ON THE NILPOTENT RANKS OF CERTAIN SEMIGROUPS OF TRANSFORMATIONS

by G. U. GARBA

(Received 5 November, 1991)

1. Introduction. Let P_n be the semigroup of all partial transformations on the set $X_n = \{1, \ldots, n\}$. As usual, we shall say that an element α in P_n is of type (k, r) or belongs to the set [k, r] if $|\text{dom } \alpha| = k$ and $|\text{im } \alpha| = r$. The completion α^* of an element $\alpha \in [n-1, n-1]$ is an element in [n, n] defined by

 $i\alpha^* = j$, $x\alpha^* = x\alpha$ otherwise,

where $\{i\} = X_n \setminus \text{dom } \alpha$ and $\{j\} = X_n \setminus \text{im } \alpha$.

For *n* even, the subsemigroup SI_n of P_n consisting of all strictly partial one-one transformations was proved to be nilpotent-generated by Gomes and Howie [2]. If *n* is odd, they showed that the nilpotents in SI_n generate $SL_n \setminus W_{n-1}$, where W_{n-1} consists of all $\alpha \in [n-1, n-1]$ whose completions are odd permutations.

Simultaneously and independently, Sullivan [7] showed that the subsemigroup SP_n of P_n consisting of all strictly partial transformations of X_n is nilpotent-generated if n is even. If n is odd, the nilpotents in SP_n generate SP_n\ W_{n-1} .

The rank of a semigroup S is the cardinality of any subset A of minimal order in S such that $\langle A \rangle = S$. If the generating set A consists of nilpotent elements only, then we shall refer to the cardinality of A as the *nilpotent rank* of S. Since one of the semigroups we will be considering is an inverse semigroup, we would like to clarify the notion of a generating set in an inverse semigroup. Given a subset A in an inverse semigroup S, we shall always want to consider the smallest inverse subsemigroup containing A. In effect this is the set of all finite products of elements of A and their inverses. Following [3], we shall use the notation $\langle \langle A \rangle \rangle$ for this inverse subsemigroup. Accordingly, by the rank of an inverse semigroup S we shall mean the cardinality of any subset A of minimal order in S such that $\langle \langle A \rangle \rangle = S$.

Let N and M be the sets of all nilpotent elements in SI_n and SP_n respectively. In [3], Gomes and Howie proved that the rank and the nilpotent rank of $\langle \langle N \rangle \rangle$ are both equal to n + 1 for all n, and in [1], Garba showed that the rank and the nilpotent rank of $\langle M \rangle$ are both equal to n + 2 for all n. In Section 2 we generalize the results of Gomes and Howie [3] (in line with Howie and McFadden [6]) by showing that if $1 \le r \le n - 2$ then the rank and the nilpotent rank of the inverse semigroup

$$U(n, r) = \{ \alpha \in SI_n : |\text{im } \alpha| \le r \}$$

are both equal to $\binom{n}{r}$ + 1. In Section 3 we generalize the results of Garba [1] by showing that if $1 \le r \le n-2$ then the rank and the nilpotent rank of the semigroup

$$V(n,r) = \{ \alpha \in SP_n : |\text{im } \alpha| \le r \}$$

are both equal to (r + 1)S(n, r + 1), where S(n, r + 1) is the Stirling number of the second kind, defined by

$$S(n, 1) = S(n, n) = 1$$
, $S(n, r) = S(n - 1, r - 1) + rS(n - 1, r)$

For standard terms in semigroup theory see [4]. In all that follows, we consider $n \ge 3$.

Glasgow Math. J. 36 (1994) 1-9.

2. One-one partial transformations.

LEMMA 2.1. For all $r \leq n - 2$, we have

 $J_r \subseteq (N \cap J_r)^2,$

where $J_r = \{\alpha \in SI_n : |im \alpha| = r\}$ is the \mathcal{J} -class of all elements in SI_n with rank r.

Proof. The result is trivial for $r \le 1$. If $r \ge 2$ then the result follows from Remark 3.16 in [2], where the authors prove that $J_{n-2} \subseteq (N \cap J_{n-2})^2$, and from Lemma 4.1 in the same paper, which states that if $J_r \subseteq (N \cap J_r)^k$ then $J_{r-1} \subseteq (N \cap J_{r-1})^k$ for $2 \le r \le n-1$.

It follows from this lemma that the nilpotents in J_r generate U(n, r).

Denote by P_r the principal factor U(n, r)/U(n, r-1). Then P_r may be thought of in the usual way as $J_r \cup \{0\}$. Also, P_r has $\binom{n}{r}$ non-null \mathcal{R} -classes corresponding to the $\binom{n}{r}$ possible domains of cardinality r, and $\binom{n}{r}$ non-null \mathcal{L} -classes corresponding to the $\binom{n}{r}$ possible images. It is a Brandt semigroup isomorphic to $B(S_r, \{1, \ldots, m\})$, where S_r is the symmetric group on X_r and $m = \binom{n}{r}$. Hence, since the rank of S_r is known to be 2, it follows by Theorem 3.3 in [3] that P_r has inverse semigroup rank $\binom{n}{r} + 1$.

From [2], we borrow the notation $||a_1a_2 \dots a_{r+1}||$ $(1 \le r \le n-1)$ for the nilpotent α with domain $\{a_1, \dots, a_r\}$ and image $\{a_2, \dots, a_{r+1}\}$ for which $a_i\alpha = a_{i+1}$ $(i = 1, \dots, r)$. We shall refer to these type of nilpotents as *primitive* in the next section.

THEOREM 2.2. Let $n \ge 3$ and let $r \le n - 2$. Then

$$\operatorname{rank}\langle\langle U(n,r)\rangle\rangle = \operatorname{nilrank}\langle\langle U(n,r)\rangle\rangle = \begin{cases} \binom{n}{r} + 1 & \text{if } r \ge 3, \\ \binom{n}{r} & \text{if } r = 2, \\ n-1 & \text{if } r = 1. \end{cases}$$

Proof. From the fact that P_r (as an inverse semigroup) has rank $\binom{n}{r} + 1$ it follows that rank $\langle \langle U(n,r) \rangle \rangle \ge \binom{n}{r} + 1$. To complete the proof we must find a generating set of $\langle \langle U(n,r) \rangle \rangle$ consisting of $\binom{n}{r} + 1$ nilpotents.

Let A_1, A_2, \ldots, A_m be a list of the subsets of X_n of cardinality r. Thus $m = \binom{n}{r}$. Let H_{A_i,A_j} denote the \mathcal{H} -class in J_r consisting of all the elements whose domain is A_i and image A_j $(i, j = 1, 2, \ldots, m)$. Suppose that $A_1 = \{1, 2, \ldots, r\}$. Then the \mathcal{H} -class H_{A_1,A_1} is the symmetric group on $\{1, 2, \ldots, r\}$, and if $r \ge 3$ then it is generated by the elements σ , τ , where

$$\sigma = (12), \qquad \tau = (12\ldots r).$$

We now show that each of σ , τ can be expressed as a product of nilpotents. For this purpose, we will suppose that $A_2 = \{2, \ldots, r, r+1\}$, $A_3 = \{1, \ldots, r-1, r+1\}$ and $A_4 = \{2, \ldots, r-1, r+1, r+2\}$. The proof depends on whether r is odd or even. For r odd we have

$$\sigma = \alpha_2^{-1} \beta \alpha_3$$
 and $\tau = \gamma_2^{-1} \alpha_2$,

where

$$\alpha_{2} = ||r + 1rr - 1...21|| \in H_{A_{2},A_{1}},$$

$$\beta = ||rr - 2r - 4...3r + 1r - 1...421|| \in H_{A_{2},A_{3}};$$

$$\alpha_{3} = ||r + 112...r|| \in H_{A_{3},A_{1}},$$

$$\gamma_{2} = ||r + 1r - 1...2rr - 2...31|| \in H_{A_{2},A_{1}}.$$

If for this case we now choose a nilpotent $\alpha_i \in H_{A_i,A_1}$ for $i = 4, \ldots, m$ in an arbitrary way, we see that

$$\sigma, \tau, \alpha_2, \ldots, \alpha_m \in \langle \langle \alpha_2, \ldots, \alpha_m, \beta, \gamma_2 \rangle \rangle.$$

By the remark before Theorem 3.3 in [3], the elements σ , τ , α_2 , ..., α_m generate P_r . It follows that P_r , and hence also U(n, r) is generated by the m + 1 nilpotents $\alpha_2, \ldots, \alpha_m$, β , γ_2 provided r is odd.

For r even we have

$$\sigma = \alpha_3^{-1} \beta \alpha_4$$
 and $\tau = \gamma_4^{-1} \alpha_4$

where

$$\begin{aligned} \alpha_{3} &= \|r+123\ldots r-2r-11r\| \in H_{A_{3},A_{1}}, \\ \beta &= \|1r-2r+13254\ldots r-5r-6r-3r-4r-1r+2\| \in H_{A_{3},A_{4}}, \\ \alpha_{4} &= \|r+224\ldots r\| \cup \|r+1r-1\ldots 31\| \in H_{A_{4},A_{1}}, \\ \gamma_{4} &= \|r+1r-2r-1r-4r-3r-6r-5\ldots 9674523r\| \cup \|r+21\| \in H_{A_{4},A_{1}}. \end{aligned}$$

In this case P_r and hence U(n, r) is generated by the m + 1 nilpotents $\alpha_2, \ldots, \alpha_m, \beta, \gamma_4$, where $\alpha_i \in H_{A_i,A_1}$ are chosen arbitrarily for $i = 2, 5, 6, \ldots, m$.

It now remains to show that the result is true for r = 2 and r = 1.

If r = 2, S_2 is cyclic and thus has only one generator. For this case we will suppose that $A_1 = \{1, 2\}$ and $A_m = \{n - 1, n\}$. The *H*-class H_{A_1, A_1} is the symmetric group on A_1 and is generated by

$$\sigma = (12)$$

 $\sigma = \gamma_m^{-1} \alpha_m,$

$$\alpha_m = ||n - 12|| \cup ||n1|| \in H_{A_m, A_1},$$

$$\gamma_m = ||n - 11|| \cup ||n2|| \in H_{A_m, A_1}.$$

So, if we choose nilpotents $\alpha_2, \ldots, \alpha_{m-1}$ as in the above cases, we see that $\alpha_2, \ldots, \alpha_m$, γ_m generate U(n, r). Thus U(n, r) has rank 1 + m - 1 = m.

If r = 1, the symmetric group S₁ has rank 0, and it is easy to verify that the following n-1 nilpotents generate U(n, r):

$$||21||, ||31||, ||41||, \ldots, ||n1||.$$

3. Partial transformations. The semigroup V(n, r) has r + 1 \mathcal{J} -classes, namely J_r , J_{r+1}, \ldots, J_0 (where J_0 consists of the empty map). For each t such that $1 \le t \le r$ we have

$$J_t = \bigcup_{k=t}^{n-1} [k, t].$$

The number of \mathcal{L} -classes in the \mathcal{J} -class J_r of V(n, r) is the number of image sets in X_n of cardinality r, namely $\binom{n}{r}$, and the number of \mathcal{R} -classes in J_r is the number of equivalence relations ρ on each of the subsets A of cardinality k (where $n - 1 \ge k \ge r$) for

where

which $|A/\rho| = r$, and this number is

$$\sum_{k=r}^{n-1} \binom{n}{k} S(k,r) = \sum_{k=r}^{n} \binom{n}{k} S(k,r) - S(n,r)$$

= $S(n+1,r+1) - S(n,r)$
= $(r+1)S(n,r+1).$

Like U(n, r), the semigroup V(n, r) is generated by the nilpotent elements in J_r (see Lemma 2.3 in [1]). We also have from Lemma 3 in [6] that for $2 \le r \le n-2$,

$$\operatorname{rank}(V(n,r)) \ge (r+1)S(n,r+1)$$

THEOREM 3.1. For $n \ge 3$ and $2 \le r \le n - 2$, we have

$$\operatorname{rank}(V(n,r)) = \operatorname{nilrank}(V(n,r)) = (r+1)S(n,r+1).$$

The proof depends on the following lemma.

LEMMA 3.2. Suppose that we can arrange the subsets A_1, \ldots, A_m (where $m = \binom{n}{r}$) and $2 \le r \le n-2$) of X_n of cardinality r in such a way that $|A_i \cap A_{i-1}| = r-1$ for $i = 1, \ldots, m-1$ and $|A_m \cap A_1| = r-1$. Then there exist nilpotents $\alpha_1, \ldots, \alpha_p$ (where p = (r+1)S(n, r+1)) such that $\{\alpha_1, \ldots, \alpha_p\}$ is a set of generators for V(n, r).

Proof. Notice first that every element $\alpha \in [k, r]$, $r < k \le n - 1$, is expressible as a product of a nilpotent in its own \mathcal{R} -class and an element in [r, r]. For

$$\alpha = \begin{pmatrix} A_1 & A_2 & \dots & A_{r-1} & A_r \\ a_2 & a_3 & \dots & a_r & x \end{pmatrix} \begin{pmatrix} a_2 & a_3 & \dots & a_r & x \\ b_1 & b_2 & \dots & b_{r-1} & b_r \end{pmatrix},$$

where

$$\alpha = \begin{pmatrix} A_1 & \ldots & A_r \\ b_1 & \ldots & b_r \end{pmatrix},$$

 $a_i \in A_i$ for all $i \in \{2, \ldots, r\}$ and $x \in X_n \setminus \text{dom } \alpha$.

In the arrangement of our subsets A_1, \ldots, A_m we shall assume that $A_1 = \{n - r + 1, n - r + 2, \ldots, n\}$, $A_2 = \{n - r, \ldots, n - 1\}$ and $A_m = \{1, n - r + 2, \ldots, n\}$. We shall also represent any two adjacent subsets A_i , A_{i+1} by the two subsets $\{x_1, \ldots, x_{r-1}, y_i\}$ and $\{x_1, \ldots, x_{r-1}, z_{i+1}\}$, where $z_{i+1} \neq y_i$, and $z_{i+1}, y_i \neq x_i$ for any *i*. Define H_{A_i,A_j} to consist of all elements $\alpha \in [r, r]$ for which dom $\alpha = A_i$ and im $\alpha = A_j$. For $i = 1, \ldots, m$ define a mapping $\xi_i \in H_{A_i,A_m}$ as follows:

$$\xi_1 = \begin{pmatrix} n-r+1 & n-r+2 & \dots & n \\ 1 & n-r+2 & \dots & n \end{pmatrix},$$

$$\xi_2 = \begin{pmatrix} n-r & n-r+1 & n-r+2 & \dots & n-1 \\ n-r+2 & 1 & n-r+3 & \dots & n \end{pmatrix},$$

and for i = 2, ..., m - 1 if

$$\xi_i = \begin{pmatrix} x_1 & x_2 & \dots & x_{r-1} & y_i \\ t_1 & t_2 & \dots & t_{r-1} & t_r \end{pmatrix}$$

define

$$\xi_{i+1} = \begin{pmatrix} x_1 & x_2 & \dots & x_{r-1} & z \\ t_2 & t_3 & \dots & t_r & t_1 \end{pmatrix}$$

Then it is easy to see that the mapping

$$\phi: B(S_r, \{1, \ldots, m\}) \to Q_r$$

defined by $(i, \eta, j)\phi = \xi_i \eta \xi_j^{-1}$ is an isomorphism. Here S_r is the symmetric group on $\{1, n-r+2, \ldots, n\}, Q_r$ is the principal factor

$$[r,r] / \bigcup_{l=0}^{r-1} [l,l] \simeq [r,r] \cup \{0\}.$$

From Proposition 2.4 in [1], the set

$$T = \{(1, g_1, 1), (1, g_2, 2), (2, e, 3), \dots, (m - 1, e, m), (m, e, 1)\},\$$

where $g_1 = (1 n - r + 2 ... n)$, $g_2 = (1 n - r + 2)$ and *e* is the identity permutation in S_r , generates $B(S_r, \{1, ..., m\})$. Thus $T\phi$ generates Q_r and hence [r, r]. If we now define

$$\alpha_1 = \xi_1 g_2 \xi_2^{-1}, \ \alpha_i = \xi_i \xi_{i+1}^{-1}$$
 for $i = 2, ..., m-1$

and

$$\beta = \xi_m \xi_1^{-1}, \qquad \delta = \xi_1 g_1 \xi_1^{-1},$$

we obtain a generating set $\{\beta, \delta, \alpha_1, \ldots, \alpha_{m-1}\}$ of [r, r], where

$$\alpha_1 = \|n n - 1 \dots n - r + 1 n - r\|,$$

$$\alpha_i = \|y_i x_{r-1} \dots x_1 z_{i+1}\| \quad \text{for } i = 2, \dots, m-1$$

are all nilpotents. On the other hand,

$$\delta = \begin{pmatrix} n-r+1 & n-r+2 & \dots & n-1 & n \\ n-r+2 & n-r+3 & \dots & n & n-r+1 \end{pmatrix}$$

is clearly non-nilpotent. However if r is odd we have

$$\delta = \alpha_1 \lambda_1, \tag{3.3}$$

where

$$\lambda_1 = \|n - rn - r + 2 \cdots n - 1n - r + 1n - r + 3 \cdots n - 2n\|.$$

If r is even, and is of the form $4q + 2(q \ge 0)$, then

$$\delta = \alpha_1 \eta_1 \eta_2, \tag{3.4}$$

where

$$\eta_1 = \|n - r + 1n - r + 5 \dots n - 1n - r + 3n - r + 7 \dots n - 3n - rn - r + 4 \dots n - 21\| \\ \bigcup \|n - r + 2n - r + 6 \dots n\|$$

and

$$\eta_2 = \|n - rn - 1n - 3 \dots n - r + 3n - r + 1\| \bigcup \|1nn - 2n - 4 \dots n - r + 2\|$$

If r is even and of the form $4q(q \ge 1)$ then

$$\delta = \alpha_1 \psi_1 \psi_2, \tag{3.5}$$

G. U. GARBA

where

$$\psi_1 = ||n - r + 1n - rn - r + 3n - r + 2n - r + 5n - r + 4...n - 1n - 21||$$

and

$$\psi_2 = \|n - rn - r + 3n - r + 2n - r + 5 \dots n - 2n - r + 1\| \cup \|1n\|.$$

Next, β may or may not be nilpotent. However, as $\beta \in [r, r]$, if β is non-nilpotent, then by Lemma 2.1 it is expressible as a product of two nilpotents in [r, r], say

$$\beta = \zeta_1 \zeta_2. \tag{3.6}$$

It is clear that $\beta \Re \zeta_1$ and $\beta \mathscr{L} \zeta_2$, that is $R_{\zeta_1} = A_m$ and $L_{\zeta_2} = A_1$.

We now define λ'_1 , η'_1 , η'_2 , ψ'_1 , ψ'_2 and ζ'_2 as follows:

$$\lambda'_1 = \lambda_1 \cup (1, n),$$

$$\eta'_1 = \eta_1 \cup (n, 1), \qquad \eta'_2 = \eta_2 \cup (n - r + 1, n),$$

$$\psi'_1 = \psi_1 \cup (n, n - 2), \qquad \psi'_2 = \psi_2 \cup (n, n - r + 1).$$

Before we define ζ'_2 , we note that from Theorem 2.8 in [2], ζ_2 can be expressed as a disjoint union of k primitive nilpotents, say

$$\zeta_2 = \mu_1 \cup \mu_2 \cup \ldots \cup \mu_k.$$

If $k \ge 2$, then assume

$$\mu_1 = ||x_1 \dots x_s||$$
 and $\mu_2 = ||y_1 \dots y_t||$

and define ζ'_2 as

$$x\zeta_2' = x\zeta_2$$
 if $x \in \text{dom } \zeta_2$

and

 $x_s \zeta_2' = y_t.$

On the other hand if k = 1 then $|\text{dom } \zeta_2 \cup \text{im } \zeta_2| = r + 1$, and since $r \le n - 2$ we have $X_n \setminus (\text{dom } \zeta_2 \cup \text{im } \zeta_2)$ to be non-empty. Then define ζ'_2 as

$$\zeta_2' = \zeta_2 \cup (x, n-r+1),$$

where $x \in X_n \setminus (\text{dom } \zeta_2 \cup \text{im } \zeta_2)$.

Note that λ'_1 , η'_1 , η'_2 , ψ'_1 , ψ'_2 and ζ'_2 are distinct, and belong to [r + 1, r]. If we now replace λ_1 , η_1 , η_2 , ψ_1 and ψ_2 by λ'_1 , η'_1 , η'_2 , ψ'_1 and ψ'_2 respectively in equations (3.3)-(3.5) then it is easy to see that the equations remain unaltered. Since β , ζ_1 , ζ_2 are all one-one and of the same height, we must have

dom β = dom ζ_1 , im ζ_1 = dom ζ_2 ,

and since x_s , $x \notin \text{dom } \zeta_2 = \text{im } \zeta_1$ we conclude that

$$\zeta_1\zeta_2=\zeta_1\zeta_2'.$$

Now, if β is nilpotent then V(n, r) is generated by

$$\{\beta, \lambda'_1, \alpha_1, \ldots, \alpha_{p-2}\}, \{\beta, \eta'_1, \eta'_2, \alpha_1, \ldots, \alpha_{p-3}\}$$

6

NILPOTENT RANKS OF SEMIGROUPS

or

 $\{\beta, \psi_1', \psi_2', \alpha_1, \ldots, \alpha_{p-3}\}$

according to whether r is odd, even and of the form 4q + 2 $(q \ge 0)$ or even and of the form 4q $(q \ge 1)$, and $\alpha_m, \ldots, \alpha_{p-k}$ (k = 2, 3) are chosen arbitrarily to cover all the \mathscr{R} -classes in J_r .

If β is non-nilpotent, then V(n, r) is generated by

$$\{\zeta_1, \zeta'_2, \lambda'_1, \alpha_1, \ldots, \alpha_{p-3}\}, \{\zeta_1, \zeta'_2, \eta'_1, \eta'_2, \alpha_1, \ldots, \alpha_{p-4}\}$$

or

$$\{\zeta_1, \zeta'_2, \psi'_1, \psi'_2, \alpha_1, \ldots, \alpha_{p-4}\}$$

according to whether r is odd, even and of the form 4q + 2 $(q \ge 0)$ or even and of the form 4q $(q \ge 1)$, and $\alpha_m, \ldots, \alpha_{p-k}$ (k = 3, 4) are chosen arbitrarily to cover all the \mathscr{R} -classes in J_r .

To conclude the proof of Theorem 3.1, it remains to prove that the listing of the subsets of X_n of cardinality r as postulated in the statement of Lemma 3.2 can actually be carried out. Let $n \ge 4$ and $2 \le r \le n-2$, and consider the following proposition.

 $(\mathbf{P}(n, r))$: there is a way of listing the subsets of X_n of cardinality r as A_1, A_2, \ldots, A_m (with $m = \binom{n}{r}$, $A_1 = \{n - r + 1, \ldots, n\}$, $A_2 = \{n - r, \ldots, n - 1\}$, $A_m = \{1, n - r + 2, \ldots, n\}$) such that $|A_i \cap A_{i+1}| = r - 1$ for $i = 1, \ldots, m - 1$ and $|A_m \cap A_1| = r - 1$.

We shall prove this by a double induction on n and r, the key step being a kind of Pascal's Triangle implication.

$$\mathbf{P}(n-1, r-1)$$
 and $\mathbf{P}(n-1, r) \Rightarrow \mathbf{P}(n, r)$.

First, however, we anchor the induction with two lemmas.

LEMMA 3.7. $\mathbf{P}(n, 2)$ holds for every $n \ge 4$.

Proof. Consider the following arrangement of the subsets of X_n of cardinality 2.

$$\{1, 2\}, \{1, 3\}, \dots, \{1, n-1\}, \{1, n\}, \\ \{2, 3\}, \dots, \{2, n-1\}, \{2, n\}, \\ \vdots \\ \{n-2, n-1\}, \{n-2, n\}, \\ \{n-1, n\}.$$

If we denote the first row by R_1 , second row by R_2 , etc., then we note that the first entry in R_i is $\{i, i+1\}$ and the last entry is $\{i, n\}$. Thus the number of elements in R_i is n-i, and the total number of subsets in all the rows is

$$\sum_{i=1}^{n-1} (n-i) = \frac{n}{2}(n-1) = \binom{n}{2}.$$

Hence above is a complete list of the subsets of X_n of cardinality 2.

Note that for any two subsets A_s , A_r in R_i , $A_s \cup A_r = \{i\}$, and the intersection of the last entry in R_{i+1} with the first entry in R_i is $\{i+1\}$. Hence the following arrangement satisfies $\mathbf{P}(n, 2)$:

$$R_{n-1}, R_{n-2}, \ldots, R_{i+1}, R_i, \ldots, R_2, R_1.$$

G. U. GARBA

That is, the list begins with all the subsets in R_{n-1} , followed by the subsets in R_{n-2} , followed by the subsets in R_{n-3} , and so on, until R_1 is reached.

LEMMA 3.8. $\mathbf{P}(n, n-2)$ holds for every $n \ge 4$.

Proof. Note that $\mathbf{P}(4, 2)$ follows from Lemma 3.7. So we will assume that $n \ge 5$. Let R'_i be the list of the complements of the subsets in R_i (defined in the proof of Lemma 3.7) arranged in the same order as in R_i . Let $(R'_i)^{-1}$ be R'_i arranged in the reverse order. For example

$$R_{n-2} = \{n-2, n-1\}, \{n-2, n\},\$$

$$R'_{n-2} = \{1, \dots, n-3, n\}, \{1, \dots, n-3, n-1\},\$$

$$(R'_{n-2})^{-1} = \{1, \dots, n-3, n-1\}, \{1, \dots, n-3, n\}.$$

Let $T = \{1, 3\}, \{1, 4\}, \dots, \{1, n-1\}$ and $T' = R'_1 \setminus (\{1, 2\}', \{1, n\}')$.

It is clear that, for any two subsets A'_s , A'_r in R'_i , we have $|A'_s \cap A'_r| = n - 3$, and the intersection of the last subset in R'_{i+1} and the first subset in R'_i also contains n - 3 elements. We also have n - 3 elements in the intersection of the last subset in R'_3 with the first subset in $(R'_2)^{-1}$, and the same number of elements in the intersection of the last subset in T' with the subset in R'_{n-1} . We now have the following arrangement satisfying $\mathbf{P}(n, n-2)$:

$$A'_1, A'_2, T', R'_{n-1}, R'_{n-2}, \ldots, R'_3, (R'_2)^{-1},$$

where $A'_1 = \{1, 2\}'$ and $A'_2 = \{1, n\}'$.

LEMMA 3.9. Let $n \ge 6$ and $3 \le r \le n-3$. Then $\mathbf{P}(n-1, r-1)$ and $\mathbf{P}(n-1, r)$ together imply $\mathbf{P}(n, r)$.

Proof. From the assumption $\mathbf{P}(n-1,r)$ we have a list A_1, \ldots, A_m (where $m = \binom{n-1}{r}$) of the subsets of X_{n-1} with cardinality r such that $|A_1 \cap A_{i+1}| = r-1$ for $i = 1, \ldots, m-1$, and

$$A_1 = \{n - r, \dots, n - 1\}, A_2 = \{n - r - 1, \dots, n - 2\}, A_m = \{1, n - r + 1, \dots, n - 1\}.$$

From the assumption $\mathbf{P}(n-1, r-1)$, we have a list B_1, \ldots, B_t (where $t = \binom{n-1}{r-1}$) of subsets of X_{n-1} of cardinality r-1 such that $|B_i \cap B_{i+1}| = r-2$ for $i = 1, \ldots, r-1$, and

$$B_1 = \{n - r + 1, \dots, n - 1\}, B_2 = \{n - r, \dots, n - 2\}, B_r = \{1, n - r + 2, \dots, n - 1\}.$$

Let $B'_i = B_i \cup \{n\}$. Then

$$A_1,\ldots,A_m,B'_1,\ldots,B'_t$$

is a complete list of the subsets of X_n of cardinality r. (Notice that $t + m = \binom{n}{r}$.) Now, arrange the above subsets as follows:

$$B'_1, A_1, A_m, \ldots, A_2, B'_2, \ldots, B'_n$$

Then it is easy to verify that this arrangement satisfies P(n, r). Hence the induction is complete and we may deduce that P(n, r) is true for all $n \ge 4$ and all r such that $2 \le r \le n - 2$.

NILPOTENT RANKS OF SEMIGROUPS

ACKNOWLEDGEMENT. My sincere thanks are due to my research supervisor, Professor J. M. Howie, for his helpful suggestions and encouragement.

REFERENCES

1. G. U. Garba, Nilpotents in semigroups of partial one-one order-preserving mappings, *Semigroup Forum*, to appear.

2. G. M. S. Gomes and J. M. Howie, Nilpotents in finite symmetric inverse semigroups, *Proc. Edinburgh Math. Soc.* (2) **30** (1987), 383–395.

3. G. M. S. Gomes and J. M. Howie, On the ranks of certain finite semigroups of transformations, *Math. Proc. Cambridge Philos. Soc.* 101 (1987), 395-403.

4. G. M. S. Gomes and J. M. Howie, On the ranks of certain semigroups of order-preserving transformations, *Semigroup Forum* 45 (1992), 272–282.

5. J. M. Howie, An introduction to semigroup theory (Academic Press, 1976).

6. J. M. Howie and R. B. McFadden, Idempotent rank in finite full transformation semigroups, Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), 161-167.

7. R. P. Sullivan, Semigroups generated by nilpotent transformations, J. Algebra 110 (1987), 324-345.

DEPARTMENT OF MATHEMATICAL AND COMPUTATIONAL SCIENCES University of St Andrews Scotland

Present address:

DEPARTMENT OF MATHEMATICS Ahmadu Bello University Zaria Nigeria