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Abstract

Explicit solutions are rarely available for water wave scattering problems. An analytical
procedure is presented here to solve the boundary value problem associated with wave
scattering by a complete vertical porous barrier with two gaps in it. The original
problem is decomposed into four problems involving vertical solid barriers. The
decomposed problems are solved analytically by using a weakly singular integral
equation. Explicit expressions are obtained for the scattering amplitudes and numerical
results are presented. The results obtained can be used as a benchmark for other wave
scattering problems involving complex geometrical structures.
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1. Introduction

Thin vertical barriers have been widely used as breakwaters in ocean engineering
practices in order to create tranquil zones. The boundary value problems that are
associated with linearized deep water wave scattering by thin vertical barriers have
been of interest to many researchers due to the mathematical difficulty involved in
their analytical or semi-analytical methods of solution. The first nontrivial closed form
solution was obtained by Havelock [4]. Then Dean [3] solved the scattering problem
involving a submerged barrier by complex function theory. With the use of Havelock’s
formula, Ursell [16] handled the scattering problem of a surface-piercing finite-length
barrier. Porter [13] solved the problem of a complete vertical barrier with a gap of
finite length by a complex variable technique. More general problems with many
finite barriers and finite gaps in the barriers were handled by Lewin [6], Mei [12] and
Porter [14] with the help of complex function theory. Various mathematical procedures
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that had been devised in the theory of linear water waves were well catalogued by
Mandal and Chakrabarti [11].

Chakrabarti et al. [1] reconsidered the scattering problem of a barrier with a single
gap and solved it analytically by the aid of a weakly singular integral equation. The
scattering problem involving a complete vertical barrier with many gaps of finite length
can be routinely worked out by making use of the bounded solution of a logarithmic
singular integral equation over multiple intervals of finite length [7]. Manam and
Kaligatla [8] extended the method to the study of scattering of membrane-coupled
gravity waves by a vertical solid barrier with a single gap.

Vertical porous barriers are known for effective dissipating characteristics. They
are used, in practice, mainly due to their advantage in reducing wave loads. Ever since
Chwang [2] derived a boundary condition on a thin vertical porous barrier based on
the Darcy law, there has been a quest for the development of a mathematical method to
analytically treat the problem of deep water wave scattering by vertical porous barriers.
The boundary condition was later modified by Yu and Chwang [17] so as to include
the inertial effects of the porous barrier.

Recently, Manam and Sivanesan [9] devised a decomposition method to solve the
scattering problem that involves thin vertical partial porous barriers. The solution
method is motivated by the work of Porter and Evans [15]. It establishes a connection
between the solution potentials that describe wave scattering by a complementary
arrangement of partial vertical solid barriers. Moreover, by introducing a modified
integral relation between the wave potentials pertaining to scattering problems
involving vertical barriers of either a solid or a porous type with a certain configuration,
Manam and Sivanesan [10] explicitly solved the scattering problem involving porous
barriers.

The purpose of this paper is two-fold. First, the weakly singular integral equation
method of solution to the scattering problem involving a vertical solid barrier with two
gaps of finite length in it is demonstrated. Second, we intend to work out the explicit
method of solution for the scattering problem that involves a vertical porous barrier
with two gaps of finite length. This is done by decomposing the problem into two
problems that are solved explicitly by the aid of a weakly singular integral equation.
In Section 2, the scattering problem involving a solid or a porous barrier with two
gaps in it is formulated based on the linearized theory of water waves. The integral
connection between the solid and the porous wave potentials, decomposition of the
original problem and the explicit solutions for the decomposed problems are given in
Section 3. Numerical results for the scattering quantities and concluding remarks are
provided in Sections 4 and 5, respectively.

2. Formulation of the scattering problem

A Cartesian coordinate system (x, y) with the y-axis increasing vertically
downwards is used as a reference frame in an inviscid and incompressible fluid under
gravity, where y = 0 is the position of the mean free surface. The barrier occupies the
position x = 0, y ∈ B = (0,∞) \G as shown in Figure 1, where G = (a1,b1) ∪ (a2,b2).
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Figure 1. Schematic diagram.

The two-dimensional fluid motion is considered to be time harmonic and
irrotational, and is described by the velocity potential Φ1(x, y, t) = Re[φ̂1(x, y) e−iωt],
where ω is the angular frequency and i =

√
−1. Then, for wave scattering by an

incident wave φ0(−x, y) = e−iKx−Ky from the positive x-axis, the spatial potential
φ̂1(x, y) satisfies the following set of equations:

φ̂1xx + φ̂1yy = 0 in x ∈ R, y > 0, (2.1)

Kφ̂1(x, 0) + φ̂1y(x, 0) = 0 on x , 0, (2.2)

where K = ω/g with g being the acceleration due to gravity,

| ∇φ̂1(x, y) |→ 0 as y→∞, (2.3)

| ∇φ̂1(x, y) |∼ O(r−1/2) as r =

√
x2 + (y − t)2 → 0, (2.4)

where (0, t) can be any of the barrier edges (0, a1), (0, b1), (0, a2) and (0, b2) in the
fluid. Now consider the equations

φ̂1x(0±, y) = −iKΓ(φ̂1(0+, y) − φ̂1(0−, y)), y ∈ B,
φ̂1(0+, y) = φ̂1(0−, y), y ∈ G, (2.5)

where Γ = γ(s + i f )/[Kd(s2 + f 2)] is the nondimensional porous effect parameter (see
the paper by Yu and Chwang [17]), in which γ is the porosity constant, d is the plate
thickness, s is the resistance force coefficient and f is the inertial force coefficient,

φ̂1(x, y) ∼
{
φ0(−x, y) + Rp φ

0(x, y) as x→∞,
Tp φ

0(−x, y) as x→ −∞.

Due to the barrier symmetry, the scattering problem may also be considered by
allowing incident waves from the negative x-axis. Then the resulting velocity potential
Φ2(x, y, t) = Re[φ̂2(x, y)eiωt] and the potential Φ1(x, y, t) differ by a phase difference.
Now the spatial potential φ̂2(x, y) satisfies (2.1)–(2.5), the boundary condition

φ̂2x(0±, y) = −iKΓ(φ̂2(0−, y) − φ̂2(0+, y)), y ∈ B
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and the radiation condition

φ̂2(x, y) ∼
{
φ0(−x, y) + Rp φ

0(x, y) as x→ −∞,
Tp φ

0(−x, y) as x→∞.

It will be seen later that any of these scattering problems can be solved by utilizing
two of them together.

The continuity of normal velocity across x = 0 ensures that the upper half-plane
problems for the potentials φ̂ j(x, y), j = 1, 2, can be reduced to quarter-plane problems
by writing (see the book by Lamb [5, p. 517])

φ̂ j(x, y) =

{
φ0(−x, y) + φ0(x, y) + φ

p
j (x, y), (−1) jx < 0,

−φ
p
j (−x, y), (−1) jx > 0, j = 1, 2.

Then, in the account of the boundary value problems for φ̂ j(x, y), j = 1, 2, the porous
wave potential functions φp

j (x, y) defined on the domain (−1) j+1x > 0 for j = 1,2 satisfy
equations (2.1)–(2.4) along with the boundary conditions

φ
p
j x

(0, y) + 2iΓK[φp
j (0, y) + φ0(0, y)] = 0, y ∈ B,

φ
p
j (0, y) + φ0(0, y) = 0, y ∈ G

and

φ
p
j (x, y)→ (Rp − 1)φ0(x, y) as (−1) jx→∞.

Also, the transmitted complex wave amplitude is now given by Tp = 1 − Rp.
Denoting the reflection and transmission amplitudes as R and T , respectively, in the

scattering problem that involves a complete vertical solid barrier with two finite gaps
in it, the associated quarter-plane problems for solid wave potentials φs

j(x, y) in the
domain (−1) j+1x > 0 for j = 1, 2 satisfy equations (2.1)–(2.4) along with the following
boundary conditions with T = 1 − R:

φs
j x

(0, y) = 0, y ∈ B,

φs
j(0, y) + φ0(0, y) = 0, y ∈ G

and

φs
j(x, y)→ (R − 1)φ0(x, y) as (−1) jx→∞.

In the next section, analytical solutions to the problems for the porous wave
potentials φ

p
j (x, y), j = 1, 2, are determined by the decomposition method. The

decomposed problems are of finding solid wave potentials φs
j(x, y), j = 1,2, and similar

such auxiliary wave potentials.
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3. Method of solution

The boundary value problem for φp
j (x, y) that is described in the previous section is

decomposed into two relatively easy, solvable problems by making use of an integral
connection (see the paper by Manam and Sivanesan [10]) as given by

φ
p
j (x, y) + iKΓ

∫ x

0

[
{φ0(t, y) + φ0(−t, y)} +

2∑
m=1

φ
p
m((−1) j+mt, y)

]
dt

= φs
j(x, y) + ψ j(x, y), (−1) j+1x > 0, j = 1, 2. (3.1)

In equation (3.1), φs
j(x, y) is the solid wave potential described earlier and the auxiliary

wave potential ψ j(x, y) satisfies (2.1)–(2.3). It may be verified that the integral term
satisfies (2.1)–(2.3), because the partial derivatives satisfy φ

p
1 x(0, y) = φ

p
2 x(0, y), for

y > 0 (see the paper by Manam and Sivanesan [9, Appendix]). The other boundary
conditions that are satisfied by ψ j are

ψ j(0, y) = 0, y ∈ G, (3.2)
ψ j x(0, y) = 0, y ∈ B (3.3)

and

ψ j(x, y) ∼ R j
1φ

0(x, y) + R j
2φ

0(−x, y) as (−1) j+1x→∞, j = 1, 2. (3.4)

Here R j
k, k = 1, 2, are unknown constants. The condition (3.3) is due to the fact that

φ
p
1 (0, y) = φ

p
2 (0, y), y ∈ B [9, Appendix].

Also, by adding the relations in (3.1) after rewriting them in the same domain x > 0,
the porous wave potentials φp

j (x, y), j = 1, 2, are explicitly obtained as

φ
p
j (x, y) = [φs

j(x, y) + ψ j(x, y)] − Γ[φ0(x, y) − φ0(−x, y)]

− iKΓ

2∑
l=1

∫ x

0
[φs

l ((−1) j+lt, y) + ψl((−1) j+lt, y)] dt, (−1) j+1x > 0, j = 1, 2.

At this stage, the involved scattering wave amplitudes R j
k, j, k = 1, 2, and R of

the decomposed problems are related to Rp by (see the paper by Manam and
Sivanesan [10])

(1 + Γ)Rp = R + R1
1, ΓRp = −R1

2, (3.5)
(1 + Γ)Rp = R + R2

2, ΓRp = −R2
1. (3.6)

Hence, the scattering wave amplitudes involved in the original problem as well as the
auxiliary decomposed problems are determined from the equations (3.5)–(3.6), once
the reflection amplitude R of an incident wave by the solid barrier is known.

Therefore, the original problem for the porous wave potentials is completely
determined if one finds the decomposed wave potentials φs

j and ψ j. In what follows,
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a solution method is provided first to solve a typical boundary value problem for
χ(x, y), x > 0, that satisfies (2.1)–(2.4), (3.2)–(3.3) and the radiating condition

χ(x, y)→ η1 φ
0(x, y) + η2 φ

0(−x, y) as x→∞, (3.7)

where η1, η2 are constants. From this, one can determine the decomposed potentials
ψ j(x, y), j = 1, 2. A similar procedure will be utilized to determine the solid wave
potentials φs

j(x, y), j = 1, 2.
The most general form of the potential χ(x, y) that satisfies the equations (2.1)–(2.3)

and (3.7) is

χ(x, y) = η1 φ
0(x, y) + η2 φ

0(−x, y) +

∫ ∞

0
A(ξ)[ξ cos (ξy) − K sin (ξy)]e−ξx dξ, x > 0.

Applying the boundary conditions (3.2) and (3.3), we obtain a pair of integral
equations ∫ ∞

0
ξA(ξ)[ξ cos (ξy) − K sin (ξy)] dξ = iK(η1 − η2)e−Ky, y ∈ B,∫ ∞

0
A(ξ)[ξ cos (ξy) − K sin (ξy)] dξ = −(η1 + η2)e−Ky, y ∈ G.

They are rewritten in a different form as(
d
dy
− K

) ∫ ∞

0
ξA(ξ) sin (ξy) dξ = iK(η1 − η2)e−Ky, y ∈ B,(

d
dy
− K

) ∫ ∞

0
A(ξ) sin (ξy) dξ = −(η1 + η2)e−Ky, y ∈ G.

By solving the above ordinary differential equations,

∫ ∞

0
ξA(ξ) sin (ξy) dξ =


i(η1 − η2) sinh (Ky), y ∈ (0, a1),

P1eKy −
i
2

(η1 − η2)e−Ky, y ∈ (b1, a2),

−
i
2

(η1 − η2)e−Ky, y ∈ (b2,∞),

(3.8)

∫ ∞

0
A(ξ) sin (ξy) dξ =


Q1eKy +

1
2K

(η1 + η2)e−Ky, y ∈ (a1, b1),

Q2eKy +
1

2K
(η1 + η2)e−Ky, y ∈ (a2, b2),

(3.9)

where P1, Q1 and Q2 are arbitrary constants. Now, by defining

g(y) =

∫ ∞

0
A(ξ) sin (ξy) dξ for y ∈ G,

and by the inverse Fourier sine transform, we obtain from (3.8)

A(ξ) =
2
πξ

∫ ∞

0
P(y) sin (ξy) dy,
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where

P(y) =



i(η1 − η2) sinh (Ky), y ∈ (0, a1),

P1eKy −
i
2

(η1 − η2)e−Ky, y ∈ (b1, a2),

−i
2

(η1 − η2)e−Ky, y ∈ (b2,∞),

g(y), y ∈ G.

Then, by substituting A(ξ) into equation (3.9), the unknown function g(u) satisfies
the weakly singular integral equation

1
π

∫
G

g(u) log
∣∣∣∣∣y + u
y − u

∣∣∣∣∣ du = f (y), y ∈ G, (3.10)

where

f (y) =

{
f̂ (y) + Q1eKy, y ∈ (a1, b1),
f̂ (y) + Q2eKy, y ∈ (a2, b2)

with

f̂ (y) = −
i
π

(η1 − η2)
∫ a1

0
sinh (Ku) log

∣∣∣∣∣y + u
y − u

∣∣∣∣∣ du

+
i

2π
(η1 − η2)

∫
(b1,a2)∪(b2,∞)

e−Ku log
∣∣∣∣∣y + u
y − u

∣∣∣∣∣ du

−
P1

π

∫ a2

b1

eKu log
∣∣∣∣∣y + u
y − u

∣∣∣∣∣ du +
1

2K
(η1 + η2)e−Ky, y ∈ G.

The general solution of the integral equation (3.10) can be obtained as (see the paper
by Manam [7])

g(u) =
A0 + A1u2

S1(u)
+

2
πS1(u)

∫
G

S1(t)t f ′(t)
(u2 − t2)

dt, u ∈ G,

where

S1(u) =

{
−{(u2 − a2

1)(b2
1 − u2)(a2

2 − u2)(b2
2 − u2)}1/2, u ∈ (a1, b1),

{(u2 − a2
1)(u2 − b2

1)(u2 − a2
2)(b2

2 − u2)}1/2, u ∈ (a2, b2)

and the arbitrary constants A0 and A1 can be obtained from the relations∫
G

ug(u) du = A0

∫
G

u
S1(u)

du + A0

∫
G

u3

S1(u)
du

and ∫
G

u3g(u) du = A0

∫
G

u3

S1(u)
du + A0

∫
G

u5

S1(u)
du.
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In order to compute the integrals
∫

G ug(u) du and
∫

G u3g(u) du, we use the integral
equation (3.10). In the process, certain integrals are evaluated by the contour
integration procedure. By multiplying the functions (S1(y))−1 and y2(S1(y))−1 with
the integral equation (3.10) and integrating over G,

π

∫
G

f (u)
S1(u)

du = I1(a1)
∫ b1

a1

g(u) du + I1(b2)
∫ b2

a2

g(u) du, (3.11)

π

∫
G

u2 f (u)
S1(u)

du = I2(a1)
∫ b1

a1

g(u) du + I2(b2)
∫ b2

a2

g(u) du, (3.12)

where

I1(x) =

∫
G

log
∣∣∣∣∣ x + u
x − u

∣∣∣∣∣ du
S1(u)

and I2(x) =

∫
G

u2 log
∣∣∣∣∣ x + u
x − u

∣∣∣∣∣ du
S1(u)

.

Then the integrals
∫ b1

a1
g(u) du and

∫ b2

a2
g(u) du are obtained from (3.11) and (3.12) as∫ b1

a1

g(u) du =
πI2(b2)

∆

∫
G

f (u)
S1(u)

du −
πI1(b2)

∆

∫
G

u2 f (u)
S1(u)

du

and ∫ b2

a2

g(u) du = −
πI2(a1)

∆

∫
G

f (u)
S1(u)

du +
πI1(a1)

∆

∫
G

u2 f (u)
S1(u)

du,

respectively, where ∆ = I1(a1)I2(b2) − I1(b2)I2(a1).
Similarly, by multiplying (3.10) with the function

T (y) =

∣∣∣∣∣ (y2 − a2
1)(y2 − a2

2)

(y2 − b2
1)(y2 − b2

2)

∣∣∣∣∣1/2,
∫

G
ug(u) du =

∫
G

f (u)T (u) du −
∆

π

[
D1(a1)

∫ b1

a1

g(u) du + D1(b2)
∫ b2

a2

g(u) du
]
,

where D1(x) = (I3(x) − πx)/∆ with

I3(x) =

∫
G

T (u) log
∣∣∣∣∣ x + u
x − u

∣∣∣∣∣ du

=

{
π(x − a1) + I3(a1), x ∈ (a1, b1),
π(x − b2) + I3(b2), y ∈ (a2, b2).

Again, by multiplying (3.10) with the function y2T (y) and by integrating over G,∫
G

u3g(u) du = −3D2(a1)
∫ b1

a1

g(u) du − 3D2(b2)
∫ b2

a2

g(u) du

− 3C
∫

G
ug(u) du + 3

∫
G

u2 f (u) T (u) du,
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where C = (b2
1 + b2

2 − a2
1 − a2

2)/2 and D2(x) = {I4(x) − (π/3)x3 − πCx}/π with

I4(x) =

∫
G

u2T (u) log
∣∣∣∣∣ x + u
x − u

∣∣∣∣∣ du

=

π
[ 1

3 (x3 − a3
1) + C(x − a1)

]
+ I3(a1), x ∈ (a1, b1),

π
[ 1

3 (x3 − b3
2) + C(x − b2)

]
+ I3(b2), y ∈ (a2, b2).

Finally, the integrals∫
G

ug(u) du =

∫
G

f (u)T (u) du + L1

∫
G

f (u)
S1(u)

du + L2

∫
G

u2 f (u)
S1(u)

du,∫
G

u3g(u) du = 3
∫

G
(u2 −C) f (u)T (u) du + 3C1

∫
G

f (u)
S1(u)

du + 3C2

∫
G

u2 f (u)
S1(u)

du,

where

L1 = I2(a1)D1(b2) − I2(b2)D1(a1), L2 = I1(b2)D1(a1) − I1(a1)D1(b2),
C1 = I2(b2)D3(a1) − I2(a1)D3(b2), C2 = I1(a1)D3(b2) − I1(b2)D3(a1)

with D3(x) = [CI3(x) − I4(x) + (π/3)x3]/∆. Since χx has an integrable singularity at
the edges of the barrier, it is easy to see that the function g(u) is bounded at a j and
b j, j = 1, 2. Therefore, the bounded solution g(u) of the integral equation (3.10) is

g(u) =


2T1(u)
π

∫ b1

a1

t f ′(t)
T1(t)(u2 − t2)

dt −
2T1(u)
π

∫ b2

a2

t f ′(t)
T1(t)(u2 − t2)

dt, u ∈ (a1, b1),

−
2

πT1(u)

∫ b1

a1

tT1(t) f ′(t)
(u2 − t2)

dt +
2

πT1(u)

∫ b2

a2

tT1(t) f ′(t)
(u2 − t2)

dt, u ∈ (a2, b2)

provided that

A0 −
2
π

∫ b1

a1

t f ′(t)q1(t)
T1(t)

dt +
2
π

∫ b2

a2

t f ′(t)q1(t)
T1(t)

dt = 0, (3.13)

A1 −
2
π

∫ b1

a1

t f ′(t)
T1(t)

dt +
2
π

∫ b2

a2

t f ′(t)
T1(t)

dt = 0, (3.14)

A0 −
2
π

∫ b1

a1

t f ′(t)T1(t)q2(t) dt +
2
π

∫ b2

a2

t f ′(t)T1(t)q2(t) dt = 0, (3.15)

A1 −
2
π

∫ b1

a1

t f ′(t)T1(t) dt +
2
π

∫ b2

a2

t f ′(t)T1(t) dt = 0, (3.16)

where

T1(t) =

∣∣∣∣∣ (t2 − a2
1)(t2 − b2

1)

(t2 − a2
2)(t2 − b2

2)

∣∣∣∣∣1/2, q1(t) = t2 − a2
1 − b2

1, q2(t) = t2 − a2
2 − b2

2.
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Therefore, the conditions (3.13)–(3.16) can be expressed as a system of linear
equations for the unknowns η1, η2, P1, Q1 and Q2 as

r11η1 + r12η2 + r13P1 + r14Q1 + r15Q2 = 0, (3.17)
r21η1 + r22η2 + r23P1 + r24Q1 + r15Q2 = 0, (3.18)
r31η1 + r32η2 + r33P1 + r34Q1 + r15Q2 = 0, (3.19)
r41η1 + r42η2 + r43P1 + r44Q1 + r15Q2 = 0, (3.20)

where the coefficients ri j for i = 1, 2, 3, 4 and j = 1, 2, 3, 4, 5 are given in the Appendix.
Since φp

jx
and φs

j x
both have an integrable singularity at the edges of the barrier, it

may be observed from (3.1) that ψ j x also has the same behaviour at the edges. Thus, in
view of relation (3.4), the solid wave solution potentials ψ1(x, y) and ψ2(x, y) are found
to be χ(x, y), x > 0, with η1 = R1

1, η2 = R1
2, and χ(−x, y), x < 0, with η1 = R2

2, η2 = R2
1,

respectively.
By following the solution procedure that is demonstrated above, the potentials

φs
j(x, y), j = 1, 2, that are associated with wave scattering by the solid vertical barrier

with two gaps in it may be obtained as

φs
j(x, y) = (R − 1) φ0(x, y) +

∫ ∞

0
B(ξ)[ξ cos (ξy) − K sin (ξy)] e(−1) jξx dξ

for (−1) j+1x > 0, j = 1, 2. Here the unknown reflection amplitude R is determined
from the system of linear equations

r11R + r13P̂1 + r14Q̂1 + r15Q̂2 = s1,

r21R + r23P̂1 + r24Q̂1 + r15Q̂2 = s2,

r31R + r33P̂1 + r34Q̂1 + r15Q̂2 = s3,

r41R + r43P̂1 + r44Q̂1 + r15Q̂2 = s4

with s j, j = 1, 2, 3, 4, as listed in the Appendix. The function B(ξ) is determined
appropriately from the method. Thus, the linear equations (3.5)–(3.6) and (3.17)–
(3.20) are solved to find explicit expressions for all the unknowns involved.

4. Numerical results

For the computation of the numerical results, a gap parameter µ is introduced such
that a2 = b1 + h(1 − µ/2) and b2 = b1 + h(1 + µ/2) with h + b1 = (a2 + b2)/2. Then h
is the mean depth of the second gap from the first gap, and µ is the ratio of the second
gap width to h with 0 ≤ µ ≤ 2.

In Figure 2, the reflection coefficient is plotted against the nondimensional
wavenumber Kh in the case of the vertical solid barrier with two gaps in it. The
reference (a1, b1) of the first gap on the barrier is fixed at various depths, and µ is
taken from the set {0, 0.4, 0.8, 1.2, 1.8}, where µ = 0 refers to the absence of a second
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Figure 2. Reflection coefficient |R| against Kh.

gap in the vertical barrier. As expected, an introduction of the second gap, that is,
µ > 0, induces transmission of waves through the gap, which causes a decrease in
the reflection coefficient as shown in Figure 2(a)–(d). It is observed from Figure 2(a)
that zero reflection occurs near Kh = 0.6 when the first gap is fixed at (0.3, 0.4) and
µ = 1.8. It shows that the second gap plays a significant role in the transmission of
waves when the first gap is relatively small and it is near the free surface. Moreover,
a critical wavenumber exists at which complete transmission is possible when µ is
sufficiently large and the first gap near the surface is sufficiently small. It may be
seen from Figure 2(a) and (b) that the reflection of long waves increases when the
depth of submergence of the first gap (a1, b1) increases from (0.3, 0.4) to (0.5, 0.6),
while the reflection of very short waves is unaffected by the position of the gaps in the
barrier. This may be attributed to the fact that wave energy mostly concentrates near
the surface. This fact can also be observed in Figure 2(a), (c) and (d), since an increase
in the width of the first gap causes a uniform reduction in the reflection across all
wavenumbers. Moreover, the presence of the second gap is insignificant, as expected,
when the first gap in the barrier is sufficiently large.

In Figure 3, reflection and total energy curves are plotted against Kh for the case of
the vertical porous barrier with two gaps in it when the first gap (a1, b1) = (0.3, 0.4).
In Figure 3(a) and (b), reflection coefficients are plotted for various values of µ when
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Figure 3. Reflection coefficient |Rp| and total energy |Rp|
2 + |Tp|

2 against Kh.

the porous effect parameter Γ = 0.5 and Γ = 0.5 + i. Note that the overall reflection
reduces due to the resistance and the inertial effects of the porous barrier. Energy
curves are shown in Figure 3(c) and (d). A significant dissipation of wave energy is
seen for moderate values of the gap parameter µ. More than 30% or 40% of wave
energy has been dissipated for all Kh > 1.6 when Γ is 0.5 or 0.5 + i. In other words,
the inertial effect causes significant loss of energy in short waves. Interestingly, the
energy dissipation is relatively smaller for the intermediate range of 0.5 < Kh < 1.0
when the second gap is larger.

In Figures 4 and 5, the inertial and the resistance effects of the porous barrier on the
reflection and the total energy curves are shown. Here the first gap (a1, b1) = (0.3, 0.4)
and µ = 0.4 or 1.2 are fixed. For the moderate value of Γ = 0.5, we observe that 25%
of the incident wave energy is getting reflected by the porous barrier at most of the
frequencies, and double the amount of the energy is getting dissipated by the porous
barrier. As the resistance effect in the barrier increases, the ability of the barrier to
reflect the incident wave energy goes down while its ability to dissipate the wave
energy goes up. The magnitude of reduction in the reflected energy is the same as
the magnitude of dissipation in the total energy. However, the magnitude of the energy
dissipation is significantly higher as compared to that of the wave reflection by the
inertial effects of the porous barrier.
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Figure 4. Reflection coefficient |Rp| and total energy |Rp|
2 + |Tp|

2 against Kh when µ = 0.4.

Figure 5. Reflection coefficient |Rp| and total energy |Rp|
2 + |Tp|

2 against Kh when µ = 1.2.

5. Conclusions

Scattering of water waves by a complete vertical porous barrier with two gaps of
finite length is solved analytically. The required porous wave potential is explicitly
obtained by decomposing the original problem into two resolvable problems. They
are associated with scattering or bi-directional radiation of waves by a solid barrier
of the same configuration. The decomposed problems are solved explicitly by the
aid of a tested weakly singular integral equation method. The scattering quantities of
the original problem are explicitly found in terms of the similar quantities involved
in the decomposed problems. We also present numerical results for the reflection and
the total energy. We find that the position of the second gap of the barrier does play
a significant role in the wave reflection when the first gap is relatively small and is
placed near the free surface for waves of moderate frequency. The present method can
be extended to scattering problems involving a complete vertical porous barrier with
many gaps or many barriers of finite length placed in a vertical line.
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Appendix

u(x) = −

∫ b1

a1

tq1(t)
T1(t)(t2 − x2)

dt +

∫ b2

a2

tq1(t)
T1(t)(t2 − x2)

dt,

r11 = −
4i
π2

∫ a1

0
tu(t) sinh (Kt) dt +

2i
π2

∫
(b1,a2)∪(b2,∞)

tu(t)e−Kt dt

+
1
∆1

∫
G

(α2t5 − α1t3)
S1(t)

dt +
1
π

∫ b1

a1

te−Ktq1(t)
T1(t)

dt −
1
π

∫ b2

a2

te−Ktq1(t)
T1(t)

dt,

r12 = −r11 +
2
π

∫ b1

a1

te−Ktq1(t)
T1(t)

dt −
2
π

∫ b2

a2

te−Ktq1(t)
T1(t)

dt

+
1
∆1

∫
G

(α2t5 − α1t3)
S1(t)

dt +
1
∆1

∫
G

(α̂2t5 − α̂1t3)
S1(t)

dt,

r13 = −
4
π2

∫ a2

b1

tu(t)eKt dt +
1
∆1

∫
G

(β2t5 − β1t3)
S1(t)

dt,

r14 = −
2K
π

∫ b1

a1

teKtq1(t)
T1(t)

dt +
1
∆1

∫
G

(γ2t5 − γ1t3)
S1(t)

dt,

r15 =
2K
π

∫ b2

a2

teKtq1(t)
T1(t)

dt +
1
∆1

∫
G

(ζ2t5 − ζ1t3)
S1(t)

dt,

v(x) = −

∫ b1

a1

t
T1(t)

dt
(t2 − x2)

+

∫ b2

a2

t
T1(t)

dt
(t2 − x2)

,

r21 = −
4i
π2

∫ a1

0
tv(t) sinh (Kt) dt +

2i
π2

∫
(b1,a2)∪(b2,∞)

tv(t)e−Kt dt

+
1
∆1

∫
G

(α1t − α2t3)
S1(t)

dt +
1
π

∫ b1

a1

te−Kt

T1(t)
dt −

1
π

∫ b2

a2

te−Kt

T1(t)
dt,

r22 = −r11 +
2
π

∫ b1

a1

te−Kt

T1(t)
dt −

2
π

∫ b2

a2

te−Kt

T1(t)
dt

+
1
∆1

∫
G

(α1t − α2t3)
S1(t)

dt +
1
∆1

∫
G

(α̂1t − α̂2t3)
S1(t)

dt,

r23 = −
4
π2

∫ a2

b1

tv(t)eKt dt +
1
∆1

∫
G

(β1t − β2t3)
S1(t)

dt,

r24 = −
2K
π

∫ b1

a1

teKt

T1(t)
dt +

1
∆1

∫
G

(γ1t − γ2t3)
S1(t)

dt,

r25 =
2K
π

∫ b2

a2

teKt

T1(t)
dt +

1
∆1

∫
G

(ζ1t − ζ2t3)
S1(t)

dt,

û(x) = −

∫ b1

a1

tT1(t)q2(t)
(t2 − x2)

dt +

∫ b2

a2

tT1(t)q2(t)
(t2 − x2)

dt,
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r31 = −
4i
π2

∫ a1

0
tû(t) sinh (Kt) dt +

2i
π2

∫
(b1,a2)∪(b2,∞)

tû(t)e−Kt dt

+
1
∆1

∫
G

(α2t5 − α1t3)
S1(t)

dt +
1
π

∫ b1

a1

tT1(t)e−Ktq2(t) dt

−
1
π

∫ b2

a2

tT1(t)e−Ktq2(t) dt,

r32 = −r31 +
2
π

∫ b1

a1

tT1(t)e−Ktq2(t) dt −
2
π

∫ b2

a2

tT1(t)e−Ktq2(t) dt

+
1
∆1

∫
G

(α2t5 − α1t3)
S1(t)

dt +
1
∆1

∫
G

(α̂2t5 − α̂1t3)
S1(t)

dt,

r33 = −
4
π2

∫ a2

b1

tû(t)eKtdt +
1
∆1

∫
G

(β2t5 − β1t3)
S1(t)

dt,

r34 = −
2K
π

∫ b1

a1

tT1(t)eKtq2(t) dt +
1
∆1

∫
G

(γ2t5 − γ1t3)
S1(t)

dt,

r35 =
2K
π

∫ b2

a2

tT1(t)eKtq2(t) dt +
1
∆1

∫
G

(ζ2t5 − ζ1t3)
S1(t)

dt,

v̂(x) = −

∫ b1

a1

tT1(t)
(t2 − x2)

dt +

∫ b2

a2

tT1(t)
(t2 − x2)

dt,

r41 = −
4i
π2

∫ a1

0
tv̂(t) sinh (Kt) dt +

2i
π2

∫
(b1,a2)∪(b2,∞)

tv̂(t)e−Kt dt

+
1
∆1

∫
G

(α1t − α2t3)
S1(t)

dt +
1
π

∫ b1

a1

tT1(t)e−Kt dt −
1
π

∫ b2

a2

tT1(t)e−Kt dt,

r42 = −r41 +
2
π

∫ b1

a1

tT1(t)e−Kt dt −
2
π

∫ b2

a2

tT1(t)e−Kt dt

+
1
∆1

∫
G

(α1t − α2t3)
S1(t)

dt +
1
∆1

∫
G

(α̂1t − α̂2t3)
S1(t)

dt,

r43 = −
4
π2

∫ a2

b1

tv̂(t)eKt dt +
1
∆1

∫
G

(β1t − β2t3)
S1(t)

dt,

r44 = −
2K
π

∫ b1

a1

tT1(t)eKt dt +
1
∆1

∫
G

(γ1t − γ2t3)
S1(t)

dt,

r45 =
2K
π

∫ b2

a2

tT1(t)eKt dt +
1
∆1

∫
G

(ζ1t − ζ2t3)
S1(t)

dt,

κ1(x) = 3(x2 −C)T (x) +
3(C1 + x2C2)

S1(x)
, κ2(x) = T (x) +

(L1 + x2L2)
S1(x)

,

∆1 =

∫
G

u
S1(u)

du
∫

G

u5

S1(u)
du −

( ∫
G

u3

S1(u)
du

)2
,
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α j = −
i
π

∫
G
κ j(x)

∫ a1

0
sinh (Kt) log

∣∣∣∣∣ x + t
x − t

∣∣∣∣∣ dt dx

+
i

2π

∫
G
κ j(x)

∫
(b1,a2)∪(b2,∞)

e−Kt log
∣∣∣∣∣ x + t
x − t

∣∣∣∣∣ dt dx +
1

2K

∫
G
κ j(t)e−Ktdt,

α̂ j = −α j +
1
K

∫
G
κ j(t)e−Kt dt,

β j = −
1
π

∫
G
κ j(x)

∫ a2

b1

eKt log
∣∣∣∣∣ x + t
x − t

∣∣∣∣∣ dt dx,

γ j =

∫ b1

a1

κ j(t)eKt dt, ζ j =

∫ b2

a2

κ j(t)eKt dt, j = 1, 2,

s1 = r11 −
1
π

∫ b1

a1

te−Ktq1(t)
T1(t)

dt +
1
π

∫ b2

a2

te−Ktq1(t)
T1(t)

dt,

s2 = r21 −
1
π

∫ b1

a1

te−Kt

T1(t)
dt +

1
π

∫ b2

a2

te−Kt

T1(t)
dt,

s3 = r31 −
1
π

∫ b1

a1

tT1(t)e−Ktq2(t) dt +
1
π

∫ b2

a2

tT1(t)e−Ktq2(t) dt,

s4 = r41 −
1
π

∫ b1

a1

tT1(t)e−Kt dt +
1
π

∫ b2

a2

tT1(t)e−Kt dt.
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