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On Some q-Analogs of a Theorem of
Kostant-Rallis
N. R. Wallach and J. Willenbring

Abstract. In the first part of this paper generalizations of Hesselink’s q-analog of Kostant’s multiplicity formula
for the action of a semisimple Lie group on the polynomials on its Lie algebra are given in the context of the
Kostant-Rallis theorem. They correspond to the cases of real semisimple Lie groups with one conjugacy class
of Cartan subgroup. In the second part of the paper a q-analog of the Kostant-Rallis theorem is given for the
real group SL(4,R) (that is SO(4) acting on symmetric 4× 4 matrices). This example plays two roles. First it
contrasts with the examples of the first part. Second it has implications to the study of entanglement of mixed
2 qubit states in quantum computation.

1 Introduction

One of the deepest results in the theory of semi-simple groups is the Kostant-Rallis theorem
which, in particular, is a multiplicity formula for the action of a reductive group on a graded
module for the group. The purpose of this paper is to study several cases in which one
can derive a graded multiplicity formula. The most notable success in this direction is
Hesselink’s graded version of Kostant’s multiplicity formula for the action of a reductive
group on the polynomials on the adjoint representation [Hes]. This case is included in our
examples and our proof yields a slight simplification of his. In order to explain the context
and results of this paper we need to develop some notation.

Let G denote a semi-simple linear algebraic group over C with Lie algebra g and let θ
denote a regular involution with differential (also denoted) θ : g → g. Let K be the set of
fixed points of θ in G and let k denote the Lie algebra of K. As usual, we write

p = {X ∈ g | θ(X) = −X}.

For any vector space V , let P(V ) denote the complex valued polynomial functions on
V . This ring is graded by degree, so let Pd(V ) denote the subspace of homogeneous poly-
nomials of degree d. We have

P(V ) =
⊕
d≥0

Pd(V ).

As usual, denote the subring of K-invariant polynomial functions on p by P(p)K . Let a be
a Cartan subspace of p (that is, a subspace of p that is maximal subject to the condition
that it is an abelian subalgebra of g consisting of semi-simple elements). Let M = {k ∈
K | Ad(k)H = H,H ∈ a}. Set M∗ = {k ∈ K | Ad(k)a ⊂ a}. We look upon M∗/M as
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a subgroup, W (a), of GL(a) (under the restriction of the adjoint action to a). Then W (a)
is a Weyl group. We set l = dim a and we denote by d1, d2, . . . , dl the degrees of the basic
invariants of W (a). The Chevalley restriction theorem implies that P(p)K is a polynomial
ring in homogeneous generators u1, . . . , ul with deg ui = di .

We set I = P(p)P(p)K
+ and Id = I∩Pd(p). So I is the ideal of P(p) generated by the K-

invariant functions which vanish at the origin and this ideal is graded by degree. Id is stable
under the action of K so it has a unique K-invariant complement, Hd, in Pd(p) (since K
is reductive). We set H =

⊕
d≥0 Hd. The total space H is the space of K-harmonic poly-

nomials (that is the space annihilated by the K-invariant constant coefficient differential
operators the annihilate the constants). The basic result of Kostant-Rallis says that

Theorem 1 ([K-R], cf. [G-W]) As a P(p)K -module P(p) is free. That is, as a P(p)K -module

P(p) ∼= P(p)K ⊗H

and furthermore as a K-representation H is equivalent with the algebraically induced repre-
sentation from M to K of the trivial representation.

In light of the theorem, Frobenius reciprocity implies that

dim HomK (V,H) = dim V ρ(M)

where (ρ,V ) is an irreducible regular representation of K. We define the graded multiplicity
of (ρ,V ) in H to be

∑
i qi dim HomK(V,Hi). The purpose of this paper is to give explicit

formulas for these graded multiplicities in several special cases.
We first note that this problem has been solved by [Hes], in the special case when

G = G1 × G1 with G1 a semi-simple algebraic group and θ(x, y) = (y, x). We will give
a slight simplification of Hesselink’s original argument for this case in this paper. The
analogue of the Kostant-Rallis theorem in this case is Kostant’s famous decomposition
of the adjoint representation of G1 [K]. In Section 2 we actually give a graded multiplic-
ity formula that applies in a somewhat wider context (which includes the pairs (K, p) =(
Sp2n(C), (

∧2 C2n)/C
)

, (F4,V ) with V the 26 dimensional irreducible representation).
These results are based on a combinatorial formula (Proposition 2) for simple Lie alge-
bras which applies to three cases: all roots, all short roots and all long roots. In the paper
only the first two cases of the formula are used. It is hard to believe that such a beauti-
ful relationship (in the case of the long roots) has no application. The rest of the paper
will be devoted to the first non-trivial special case (G = SL(4,C), K = SO(4,C)) of the
graded multiplicity that does not fit in the context of formulae of the type found in the next
section.

The first named author wishes to thank Benedict Gross for having pointed his beautiful
recent results related to the ”short root representation” of a simple Lie group that is not
simply laced. Those results inspired us to look at the context of the next section. We also
thank David Meyer for explaining the basics of quantum computing to us and pointing out
the importance of the material on SL(4,C) in the context of the so-called “mixed case” of
two qubits. These applications will be discussed in a forthcoming paper.
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2 Some Graded Multiplicity Formulas

In this section we will set up a general combinatorial framework that can be used to estab-
lish graded multiplicity formulas. Let H be a connected, simple, linear algebraic subgroup
over C. Fix T, a maximal (algebraic) torus of H. Let Φ denote the root system of T acting
on H. Choose a system, Φ+, of positive roots in Φ and let ∆ the simple roots in Φ+. Let
W (H,T) =W be the Weyl group of T in H. If α ∈ Φ then sα ∈W denotes the reflection
about the hyperplane α = 0. If s ∈ W then set Qs = {α ∈ Φ+ | −sα ∈ Φ+}. Let Ω be
a subset of Φ that is W invariant and set WΩ = {s ∈ W | Qs ⊂ Ω}. Set l = |Ω ∩ ∆|
(the cardinality of the set). Let ρ = 1

2

∑
α∈Φ+ α (as usual). Set D = eρ

∏
α∈Φ+ (1− e−α) =∑

s∈W sgn(s)esρ.

Proposition 2 WΩ is the subgroup of W generated by the set

{sα | α ∈ Ω ∩∆}.

Let d1, . . . , dl denote the degrees of a set of basic invariants of WΩ in the space spanned by
Ω ∩∆. Then

∑
s∈W

sgn(s)
esρ∏

α∈Ω∩Φ+ (1− qesα)
=

D
∏l

i=1
1−qdi

1−q∏
α∈Ω(1− qeα)

.

There are not many examples of subsets satisfying the assumptions that we have imposed
on Ω. In fact, if H is simply laced then the only non-empty example is Ω = Φ. If Φ has
two root lengths and if Ω �= Φ then it is the subset of roots of one of the two possible
lengths. We now prove the first assertion of the proposition in light of this observation. Fix
an invariant form B(. . . , . . . ) on Lie(H) such that if (. . . , . . . ) is the corresponding dual
form on Lie(T)∗ then (α, α) > 0 for α ∈ Φ. Let Φr = {α ∈ Φ | (α, α) = r}. We
assume (as we may) that Ω = Φr for one of two possible values or Ω = Φ. We choose
an enumeration {α1, . . . , αn} of ∆. For the sake of simplicity we will write si for sαi . Let
s ∈ WΩ and let s = si1 · · · sim be a reduced expression for s. Then αim ∈ Qs ⊂ Ω. Since
Qssim

= sim (Qs − {αim}), the first assertion of the proposition follows by induction on m.
We also observe that m = |Qs| = l(s).

We will now prove the formula. If we multiply the left hand side of the formula by the
denominator of the right hand side we obtain

∑
s∈W

sgn(s)esρ
∏

α∈Ω∩Φ+

(1− qe−sα).

We may rewrite this expression as

∑
Q⊂Ω∩Φ+

q|Q|(−1)|Q|
∑
s∈W

sgn(s)es(ρ−〈Q〉)

with 〈Q〉 =
∑
α∈Q α. The inner sum is 0 unless there exists t ∈W such that ρ− 〈Q〉 = tρ

(this follows from the Weyl denominator formula cf. [G-W]). Thus Q must be Qt for some
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t (cf. [G-W, 7.3.7, p. 331]) and thus t ∈WΩ and |Q| = l(t). Since sgn(s) = (−1)l(s) we see
that the expression above can be written as

∑
t∈WΩ

ql(t)
∑
s∈W

sgn(s)esρ.

Now Chevalley [Chev] has shown that
∑

s∈WΩ
ql(s) =

∏l
i=1

1−qdi

1−q . The proposition now
follows.

Set Ω+ = Ω ∩ Φ+. We define the q-analog of the Ω+-partition function at µ, PΩ+ (q, µ),
to be the coefficient of eµ in the expansion of

1∏
α∈Ω+ (1− qeα)

.

If µ is Φ+-dominant integral then we denote by χµ the character of the irreducible finite
dimensional representation of (the simply connected covering group of) H with highest
weight µ with respect to Φ+ on T. Then the Weyl character formula says that

Dχµ =
∑
s∈W

sgn(s)es(µ+ρ).

Let P+ denote the set of dominant integral weights on T.

Corollary 3 Let Ω be in the previous proposition. Then

∏l
i=1

1−qdi

1−q∏
α∈Ω(1− qeα)

=
∑
µ∈P+

(∑
s∈W

sgn(s)PΩ+

(
q, s(µ + ρ)− ρ

))
χµ.

We will write P(ξ) = PΩ+ (ξ). The left hand side of the equation in the above proposition
is given by

∑
s∈W

sgn(s)
∑
ξ

P(q.ξ)es(ξ+ρ).

We rewrite this as

∑
s∈W

sgn(s)
∑
ξ

P(q, ξ − ρ)esξ.

Since, for fixed ξ the sum over W is zero unless ξ is regular we see that this sum is equal
to

∑
s∈W

sgn(s)
∑
ξ∈P+

∑
t∈W

P(q, tξ − ρ)estξ =
∑
ξ∈P+

(∑
t∈W

sgn(t)P(q, tξ − ρ)
)∑

s∈W

sgn(s)esξ.
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If ξ ∈ P+ and the outer sum is non-zero then ξ = µ + ρ with µ ∈ P+. Thus the formula
that we have been studying is

∑
ξ∈P+

(∑
t∈W

sgn(t)P
(

q, t(ξ + ρ)− ρ
))∑

s∈W

sgn(s)es(ξ+ρ).

The result now follows from the Weyl character formula.
We will now show how the above combinatorial results imply graded multiplicity for-

mulae. In the contexts that we will study we will only need the following easier version of
the Kostant-Rallis theorem:

• P(p) is free as a P(p)K -module.

See [G-W, Lemma 12.4.14, p. 569] for a proof of this result using only the Chevalley
restriction theorem.

If G is a reductive algebraic group over C and if V =
⊕

i≥0 V i is a graded G-module

with dim V i <∞ for all i then we write chq(V ) for the formal sum
∑

i≥0 qi ch(V i) where

ch(V i) is the usual character of the G-module V i .
As our first application if these ideas we look at the situation when Ω = Φ. If we take

G = H × H and θ(x, y) = (y, x) then K = {(x, x) | x ∈ H} ∼= H and p = {(X,−X) |
X ∈ Lie(H)} ∼= Lie(H) as an H-module under the adjoint representation. This is exactly
the context of Kostant’s theorem. In this case PΦ+ (q, µ) is just the q-analog of the Kostant
partition function as defined by Lusztig. We now apply the above results and obtain the
following result of [Hes].

Theorem 4 Let H be a connected, semi-simple algebraic group over C with h = Lie(H).
Fix a maximal (algebraic) torus, T, of H and a system of positive roots. If µ is a dominant
integral character of T we denote by Fµ the irreducible finite dimensional representation of (of
the simply connected covering group of) H with highest weight µ. Then

∑
i

qi dim HomH(Fµ,Hi) =
∑
s∈W

sgn(s)PΦ+

(
q, s(µ + ρ)− ρ

)
.

We note that since the weights of the adjoint representation consist of zero with multi-
plicity l = dim T union with Φ the q-character of the action of H on P(h) restricted to T is
given by

1

(1− q)l
∏
α∈Φ(1− qeα)

.

Since the q-Hilbert series of P(h)H is 1∏l
i=1(1−qdi )

. The freeness assertion above implies that

the q-character of H is

∏l
i=1

1−qdi

1−q∏
α∈Φ(1− qeα)

.
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The result now follows from the preceding corollary.
We now come to the examples inspired by some recent results of B. Gross. We assume

that g is simple and that if t is the Lie algebra of a maximal torus T of K then the centralizer,
a, of t in p is a Cartan subspace. The examples of this phenomenon are:

1. G = SO(2n + 2), K = SO(2n + 1), p ∼= C2n+1.
2. G = SL(2n,C) (n > 1), K = Sp2n(C), p ∼= (

∧2 C2n)0 (orthogonal complement to the
invariant).

3. G = E6, K = F4, p the irreducible 26 dimensional representation of K.

In case 1 we take l = 1, for 3 we take l = 2 and for 2 we take l = n−1. If we replace H in
the above discussion with K. Then we find that the weights of T on p are 0 with multiplicity
l combined with Ω the set of short roots for K with respect to T. We fix Φ+, a system of
positive roots for K with respect to T.

Theorem 5 Let W be the Weyl group of K with respect to T. Let ρ be the half sum of the
elements ofΦ+. LetΩ be the set of short roots inΦ and letΩ+ = Ω∩Φ+. We have WΩ

∼=W (a).
Furthermore, if µ is a dominant integral character of T and if Fµ is an irreducible regular
representation of (the simply connected covering group of) K then

∑
i

qi dim HomK(Fµ,Hi) =
∑
s∈W

sgn(s)PΩ+

(
q, s(µ + ρ)− ρ

)
.

Once the first assertion has been established the formula is proved in exactly the same
way as it was in the previous theorem. One can check that in case 1 we have W (a) ∼= S2, in
case 3 we have W (a) ∼= S3 and in case 2 we have W (a) ∼= Sn. An examination of the Dynkin
diagrams and and an application of the first part of Proposition 2 implies that W (a) ∼=WΩ.

In the work of B. Gross there is one other case that fit the pattern of his theory. As it
turns out the methods of this section also apply to this case.

• K = G2, p the irreducible 7 dimensional representation of K.

In this case K is actually the fixed point group of an automorphism of order 3 of
SO(7,C). P(p)K is the polynomial ring in one variable (a degree 2 invariant). As before we
take Ω to be the set of short roots. Here Hi is just the space of classical spherical harmonics
in 7 variables of degree i. Thus the q-multiplicity formula amounts to a branching rule
from SO(7) to G2.

Theorem 6 Let W be the Weyl group of G2 and let Ω denote the set of short roots. Let Hi

denote the space of spherical harmonics in 7 variables homogeneous of degree i. Let Fµ denote
a finite dimensional representation of G2 with highest weight µ. Then

∑
i

qi dim HomK(Fµ,Hi) =
∑
s∈W

sgn(s)PΩ+

(
q, s(µ + ρ)− ρ

)
.
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3 The Case of
(
SL(4,C), SO(4,C)

)
In this section we will contrast the beautiful examples of the previous section with the ap-
parently simpler case of the title of this section. We look at G = SL(4,C) and θ(g) = (gT)−1

(here gT is the usual transpose). So K = SO(4,C). We observe that the quadratic polyno-
mial on M2(C) given by p(X) = det X is invariant under the action of SL(2,C)× SL(2,C)
given by (g, h)X = gXhT . Thus a dimension count shows that SO(4,C) is isomorphic
with the image of SL(2,C) × SL(2,C) in GL

(
M2(C)

)
under this action. We will use this

identification to parametrize the representations of SO(4,C) by pairs of integers. Thus Fk.l

will denote the tensor product of the k + 1 dimensional irreducible representation of the
SL(2,C) in the first factor with the l + 1 dimensional SL(2, (C) representation of the second
factor. The standard action of SO(4,C) on C4 is thus F1,1. The representation on p is F2,2.

We fix the maximal torus, T, of SL(2,C) × SL(2,C) that is the product of the diago-
nal matrices in each of the factors (each a maximal torus of SL(2,C). If (π,V ) is a finite
dimensional representation of G then we write char(V ) for the character of V restricted
to the maximal torus. The characters of the irreducible representations are given as fol-
lows. Let t(s) denote the diagonal two by two matrix with entries s, s−1. If Fk denotes a
fixed choice of an irreducible k + 1-dimensional representation of SL(2,C) then one has

char(Fk)
(
t(s)
)
= (sk+1−s−k−1)

(s−s−1) . Hence if we write χk(s) = char Fk
(
t(s)
)

we have

char Fk,l
(
t(s1), t(s2)

)
= χk(s1)χl(s2) =

(sk+1
1 − s−k−1

1 )(sl+1
2 − s−l−1

2 )

(s1 − s−1
1 )(s2 − s−1

2 )
.

Recall that if (π,V ) is a representation of G with V a graded vector space V =
⊕

i≥0 V i

and each V i a G-invariant and finite dimensional subspace then we will use the notation
charq(V ) for the formal sum

∑
i≥0 qi char(V i).

We therefore have k = sl2 ⊕ sl2
∼= F2,0 ⊕ F0,2 and p = {X ∈ sl4 | XT = X} ∼= F2,2 as an

SO(4,C) representations. In this context the Kostant-Rallis Theorem says that, in this case,

P(F2,2) ∼= C[u1, u2, u3]⊗H

with ui = Tr(Xi+1) for i = 1, 2, 3 basic invariants and that H is equivalent with the repre-
sentation of G induced from the trivial representation of the diagonal matrices, M, in (the
usual realization of) SO(4,C) (that is, M is isomorphic with the group of diagonal 4 × 4
matrices with diagonal entries ±1 and determinant 1). Thus Frobenius reciprocity allows
us to compute the multiplicity, m(k, l) of Fk.l in H. It follows that

H =
⊕
k,l≥0

m(k, l)Fk,l

with m(k, l) = dim(Fk,l)M . Our problem is to compute the multiplicity, md(k, l), of Fk,l in
Hd that is to say

Hd =
⊕
k,l≥0

md(k, l)Fk,l.

https://doi.org/10.4153/CJM-2000-020-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-020-0


On Some q-Analogs of a Theorem of Kostant-Rallis 445

A direct calculation which involves the calculation of the preimage of M in SL(2,C) ×
SL(2,C) yields

m(2k, 2l) =

{
(2k+1)(2l+1)−3

4 for k− l odd,
(2k+1)(2l+1)+3

4 for k− l even,

while m(k, l) = 0 if either k or l is odd. We will leave this not completely trivial calculation
to the reader.

We now begin the calculation of q-characters in earnest. We note that

charq

(
P(F2,2)

)
= charq P(F2,2)SO(4,C) charq H =

charq H

(1− q2)(1− q3)(1− q4)
.

Also the characters of T are parametrized by pairs of integers as follows(
t(s1), t(s2)

)
�→ sk

1sl
2

hence the weights of F2,2 are the χk,l with k, l ∈ {−2, 0, 2}. We therefore have (using s = s1,
t = s2)

charq P(F2,2) =
1∏

i, j=−2,0,2(1− qsit j)
.

Hence, finding the graded multiplicity is equivalent to finding the polynomials pk l(q) such
that,

(1− q2)(1− q3)(1− q4)∏
i, j=−2,0,2(1− qsit j)

=
∑
k,l≥0

pkl(q)χ2k,2l(s, t).(1)

Our initial approach to calculating the polynomials pk,l(q) involved a large number of
computer calculations. Gradually we found experimental evidence for some beautiful pat-
terns. Here is a list of the main ones that were observed.

• For all j ≥ 0

p j j(q) =
q j(1− q j+2)(1− q j+1) + q j+4(1− q j)(1− q j−1)

(1− q)2(1 + q)
.

• For all j ≥ 0

p j+1 j(q) =
q j+2(1− q j+2)(1− q j)

1− q2
.

But most importantly,

• (The shift formula) For all k ≥ l ≥ 0,

pk+2l(q)− q2 pkl(q) = q2k−l+4

(
1− q2l+1

1− q

)
.
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It is clear that above three conditions completely characterize a set of polynomials pk,l(q)
given as follows: If k ≥ l, k− l ∈ 2Z then it must be given by

qk(1 + q2 + q4)− qk+l(q + q2 + q3 + q4) + q2k(ql+3 − q−l+2) + qk+2l+3

(1− q)(1− q2)
(2)

and if k ≥ l, k− l ∈ 2Z + 1 then it must be given by

(q2k+l + qk+2l)(q3 − q4) + q2k−l(q3 − q2) + qk(q− q4) + qk+l(q5 − q)

(1− q)2(1− q2)
.(3)

We were fortunate to find that all of these “guesses” are correct. The second named
author’s thesis will contain an a priori proof of the shift formula in a slightly strengthened
form which is sufficient to prove the above formulas. Our method of proof involves using
geometric series to close the sum the formal series

∑
k,l≥0

pkl(q)χ2k,2l(s, t)

and see that it is equal to (1−q2)(1−q3)(1−q4)∏
i, j=−2,0,2(1−qsit j ) .

This was carried out (with the aid of MAPLE although an enterprising reader could do
it by hand) and the upshot is

Theorem 7 The graded multiplicity of F2k,2l in H is given by the equations (2) and (3).

4 SO(4,C) Invariants in M4(C)

As an application of the previous theorem we will calculate the Hilbert series of

P
(
M4(C)

)SO(4,C)
. We first observe that

M4(C) ∼= p⊕ k⊕ CI

as K = SO(4,C)-representation. Here k = Lie(K). If we have a graded decomposition
of the polynomial functions on each of these irreducible components of M4(C), then a
graded decomposition of P

(
M4(C)

)
can be calculated by evaluating all representations that

arise from tensoring irreducibles occurring in the space of polynomial functions on each
of the components of M4(C). The Hilbert series for the invariants will then be the graded
multiplicity of the trivial representation. To carry this program out in this case we first
observe:

Proposition 8 As a K-representation,

charq P(k) =

∑
k,l≥0 qk+lχ2k,2l(s, t)

(1− q2)2
.
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As an SL(2,C)× SL(2,C)-representation, k ∼= F2,0⊕F0,2 and as an SL(2,C)-representa-
tion,

charq P(F2) =

∑
k≥0 qkχ2k(s)

1− q2
.

This follows from the observation that SL(2,C) is locally isomorphic with SO(3,C) and,
hence, the above decomposition follows from the classical theory of spherical harmonics.
The result can also be verified directly by closing the sum to a rational expression and noting
that it is equal to 1

(1−qs2)(1−qs0)(1−qs−2) .

We next observe that P(F2,0 ⊕ F0,2) ∼= P(F2,0) ⊗ P(F0,2) as an SL(2,C) × SL(2,C)-
representation and hence

charq P(F2,0 ⊕ F0,2) =

∑
k≥0 qkχ2k,0

∑
l≥0 qlχ0,2l

(1− q2)2
.

Since

Fn,0 ⊗ F0,m ∼= Fn,m

as SO(4,C) representations the result follows.

We now give the advertized Hilbert series

Theorem 9

charq P
(
M4(C)

)SO(4,C)
=

q15 + q11 + q10 + 3q9 + 2q8 + 2q7 + 3q6 + q5 + q4 + 1

(1− q)(1− q2)3(1− q3)2(1− q4)3(1− q6)
.

We observe that the representation Fk,l⊗Fr,s has a SO(4,C)-invariant if and only if both
equalities k = r and j = s hold. This implies that

charq P
(
M4(C)

)SO(4,C)
=

∑
k,l≥0 qk+l pkl(q)

(1− q)(1− q2)3(1− q3)(1− q4)
.

The latter expression can be summed formally by substituting our formulas for the pkl(q)
closing the arising geometric series to obtain the rational function given in the statement.
(The authors carried out this calculation with the aid of MAPLE.)
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