ON THE NILPOTENT RANKS OF CERTAIN SEMIGROUPS OF TRANSFORMATIONS

by G. U. GARBA

(Received 5 November, 1991)

1. Introduction. Let P_{n} be the semigroup of all partial transformations on the set $X_{n}=\{1, \ldots, n\}$. As usual, we shall say that an element α in P_{n} is of type (k, r) or belongs to the set $[k, r]$ if $|\operatorname{dom} \alpha|=k$ and $|\operatorname{im} \alpha|=r$. The completion α^{*} of an element $\alpha \in[n-1, n-1]$ is an element in $[n, n]$ defined by

$$
i \alpha^{*}=j, \quad x \alpha^{*}=x \alpha \text { otherwise }
$$

where $\{i\}=X_{n} \backslash \operatorname{dom} \alpha$ and $\{j\}=X_{n} \backslash \operatorname{im} \alpha$.
For n even, the subsemigroup SI_{n} of P_{n} consisting of all strictly partial one-one transformations was proved to be nilpotent-generated by Gomes and Howie [2]. If n is odd, they showed that the nilpotents in SI_{n} generate $\mathrm{SL}_{n} \backslash W_{n-1}$, where W_{n-1} consists of all $\alpha \in[n-1, n-1]$ whose completions are odd permutations.

Simultaneously and independently, Sullivan [7] showed that the subsemigroup SP_{n} of P_{n} consisting of all strictly partial transformations of X_{n} is nilpotent-generated if n is even. If n is odd, the nilpotents in SP_{n} generate $\mathrm{SP}_{n} \backslash W_{n-1}$.

The rank of a semigroup S is the cardinality of any subset A of minimal order in S such that $\langle A\rangle=S$. If the generating set A consists of nilpotent elements only, then we shall refer to the cardinality of A as the nilpotent rank of S. Since one of the semigroups we will be considering is an inverse semigroup, we would like to clarify the notion of a generating set in an inverse semigroup. Given a subset A in an inverse semigroup S, we shall always want to consider the smallest inverse subsemigroup containing A. In effect this is the set of all finite products of elements of A and their inverses. Following [3], we shall use the notation $\langle\langle A\rangle\rangle$ for this inverse subsemigroup. Accordingly, by the rank of an inverse semigroup S we shall mean the cardinality of any subset A of minimal order in S such that $\langle\langle A\rangle\rangle=S$.

Let N and M be the sets of all nilpotent elements in SI_{n} and SP_{n} respectively. In [3], Gomes and Howie proved that the rank and the nilpotent rank of $\langle\langle N\rangle\rangle$ are both equal to $n+1$ for all n, and in [1], Garba showed that the rank and the nilpotent rank of $\langle M\rangle$ are both equal to $n+2$ for all n. In Section 2 we generalize the results of Gomes and Howie [3] (in line with Howie and McFadden [6]) by showing that if $1 \leq r \leq n-2$ then the rank and the nilpotent rank of the inverse semigroup

$$
U(n, r)=\left\{\alpha \in \mathrm{SI}_{n}:|\operatorname{im} \alpha| \leq r\right\}
$$

are both equal to $\binom{n}{r}+1$. In Section 3 we generalize the results of Garba [1] by showing that if $1 \leq r \leq n-2$ then the rank and the nilpotent rank of the semigroup

$$
V(n, r)=\left\{\alpha \in \mathrm{SP}_{n}:|\operatorname{im} \alpha| \leq r\right\}
$$

are both equal to $(r+1) S(n, r+1)$, where $S(n, r+1)$ is the Stirling number of the second kind, defined by

$$
S(n, 1)=S(n, n)=1, \quad S(n, r)=S(n-1, r-1)+r S(n-1, r)
$$

For standard terms in semigroup theory see [4]. In all that follows, we consider $n \geq 3$.

2. One-one partial transformations.

Lemma 2.1. For all $r \leq n-2$, we have

$$
J_{r} \subseteq\left(N \cap J_{r}\right)^{2},
$$

where $J_{r}=\left\{\alpha \in \mathrm{SI}_{n}:|\operatorname{im} \alpha|=r\right\}$ is the \mathscr{f}-class of all elements in SI_{n} with rank r.
Proof. The result is trivial for $r \leq 1$. If $r \geq 2$ then the result follows from Remark 3.16 in [2], where the authors prove that $J_{n-2} \subseteq\left(N \cap J_{n-2}\right)^{2}$, and from Lemma 4.1 in the same paper, which states that if $J_{r} \subseteq\left(N \cap J_{r}\right)^{k}$ then $J_{r-1} \subseteq\left(N \cap J_{r-1}\right)^{k}$ for $2 \leq r \leq n-1$.

It follows from this lemma that the nilpotents in J_{r} generate $U(n, r)$.
Denote by P_{r} the principal factor $U(n, r) / U(n, r-1)$. Then P_{r} may be thought of in the usual way as $J_{r} \cup\{0\}$. Also, P_{r} has $\binom{n}{r}$ non-null \mathscr{R}-classes corresponding to the $\binom{n}{r}$ possible domains of cardinality r, and $\binom{n}{r}$ non-null \mathscr{L}-classes corresponding to the $\binom{n}{r}$ possible images. It is a Brandt semigroup isomorphic to $B\left(S_{r},\{1, \ldots, m)\right.$, where S_{r} is the symmetric group on X_{r} and $m=\binom{n}{r}$. Hence, since the rank of S_{r} is known to be 2 , it follows by Theorem 3.3 in [3] that P_{r} has inverse semigroup rank $\binom{n}{r}+1$.

From [2], we borrow the notation $\left\|a_{1} a_{2} \ldots a_{r+1}\right\|(1 \leq r \leq n-1)$ for the nilpotent α with domain $\left\{a_{1}, \ldots, a_{r}\right\}$ and image $\left\{a_{2}, \ldots, a_{r+1}\right\}$ for which $a_{i} \alpha=a_{i+1}(i=1, \ldots, r)$. We shall refer to these type of nilpotents as primitive in the next section.

Theorem 2.2. Let $n \geq 3$ and let $r \leq n-2$. Then

$$
\operatorname{rank}\left\langle\langle U(n, r\rangle\rangle=\operatorname{nilrank}\langle\langle U(n, r)\rangle\rangle= \begin{cases}\binom{n}{r}+1 & \text { if } r \geq 3, \\ \binom{n}{r} & \text { if } r=2, \\ n-1 & \text { if } r=1\end{cases}\right.
$$

Proof. From the fact that P_{r} (as an inverse semigroup) has rank $\binom{n}{r}+1$ it follows that rank $\langle\langle U(n, r)\rangle\rangle \geq\binom{ n}{r}+1$. To complete the proof we must find a generating set of $\langle\langle U(n, r)\rangle\rangle$ consisting of $\binom{n}{r}+1$ nilpotents.

Let $A_{1}, A_{2}, \ldots, A_{m}$ be a list of the subsets of X_{n} of cardinality r. Thus $m=\binom{n}{r}$. Let $H_{A_{i}, A_{j}}$ denote the \mathscr{H}-class in J_{r} consisting of all the elements whose domain is A_{i} and image $A_{j}(i, j=1,2, \ldots, m)$. Suppose that $A_{1}=\{1,2, \ldots, r\}$. Then the \mathscr{H}-class $H_{A_{1}, A_{1}}$ is the symmetric group on $\{1,2, \ldots, r\}$, and if $r \geq 3$ then it is generated by the elements σ, τ, where

$$
\sigma=(12), \quad \tau=(12 \ldots r)
$$

We now show that each of σ, τ can be expressed as a product of nilpotents. For this purpose, we will suppose that $A_{2}=\{2, \ldots, r, r+1\}, A_{3}=\{1, \ldots, r-1, r+1\}$ and $A_{4}=\{2, \ldots, r-1, r+1, r+2\}$. The proof depends on whether r is odd or even. For r odd we have

$$
\sigma=\alpha_{2}^{-1} \beta \alpha_{3} \quad \text { and } \quad \tau=\gamma_{2}^{-1} \alpha_{2}
$$

where

$$
\begin{aligned}
\alpha_{2} & =\|r+1 r r-1 \ldots 21\| \in H_{A_{2}, A_{1}}, \\
\beta & =\|r r-2 r-4 \ldots 3 r+1 r-1 \ldots 421\| \in H_{A_{2}, A_{3}}, \\
\alpha_{3} & =\|r+112 \ldots r\| \in H_{A_{3}, A_{1}}, \\
\gamma_{2} & =\|r+1 r-1 \ldots 2 r r-2 \ldots 31\| \in H_{A_{2}, A_{1}} .
\end{aligned}
$$

If for this case we now choose a nilpotent $\alpha_{i} \in H_{A_{i}, A_{1}}$ for $i=4, \ldots, m$ in an arbitrary way, we see that

$$
\sigma, \tau, \alpha_{2}, \ldots, \alpha_{m} \in\left\langle\left\langle\alpha_{2}, \ldots, \alpha_{m}, \beta, \gamma_{2}\right\rangle\right\rangle
$$

By the remark before Theorem 3.3 in [3], the elements $\sigma, \tau, \alpha_{2}, \ldots, \alpha_{m}$ generate P_{r}. It follows that P_{r}, and hence also $U(n, r)$ is generated by the $m+1$ nilpotents $\alpha_{2}, \ldots, \alpha_{m}$, β, γ_{2} provided r is odd.

For r even we have

$$
\sigma=\alpha_{3}^{-1} \beta \alpha_{4} \quad \text { and } \quad \tau=\gamma_{4}^{-1} \alpha_{4}
$$

where

$$
\begin{aligned}
\alpha_{3} & =\|r+123 \ldots r-2 r-11 r\| \in H_{A_{3}, A_{1}}, \\
\beta & =\|1 r-2 r+13254 \ldots r-5 r-6 r-3 r-4 r-1 r+2\| \in H_{A_{3}, A_{4}}, \\
\alpha_{4} & =\|r+224 \ldots r\| \cup\|r+1 r-1 \ldots 31\| \in H_{A_{4}, A_{1}} \\
\gamma_{4} & =\|r+1 r-2 r-1 r-4 r-3 r-6 r-5 \ldots 9674523 r\| \cup\|r+21\| \in H_{A_{4}, A_{1}} .
\end{aligned}
$$

In this case P_{r} and hence $U(n, r)$ is generated by the $m+1$ nilpotents $\alpha_{2}, \ldots, \alpha_{m}, \beta, \gamma_{4}$, where $\alpha_{i} \in H_{A_{i}, A_{1}}$ are chosen arbitrarily for $i=2,5,6, \ldots, m$.

It now remains to show that the result is true for $r=2$ and $r=1$.
If $r=2, S_{2}$ is cyclic and thus has only one generator. For this case we will suppose that $A_{1}=\{1,2\}$ and $A_{m}=\{n-1, n\}$. The \mathscr{H}-class $H_{A_{1}, A_{1}}$ is the symmetric group on A_{1} and is generated by

$$
\sigma=(12)
$$

Now,

$$
\sigma=\gamma_{m}^{-1} \alpha_{m}
$$

where

$$
\begin{aligned}
& \alpha_{m}=\|n-12\| \cup\|n 1\| \in H_{A_{m}, A_{1}}, \\
& \gamma_{m}=\|n-11\| \cup\|n 2\| \in H_{A_{m}, A_{1}} .
\end{aligned}
$$

So, if we choose nilpotents $\alpha_{2}, \ldots, \alpha_{m-1}$ as in the above cases, we see that $\alpha_{2}, \ldots, \alpha_{m}$, γ_{m} generate $U(n, r)$. Thus $U(n, r)$ has rank $1+m-1=m$.

If $r=1$, the symmetric group S_{1} has rank 0 , and it is easy to verify that the following $n-1$ nilpotents generate $U(n, r)$:

$$
\|21\|,\|31\|,\|41\|, \ldots,\|n 1\| .
$$

3. Partial transformations. The semigroup $V(n, r)$ has $r+1 \mathscr{I}$-classes, namely J_{r}, J_{r+1}, \ldots, J_{0} (where J_{0} consists of the empty map). For each t such that $1 \leq t \leq r$ we have

$$
J_{t}=\bigcup_{k=t}^{n-1}[k, t] .
$$

The number of \mathscr{L}-classes in the $\mathscr{\mathscr { L }}$-class J_{r} of $V(n, r)$ is the number of image sets in X_{n} of cardinality r, namely $\binom{n}{r}$, and the number of \mathscr{R}-classes in J_{r} is the number of equivalence relations ρ on each of the subsets A of cardinality k (where $n-1 \geq k \geq r$) for
which $|A / \rho|=r$, and this number is

$$
\begin{aligned}
\sum_{k=r}^{n-1}\binom{n}{k} S(k, r) & =\sum_{k=r}^{n}\binom{n}{k} S(k, r)-S(n, r) \\
& =S(n+1, r+1)-S(n, r) \\
& =(r+1) S(n, r+1)
\end{aligned}
$$

Like $U(n, r)$, the semigroup $V(n, r)$ is generated by the nilpotent elements in J_{r} (see Lemma 2.3 in [1]). We also have from Lemma 3 in [6] that for $2 \leq r \leq n-2$,

$$
\operatorname{rank}(V(n, r)) \geq(r+1) S(n, r+1)
$$

Theorem 3.1. For $n \geq 3$ and $2 \leq r \leq n-2$, we have

$$
\operatorname{rank}(V(n, r))=\operatorname{nilrank}(V(n, r))=(r+1) S(n, r+1) .
$$

The proof depends on the following lemma.
Lemma 3.2. Suppose that we can arrange the subsets A_{1}, \ldots, A_{m} (where $m=\binom{n}{r}$ and $2 \leq r \leq n-2$) of X_{n} of cardinality r in such a way that $\left|A_{i} \cap A_{i-1}\right|=r-1$ for $i=$ $1, \ldots, m-1$ and $\left|A_{m} \cap A_{1}\right|=r-1$. Then there exist nilpotents $\alpha_{1}, \ldots, \alpha_{p}$ (where $p=(r+1) S(n, r+1))$ such that $\left\{\alpha_{1}, \ldots, \alpha_{p}\right\}$ is a set of generators for $V(n, r)$.

Proof. Notice first that every element $\alpha \in[k, r], r<k \leq n-1$, is expressible as a product of a nilpotent in its own \mathscr{R}-class and an element in $[r, r]$. For

$$
\alpha=\left(\begin{array}{ccccc}
A_{1} & A_{2} & \ldots & A_{r-1} & A_{r} \\
a_{2} & a_{3} & \ldots & a_{r} & x
\end{array}\right)\left(\begin{array}{ccccc}
a_{2} & a_{3} & \ldots & a_{r} & x \\
b_{1} & b_{2} & \ldots & b_{r-1} & b_{r}
\end{array}\right)
$$

where

$$
\alpha=\left(\begin{array}{ccc}
A_{1} & \ldots & A_{r} \\
b_{1} & \ldots & b_{r}
\end{array}\right)
$$

$a_{i} \in A_{i}$ for all $i \in\{2, \ldots, r\}$ and $x \in X_{n} \backslash$ dom α.
In the arrangement of our subsets A_{1}, \ldots, A_{m} we shall assume that $A_{1}=\{n-r+1$, $n-r+2, \ldots, n\}, A_{2}=\{n-r, \ldots, n-1\}$ and $A_{m}=\{1, n-r+2, \ldots, n\}$. We shall also represent any two adjacent subsets A_{i}, A_{i+1} by the two subsets $\left\{x_{1}, \ldots, x_{r-1}, y_{i}\right\}$ and $\left\{x_{1}, \ldots, x_{r-1}, z_{i+1}\right\}$, where $z_{i+1} \neq y_{i}$, and $z_{i+1}, y_{i} \neq x_{i}$ for any i. Define $H_{A_{i}, A_{j}}$ to consist of all elements $\alpha \in[r, r]$ for which dom $\alpha=A_{i}$ and im $\alpha=A_{j}$. For $i=1, \ldots, m$ define a mapping $\xi_{i} \in H_{A_{i}, A_{m}}$ as follows:

$$
\begin{gathered}
\xi_{1}=\left(\begin{array}{cccc}
n-r+1 & n-r+2 & \ldots & n \\
1 & n-r+2 & \ldots & n
\end{array}\right), \\
\xi_{2}=\left(\begin{array}{ccccc}
n-r & n-r+1 & n-r+2 & \ldots & n-1 \\
n-r+2 & 1 & n-r+3 & \ldots & n
\end{array}\right),
\end{gathered}
$$

and for $i=2, \ldots, m-1$ if

$$
\xi_{i}=\left(\begin{array}{ccccc}
x_{1} & x_{2} & \ldots & x_{r-1} & y_{i} \\
t_{1} & t_{2} & \ldots & t_{r-1} & t_{r}
\end{array}\right)
$$

define

$$
\xi_{i+1}=\left(\begin{array}{ccccc}
x_{1} & x_{2} & \ldots & x_{r-1} & z \\
t_{2} & t_{3} & \ldots & t_{r} & t_{1}
\end{array}\right)
$$

Then it is easy to see that the mapping

$$
\phi: B\left(S_{r},\{1, \ldots, m\}\right) \rightarrow Q_{r}
$$

defined by $(i, \eta, j) \phi=\xi_{i} \eta \xi_{j}^{-1}$ is an isomorphism. Here S_{r} is the symmetric group on $\{1, n-r+2, \ldots, n\}, Q_{r}$ is the principal factor

$$
[r, r] / \bigcup_{l=0}^{r-1}[l, l]=[r, r] \cup\{0\} .
$$

From Proposition 2.4 in [1], the set

$$
T=\left\{\left(1, g_{1}, 1\right),\left(1, g_{2}, 2\right),(2, e, 3), \ldots,(m-1, e, m),(m, e, 1)\right\}
$$

where $g_{1}=(1 n-r+2 \ldots n), g_{2}=(1 n-r+2)$ and e is the identity permutation in S_{r}, generates $B\left(S_{r},\{1, \ldots, m\}\right)$. Thus $T \phi$ generates Q_{r} and hence $[r, r$]. If we now define

$$
\alpha_{1}=\xi_{1} g_{2} \xi_{2}^{-1}, \alpha_{i}=\xi_{i} \xi_{i+1}^{-1} \quad \text { for } i=2, \ldots, m-1
$$

and

$$
\beta=\xi_{m} \xi_{1}^{-1}, \quad \delta=\xi_{1} g_{1} \xi_{1}^{-1}
$$

we obtain a generating set $\left\{\beta, \delta, \alpha_{1}, \ldots, \alpha_{m-1}\right\}$ of $[r, r]$, where

$$
\begin{gathered}
\alpha_{1}=\|n n-1 \ldots n-r+1 n-r\|, \\
\alpha_{i}=\left\|y_{i} x_{r-1} \ldots x_{1} z_{i+1}\right\| \quad \text { for } i=2, \ldots, m-1
\end{gathered}
$$

are all nilpotents. On the other hand,

$$
\delta=\left(\begin{array}{ccccc}
n-r+1 & n-r+2 & \ldots & n-1 & n \\
n-r+2 & n-r+3 & \ldots & n & n-r+1
\end{array}\right)
$$

is clearly non-nilpotent. However if r is odd we have

$$
\begin{equation*}
\delta=\alpha_{1} \lambda_{1} \tag{3.3}
\end{equation*}
$$

where

$$
\lambda_{1}=\|n-r n-r+2 \cdots n-1 n-r+1 n-r+3 \cdots n-2 n\| .
$$

If r is even, and is of the form $4 q+2(q \geq 0)$, then

$$
\begin{equation*}
\delta=\alpha_{1} \eta_{1} \eta_{2} \tag{3.4}
\end{equation*}
$$

where

$$
\begin{aligned}
\eta_{1}= & \|n-r+1 n-r+5 \ldots n-1 n-r+3 n-r+7 \ldots n-3 n-r n-r+4 \ldots n-21\| \\
& \bigcup\|n-r+2 n-r+6 \ldots n\|
\end{aligned}
$$

and

$$
\eta_{2}=\|n-r n-1 n-3 \ldots n-r+3 n-r+1\| \cup\|1 n n-2 n-4 \ldots n-r+2\|
$$

If r is even and of the form $4 q(q \geq 1)$ then

$$
\begin{equation*}
\delta=\alpha_{1} \psi_{1} \psi_{2} \tag{3.5}
\end{equation*}
$$

where

$$
\psi_{1}=\|n-r+1 n-r n-r+3 n-r+2 n-r+5 n-r+4 \ldots n-1 n-21\|
$$

and

$$
\psi_{2}=\|n-r n-r+3 n-r+2 n-r+5 \ldots n-2 n-r+1\| \cup\|1 n\| .
$$

Next, β may or may not be nilpotent. However, as $\beta \in[r, r]$, if β is non-nilpotent, then by Lemma 2.1 it is expressible as a product of two nilpotents in $[r, r]$, say

$$
\begin{equation*}
\beta=\zeta_{1} \zeta_{2} \tag{3.6}
\end{equation*}
$$

It is clear that $\beta \mathscr{R} \zeta_{1}$ and $\beta \mathscr{L} \zeta_{2}$, that is $R_{\zeta_{1}}=A_{m}$ and $L_{\zeta_{2}}=A_{1}$.
We now define $\lambda_{1}^{\prime}, \eta_{1}^{\prime}, \eta_{2}^{\prime}, \psi_{1}^{\prime}, \psi_{2}^{\prime}$ and ζ_{2}^{\prime} as follows:

\[

\]

Before we define ζ_{2}^{\prime}, we note that from Theorem 2.8 in [2], ζ_{2} can be expressed as a disjoint union of k primitive nilpotents, say

$$
\zeta_{2}=\mu_{1} \cup \mu_{2} \cup \ldots \cup \mu_{k}
$$

If $k \geq 2$, then assume

$$
\mu_{1}=\left\|x_{1} \ldots x_{s}\right\| \quad \text { and } \quad \mu_{2}=\left\|y_{1} \ldots y_{t}\right\|
$$

and define ζ_{2}^{\prime} as

$$
x \xi_{2}^{\prime}=x \zeta_{2} \quad \text { if } \quad x \in \operatorname{dom} \zeta_{2}
$$

and

$$
x_{s} \zeta_{2}^{\prime}=y_{t}
$$

On the other hand if $k=1$ then $\mid \operatorname{dom} \zeta_{2} \cup$ im $\zeta_{2} \mid=r+1$, and since $r \leq n-2$ we have $X_{n} \backslash\left(\operatorname{dom} \zeta_{2} \cup \mathrm{im} \zeta_{2}\right)$ to be non-empty. Then define ζ_{2}^{\prime} as

$$
\xi_{2}^{\prime}=\zeta_{2} \cup(x, n-r+1)
$$

where $x \in X_{n} \backslash\left(\operatorname{dom} \zeta_{2} \cup \mathrm{im} \zeta_{2}\right)$.
Note that $\lambda_{1}^{\prime}, \eta_{1}^{\prime}, \eta_{2}^{\prime}, \psi_{1}^{\prime}, \psi_{2}^{\prime}$ and ζ_{2}^{\prime} are distinct, and belong to $[r+1, r]$. If we now replace $\lambda_{1}, \eta_{1}, \eta_{2}, \psi_{1}$ and ψ_{2} by $\lambda_{1}^{\prime}, \eta_{1}^{\prime}, \eta_{2}^{\prime}, \psi_{1}^{\prime}$ and ψ_{2}^{\prime} respectively in equations (3.3)-(3.5) then it is easy to see that the equations remain unaltered. Since $\beta, \zeta_{1}, \zeta_{2}$ are all one-one and of the same height, we must have

$$
\operatorname{dom} \beta=\operatorname{dom} \zeta_{1}, \quad \operatorname{im} \zeta_{1}=\operatorname{dom} \zeta_{2}
$$

and since $x_{s}, x \notin \operatorname{dom} \zeta_{2}=\operatorname{im} \zeta_{1}$ we conclude that

$$
\zeta_{1} \zeta_{2}=\zeta_{1} \zeta_{2}^{\prime}
$$

Now, if β is nilpotent then $V(n, r)$ is generated by

$$
\left\{\beta, \lambda_{1}^{\prime}, \alpha_{1}, \ldots, \alpha_{p-2}\right\}, \quad\left\{\beta, \eta_{1}^{\prime}, \eta_{2}^{\prime}, \alpha_{1}, \ldots, \alpha_{p-3}\right\}
$$

or

$$
\left\{\beta, \psi_{1}^{\prime}, \psi_{2}^{\prime}, \alpha_{1}, \ldots, \alpha_{p-3}\right\}
$$

according to whether r is odd, even and of the form $4 q+2(q \geq 0)$ or even and of the form $4 q(q \geq 1)$, and $\alpha_{m}, \ldots, \alpha_{p-k}(k=2,3)$ are chosen arbitrarily to cover all the \mathscr{R}-classes in J_{r}.

If β is non-nilpotent, then $V(n, r)$ is generated by

$$
\left\{\zeta_{1}, \zeta_{2}^{\prime}, \lambda_{1}^{\prime}, \alpha_{1}, \ldots, \alpha_{p-3}\right\}, \quad\left\{\zeta_{1}, \zeta_{2}^{\prime}, \eta_{1}^{\prime}, \eta_{2}^{\prime}, \alpha_{1}, \ldots, \alpha_{p-4}\right\}
$$

or

$$
\left\{\zeta_{1}, \zeta_{2}^{\prime}, \psi_{1}^{\prime}, \psi_{2}^{\prime}, \alpha_{1}, \ldots, \alpha_{p-4}\right\}
$$

according to whether r is odd, even and of the form $4 q+2(q \geq 0)$ or even and of the form $4 q(q \geq 1)$, and $\alpha_{m}, \ldots, \alpha_{p-k}(k=3,4)$ are chosen arbitrarily to cover all the \mathscr{R}-classes in J_{r}.

To conclude the proof of Theorem 3.1, it remains to prove that the listing of the subsets of X_{n} of cardinality r as postulated in the statement of Lemma 3.2 can actually be carried out. Let $n \geq 4$ and $2 \leq r \leq n-2$, and consider the following proposition.
$(\mathbf{P}(n, r))$: there is a way of listing the subsets of X_{n} of cardinality r as $A_{1}, A_{2}, \ldots, A_{m}$ (with $m=\binom{n}{r}, \quad A_{1}=\{n-r+1, \ldots, n\}, \quad A_{2}=\{n-r, \ldots, n-1\}, \quad A_{m}=\{1, n-r+$ $2, \ldots, n\}$) such that $\left|A_{i} \cap A_{i+1}\right|=r-1$ for $i=1, \ldots, m-1$ and $\left|A_{m} \cap A_{1}\right|=r-1$.

We shall prove this by a double induction on n and r, the key step being a kind of Pascal's Triangle implication.

$$
\mathbf{P}(n-1, r-1) \quad \text { and } \quad \mathbf{P}(n-1, r) \Rightarrow \mathbf{P}(n, r)
$$

First, however, we anchor the induction with two lemmas.
Lemma 3.7. $\mathbf{P}(n, 2)$ holds for every $n \geq 4$.
Proof. Consider the following arrangement of the subsets of X_{n} of cardinality 2.

$$
\begin{array}{ccccc}
\{1,2\}, & \{1,3\}, & \ldots, & \{1, n-1\}, & \{1, n\}, \\
\{2,3\}, & \ldots, & \{2, n-1\}, & \{2, n\}, \\
& \ddots & \vdots & \vdots \\
& & \{n-2, n-1\}, & \{n-2, n\}, \\
& & & \{n-1, n\} .
\end{array}
$$

If we denote the first row by R_{1}, second row by R_{2}, etc., then we note that the first entry in R_{i} is $\{i, i+1\}$ and the last entry is $\{i, n\}$. Thus the number of elements in R_{i} is $n-i$, and the total number of subsets in all the rows is

$$
\sum_{i=1}^{n-1}(n-i)=\frac{n}{2}(n-1)=\binom{n}{2} .
$$

Hence above is a complete list of the subsets of X_{n} of cardinality 2.
Note that for any two subsets A_{s}, A_{r} in $R_{i}, A_{s} \cup A_{r}=\{i\}$, and the intersection of the last entry in R_{i+1} with the first entry in R_{i} is $\{i+1\}$. Hence the following arrangement satisfies $\mathbf{P}(n, 2)$:

$$
R_{n-1}, R_{n-2}, \ldots, R_{i+1}, R_{i}, \ldots, R_{2}, R_{1}
$$

That is, the list begins with all the subsets in R_{n-1}, followed by the subsets in R_{n-2}, followed by the subsets in R_{n-3}, and so on, until R_{1} is reached.

Lemma 3.8. $\mathbf{P}(n, n-2)$ holds for every $n \geq 4$.
Proof. Note that $\mathbf{P}(4,2)$ follows from Lemma 3.7. So we will assume that $n \geq 5$. Let R_{i}^{\prime} be the list of the complements of the subsets in R_{i} (defined in the proof of Lemma 3.7) arranged in the same order as in R_{i}. Let $\left(R_{i}^{\prime}\right)^{-1}$ be R_{i}^{\prime} arranged in the reverse order. For example

$$
\begin{gathered}
R_{n-2}=\{n-2, n-1\},\{n-2, n\}, \\
R_{n-2}^{\prime}=\{1, \ldots, n-3, n\},\{1, \ldots, n-3, n-1\}, \\
\left(R_{n-2}^{\prime}\right)^{-1}=\{1, \ldots, n-3, n-1\},\{1, \ldots, n-3, n\} .
\end{gathered}
$$

Let $T=\{1,3\},\{1,4\}, \ldots,\{1, n-1\}$ and $T^{\prime}=R_{1}^{\prime} \backslash\left(\{1,2\}^{\prime},\{1, n\}^{\prime}\right)$.
It is clear that, for any two subsets $A_{s}^{\prime}, A_{r}^{\prime}$ in R_{i}^{\prime}, we have $\left|A_{s}^{\prime} \cap A_{r}^{\prime}\right|=n-3$, and the intersection of the last subset in R_{i+1}^{\prime} and the first subset in R_{i}^{\prime} also contains $n-3$ elements. We also have $n-3$ elements in the intersection of the last subset in R_{3}^{\prime} with the first subset in $\left(R_{2}^{\prime}\right)^{-1}$, and the same number of elements in the intersection of the last subset in T^{\prime} with the subset in R_{n-1}^{\prime}. We now have the following arrangement satisfying $\mathbf{P}(n, n-2)$:

$$
A_{1}^{\prime}, A_{2}^{\prime}, T^{\prime}, R_{n-1}^{\prime}, R_{n-2}^{\prime}, \ldots, R_{3}^{\prime},\left(R_{2}^{\prime}\right)^{-1}
$$

where $A_{1}^{\prime}=\{1,2\}^{\prime}$ and $A_{2}^{\prime}=\{1, n\}^{\prime}$.
Lemma 3.9. Let $n \geq 6$ and $3 \leq r \leq n-3$. Then $\mathbf{P}(n-1, r-1)$ and $\mathbf{P}(n-1, r)$ together imply $\mathbf{P}(n, r)$.

Proof. From the assumption $\mathbf{P}(n-1, r)$ we have a list A_{1}, \ldots, A_{m} (where $m=$ $\binom{n-1}{r}$) of the subsets of X_{n-1} with cardinality r such that $\left|A_{1} \cap A_{i+1}\right|=r-1$ for $i=1, \ldots, m-1$, and

$$
A_{1}=\{n-r, \ldots, n-1\}, A_{2}=\{n-r-1, \ldots, n-2\}, A_{m}=\{1, n-r+1, \ldots, n-1\} .
$$

From the assumption $\mathbf{P}(n-1, r-1)$, we have a list B_{1}, \ldots, B_{t} (where $t=\binom{n-1}{r-1}$) of subsets of X_{n-1} of cardinality $r-1$ such that $\left|B_{i} \cap B_{i+1}\right|=r-2$ for $i=1, \ldots, r-1$, and

$$
B_{1}=\{n-r+1, \ldots, n-1\}, B_{2}=\{n-r, \ldots, n-2\}, B_{t}=\{1, n-r+2, \ldots, n-1\} .
$$

Let $B_{i}^{\prime}=B_{i} \cup\{n\}$. Then

$$
A_{1}, \ldots, A_{m}, B_{1}^{\prime}, \ldots, B_{t}^{\prime}
$$

is a complete list of the subsets of X_{n} of cardinality r. (Notice that $t+m=\binom{n}{r}$.) Now, arrange the above subsets as follows:

$$
B_{1}^{\prime}, A_{1}, A_{m}, \ldots, A_{2}, B_{2}^{\prime}, \ldots, B_{t}^{\prime}
$$

Then it is easy to verify that this arrangement satisfies $\mathbf{P}(n, r)$. Hence the induction is complete and we may deduce that $\mathbf{P}(n, r)$ is true for all $n \geq 4$ and all r such that $2 \leq r \leq n-2$.

Acknowledgement. My sincere thanks are due to my research supervisor, Professor J. M. Howie, for his helpful suggestions and encouragement.

REFERENCES

1. G. U. Garba, Nilpotents in semigroups of partial one-one order-preserving mappings, Semigroup Forum, to appear.
2. G. M. S. Gomes and J. M. Howie, Nilpotents in finite symmetric inverse semigroups, Proc. Edinburgh Math. Soc. (2) 30 (1987), 383-395.
3. G. M. S. Gomes and J. M. Howie, On the ranks of certain finite semigroups of transformations, Math. Proc. Cambridge Philos. Soc. 101 (1987), 395-403.
4. G. M. S. Gomes and J. M. Howie, On the ranks of certain semigroups of order-preserving transformations, Semigroup Forum 45 (1992), 272-282.
5. J. M. Howie, An introduction to semigroup theory (Academic Press, 1976).
6. J. M. Howie and R. B. McFadden, Idempotent rank in finite full transformation semigroups, Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), 161-167.
7. R. P. Sullivan, Semigroups generated by nilpotent transformations, J. Algebra 110 (1987), 324-345.

Department of Mathematical and Computational Sciences
University of St Andrews
Scotland
Present address:
Department of Mathematics
Ahmadu Bello University Zaria
Nigeria

