R_{i+1}, R_i, \ldots, R_2, R_1.\]
That is, the list begins with all the subsets in R_{n-1}, followed by the subsets in R_{n-2}, followed by the subsets in R_{n-3}, and so on, until R_1 is reached.

Lemma 3.8. $P(n, n-2)$ holds for every $n \geq 4$.

Proof. Note that $P(4, 2)$ follows from Lemma 3.7. So we will assume that $n \geq 5$. Let R'_i be the list of the complements of the subsets in R_i (defined in the proof of Lemma 3.7) arranged in the same order as in R_i. Let $(R'_i)^{-1}$ be R'_i arranged in the reverse order. For example

$$R_{n-2} = \{n-2, n-1\}, \{n-2, n\},$$
$$R'_{n-2} = \{1, \ldots, n-3, n\}, \{1, \ldots, n-3, n-1\},$$
$$(R'_{n-2})^{-1} = \{1, \ldots, n-3, n-1\}, \{1, \ldots, n-3, n\}.$$

Let $T' = \{1, 3\}, \{1, 4\}, \ldots, \{1, n-1\}$ and $T'' = R'_n \setminus \{(1, 2)', \{1, n\}'}$.

It is clear that, for any two subsets A'_i, A'_j in R'_i, we have $|A'_i \cap A'_j| = n - 3$, and the intersection of the last subset in R'_{i+1} and the first subset in R'_i also contains $n - 3$ elements. We also have $n - 3$ elements in the intersection of the last subset in R'_i with the first subset in $(R'_2)^{-1}$, and the same number of elements in the intersection of the last subset in T'' with the subset in R'_{n-1}. We now have the following arrangement satisfying $P(n, n-2)$:

$$A'_1, A'_2, T', R'_{n-1}, R'_{n-2}, \ldots, R'_3, (R'_2)^{-1},$$
where $A'_1 = \{1, 2\}'$ and $A'_2 = \{1, n\}'$.

Lemma 3.9. Let $n \geq 6$ and $3 \leq r \leq n-3$. Then $P(n-1, r-1)$ and $P(n-1, r)$ together imply $P(n, r)$.

Proof. From the assumption $P(n-1, r)$ we have a list A_1, \ldots, A_m (where $m = \binom{n-1}{r-1}$) of the subsets of X_{n-1} with cardinality r such that $|A_i \cap A_{i+1}| = r-1$ for $i = 1, \ldots, m-1$, and

$$A_1 = \{n-r, \ldots, n-1\}, A_2 = \{n-r-1, \ldots, n-2\}, A_m = \{1, n-r+1, \ldots, n-1\}.$$

From the assumption $P(n-1, r-1)$, we have a list B_1, \ldots, B_t (where $t = \binom{n-1}{r-2}$) of subsets of X_{n-1} of cardinality $r-1$ such that $|B_i \cap B_{i+1}| = r-2$ for $i = 1, \ldots, r-1$, and

$$B_1 = \{n-r+1, \ldots, n-1\}, B_2 = \{n-r, \ldots, n-2\}, B_t = \{1, n-r+2, \ldots, n-1\}.$$

Let $B'_i = B_i \cup \{n\}$. Then

$$A_1, \ldots, A_m, B'_1, \ldots, B'_t$$
is a complete list of the subsets of X_n of cardinality r. (Notice that $t + m = \binom{n}{r}$.) Now, arrange the above subsets as follows:

$$B'_1, A_1, A_m, \ldots, A_2, B'_2, \ldots, B'_t.$$

Then it is easy to verify that this arrangement satisfies $P(n, r)$. Hence the induction is complete and we may deduce that $P(n, r)$ is true for all $n \geq 4$ and all r such that $2 \leq r \leq n-2$.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0017089500030482
ACKNOWLEDGEMENT. My sincere thanks are due to my research supervisor, Professor J. M. Howie, for his helpful suggestions and encouragement.

REFERENCES

DEPARTMENT OF MATHEMATICAL AND COMPUTATIONAL SCIENCES
UNIVERSITY OF ST ANDREWS
SCOTLAND

Present address:

DEPARTMENT OF MATHEMATICS
AHMADU BELLO UNIVERSITY ZARIA
NIGERIA