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PSEUDOCOMPLEMENTED DISTRIBUTIVE LATTICES
WITH SMALL ENDOMORPHISM MONOIDS

M.E. ADAMS, V, KOUBEK AND J. SICHLER

By a result of K.B. Lee, the latt ice of varieties of pseudo-

complemented distributive lattices is the u> + 1 chain

- 1 0 1 n 0)

where B , Bn, B are the varieties formed by all t r iv ia l ,

Boolean, and Stone algebras, respectively. General theorems on

relative universality proved in the present paper imply that

there is a proper class of non-isomorphic algebras in B~ with

finite endomorphism monoids, while every infinite algebra from

Bp has infinitely many endomorphisms. The variety B, contains

a proper class of non-isomorphic algebras with endomorphism

monoids consisting of the identity and finitely many right zeros;

on the other hand, any algebra in B with a finite endomorphism

monoid of this type must be finite.

1. Introduction

For an arbitrary algebra L , l e t End(L) denote the monoid of a l l

endomorphisms of L .

Received 6 July 1983. The support of NSERC is gratefully acknowledged
by V. Koubek and J. Sichler.

Copyright Clearance Centre, Inc. Serial-fee code: 000U-9727/83
$A2.00 + 0.00.

305

https://doi.org/10.1017/S0004972700021031 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700021031
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A pseudooomplemented distributive lattice is an algebra

(L; V, A, *, 0, 1) of type (2, 2, 1, 0, 0) where (L; v, A, 0, 1) is a

distributive (0, l ) - l a t t i c e and the unary operation * of pseudo-

complementation is defined by y 5 x* if and only if x A y = 0 in

(L; V, A, 0, l ) . Pseudocomplemented distributive lat t ices form a variety

B , Ribenboim [IS], and the lat t ice of i t s subvarieties is an <JI> + 1

chain B_1 C B Q C J c j c , , , c j , Lee [ I I ] , Of these varieties, two

have already been studied extensively: the variety B of Boolean

algebras and the variety B of Stone algebras [B is the t r iv ia l

variety). Further information and references can be found in, for example,

Balbes and Dwinger [3] Or Gratzer [5] , [6].

Independently, Magi II [72] and Schein [79] have shown that a Boolean

algebra is uniquely determined by i t s endomorphism monoid: for

K, L € B , End(X) ^ End(L) only if K g* L . Investigations of other

varieties of pseudocomplemented distributive lat t ices [I] have extended

this result to the variety B of Stone algebras. For B the situation

is somewhat different. If End(X) SEnd(L) for nonisomorphlc K, L € B ,

then there is a uniquely defined algebra L ^ K ; that i s , an algebra in

B_ is determined by i t s endomorphism monoid up to one of two algebras.

For B and larger varieties a radical change occurs: for any infinite
f . K 1

cardinal < there exists a family \L. € B : i < 2 of pair-wise
I t 3 J

nonisomorphic algebras with \L.\ = K and End(l.) 21 End(l.) for all

i, j € 2 . This fact is an immediate consequence of the more general

result [J] that B is an almost universal variety. A category C is

almost universal i f the category G of (undirected) graphs and a l l their

compatible maps is isomorphic to a subcategory of C formed by al l non-

constant morphisms between objects from a suitably chosen subclass D of

C ; note that this definition requires that the nonconstant morphisms

between members of D be closed under composition.

For any minimal prime ideal I ci x. i B , the mapping H : K •*• {0, 1}

given by h (o) = I is a homomorphism. A homomorphism g : K •* L in B
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is constant if and only if g{K) = {o, l} , that is if g(K) is the set of

constants of L . Since every pseudocomplemented distributive lat t ice has

as least one minimal prime ideal, there exist constant homomorphisms

between any two such algebras. The constant endomorphisms are precisely

the right zeros in End(X) and thus every nontrivial K € B has at least

one right zero in i t s endomorphism monoid [ J ] .

All infinite algebras of cardinality K constructed to prove the

almost universality of B in [1] have 2 right zero endomorphisms;

therefore no light is shed on the question of whether an infinite pseudo-

complemented distributive latt ice necessarily has an infinite endomorphism

monoid. Although this is always the case in B , a surprising reversal

occurs in larger varieties; Corollary 1.3 below claims the existence of

arbitrarily large algebras in S that have only finitely many endo-

morphisms. Furthermore, i t will be seen that the construction presented in

[7] was no accident: if # € B is infinite then either K has

infinitely many constant endomorphisms or there exists a non-constant non-

tr ivial endomorphism of K (see Theorem l . l ) . By contrast, B, contains

arbitrarily large algebras whose endomorphism monoids consist of the

identity mapping and finitely many right zeros (Corollary 1.5)• The

results proved here will be more general, however, and additional concepts

are needed for their formulation.

A variety V is W-universal if W is a subvariety of V and if the

category of all compatible maps between (undirected) graphs is Isomorphic

to a subcategory C of V consisting of al l those homomorphlsms

h : C -*• C between objects of C for which h[cJ € V\W . If, in

addition, there are less than K homomorphisms h : C •*• <7 with

h[C' ) € W for any pair of objects in C , the variety V is (K, W)-

universal. In this terminology, since {0, l} is a Boolean algebra, the

almost universality of B shown in [1] implies that B is B -

universal. By the preceding discussion, however, [7] does not imply

[K, B )-universality for any cardinal K . The results presented here are

as follows.
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THEOREM 1.1. 5 is neither (w, BA-universal nor [us, B ) -

universal.

THEOREM 1.2. B^ is (u>, BA-universal.

In fact, a stronger result is shown: B~ is [m, B^)-universal for

some integer m .

In connection with the immediate consequence below of Theorem 1.2
(see, for instance, Pultr and Trnkova [7 7]) i t is also interesting to
recal l that every infinite Boolean algebra has an uncountable endomorphism
monoid.

COROLLARY 1.3. In B , there exists a proper class of pairwise non-

isomorphio algebras whose endomorphism monoids are finite.

THEOREM 1.4. B is (w, B)-universal for every n > h .

As before, i t is actually shown that B, is [m, B-j-universal for

some fini te m . Furthermore, if Boolean, the image of an endomorphism is
always the subalgebra {0, l} ; the statement below is an immediate
consequence of this fact.

COROLLARY 1.5. In Br , there exists a proper class of pairwise non-

isomorphic algebras whose endomorphism monoids consist of the identity and
finitely many right zeros.

2. Preliminaries

In Priestley [73], a topological duality was introduced for the
category of distributive (0, l ) - l a t t i ces . A brief outline follows; for
further information see, for instance, Davey and Duffus [4] or Priestley
[76].

A mapping ij; : P -*• P- between partially ordered sets P. , P is

order preserving i f x 5 y implies ty(x) 5 ty(y) . Let Min(P) denote the
set of a l l minimal elements of a poset P . Further, for S c p t set
[S) = {x : 3s € S, x > s) , (S] = {x : 3s € S, x 5 s} , and
Min(S) = Min(P) n (S] (if S = {x} then Min(s) is writtsn as Min(x) ) .
A subset S of P is increasing if [S) = S , decreasing i f S = (5] . A
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poset P equipped with a topology i s totally order disconnected i f , for
x> y $ P > x A \j implies the existence of a clopen decreasing set S c p

such that x € 5 and j / £ S .

PROPOSITION 2.1 (Pr iest ley [ J3 ] ) . 3?ie category D of all
U ,_L

(0 , l)-howortvrphisms of distributive (0 , l)-Z-aii£ees is dually isomorphic

to the category T of all continuous order preserving maps of compact

totally order disconnected spaces.

Under this duality the poset associated with a distributive (0, l ) -

lattice is the inclusion ordered poset of i ts prime ideals, and lattice

elements correspond to clopen decreasing subsets of the representing

totally order disconnected space. Furthermore, if L. is a distributive
0

(0, l)- latt ice associated with the space (P., T .) for j = 1, 2 , and if
0 0

h : L -*• Lp i s a (0, l)-homomorphism represented by the continuous order

preserving map ij; : P? -»• P , then, for the clopen decreasing se t X c p

corresponding to x € L , the element h(x) of L corresponds to the
clopen decreasing set ty (X) c p .

PROPOSITION 2.2 [2 ] . The category G of graphs is dually

isomorphic to a full subcategory of the category 2V of all compact

totally order disconnected spaces with five distinguished elements and all

continuous order preserving maps that also preserve these five elements.

An object of T is thus a compact totally order disconnected space

(P, T) together with five distinct elements a- of P for i < 5 ; as

given in [2], these five elements are minimal in P and the partial order

P is connected. Inverting the order and retaining the topology of every

such space gives rise to a full subcategory of T isomorphic to the

original one; thus i t can be assumed that P is connected and that al l

five distinguished elements are maximal in the order of P .

Since every pseudocomplemented distributive lattice has 0 and 1 ,

Priestley's duality restricts to a topological duality for B . A totally

order disconnected space (P, T) has the p-property if [S) is clopen

for every clopen decreasing set S c p . An order preserving map
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<jj : P •*• V is a p-map i f ip(Min(x)) = Min(tKx)} for every x € P, .

The category B is dually isomorphic to the category T of a l l compact

tota l ly order disconnected spaces with the p-property and a l l continuous
p-maps between such spaces. For more extensive background information see
Priest ley [15]. Note that any constant homomorphism of pseudocomplemented
distributive la t t ices corresponds in this duality to a constant p-map
whose value is a minimal element.

Finally, for n < w , we need to recognize spaces with the p-property
that represent algebras in B

PROPOSITION 2 . 3 (Lee [ / / ] ) . For L € S ( and n > l , the algebra

ilongs to B if ant

n minimal prime ideals.

L belongs to B if and only if every prime ideal of L contains at most

3. Proof of Theorem 1.1

In this section, l e t L € B_ be an infinite algebra with only a

fini te number of constant endomorphisms; if (P, x) represents such L
then Min(P) must be f ini te . Denote P(M) = {x € P : Min(x) = M) for
every M c Min(P) .

LEMMA 3 .1 . P{M) is clopen for every « c Min(P) .

Proof. Since P is total ly order disconnected, for any m € Mln(P)

there exists a clopen decreasing set Q c P such that Min(<? ] = {m} .

By the p-property, \§ j is clopen, so that

• m *• M)\U[feJ • m € Min(P)\WJ

is clopen as well.

LEMMA 3.2. For every p € P(.W)\Min(P) with \M\ < 3 there exists a

non-trivial h € End(L) whose image is represented by {p} u Min(p) .

Proof. Suppose M = {m} and p € P(W)\Min(P) . There ex is t s a

clopen decreasing Q c p not containing p and such tha t Q 3 Min(P) ;

s e t (JJ(X) = m for x € Q and ty{x) = p for x € P\Q . I t i s c lear t h a t

\\i i s a p-map and tha t ^(P) = {p} <J Min(p) .
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Let M = {m, n) and p € P(M)\Min(P) . Define t|> : P •* P by

= n i f Min(x) = in} , <Kx) = m for n £ Min(x) , and ty(x) = p

otherwise. Then ty is a p-map whose continuity follows from Lemma 3.1,

and again ty(P) = (p) u Min(p) .

PROPOSITION 3.3. End(i) is infinite for arbitrary infinite

L € B2 .

Proof. Recall that Min(P) is f ini te ; Proposition 2.3 implies that

P(M) must be infinite for some M c Min(P) with |M| < 3 . Lemma 3.2

concludes the proof.

LEMMA 3.4. If P{M) = 0 for all two-element M c Min(P) then

End(L) is infinite.

Proof. Since Min(P) is f in i te , for some M c Min(P) the clopen set

P{M) must be infinite. By the hypothesis and by Lemma 3.2 i t is enough to

assume that \M\ = 3 ; since L 6 B , Proposition 2.3 implies that P{M)

is an increasing set. For each p € P(M) now define ty by ij; (x) = p

for x € P{M) , \\)(x) = m whenever Min(x) = {m} for some m € M , and

\l> (x) = x otherwise. From Lemma 3.1 i t is clear that ^ is a p-map for

every p € P(Af) . Thus End(L) is inf ini te .

There exist arbitrarily large graphs with no non-trivial endomorphisms

[773. If B were (to, B .J-universal for some j < 2 there would
-5 3'

certainly exist an infinite algebra L in B_ with finite End(L) and

such that h(L) € BO\B • for no h € End(L) . The two preceding lemmata
*- 3

show that this is impossible.

4. Proof of Theorem 1.2

A graph is a pair {X, R) where if is a set of two-element subsets

of X . For graphs [x±, R^, [X2, i?2) a mapping q> : X^ -»• X^ is

compatible if {(p(x), cp(#)} € i?2 for every {x, y) £ R .

By Proposition 2.2, there is a full and faithful contravariant functor

* from the category G of a l l graphs and their compatible maps to the

category T of al l compact totally order disconnected spaces with five
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distinguished elements and continuous order preserving maps that preserve

these elements: the existence of # shows that G is dually isomorphic

to a full subcategory of T . The image (P, T) = $(X, R) of any

{X, R) € G is a compact totally order disconnected space in which P is

order connected and the five constants a. for i < 5 are maximal

elements of P . To show that B is (a), B )-universal,a faithful

contravariant functor ¥ : G •* T containing $ will "be constructed in

such a way that V(X, R) is the space of an algebra in B and, if

if) : *(>f , R ) -> V[X , R ) i s a morphism in 7? then e i ther ^ = *(<p) for

some compatible cp : [x, R ) •*• [X , R ) or ^ i s one of f i n i t e ly many

mappings with ^ ( f ( ^ , P-.J) representing an algebra in B .

A graph G is rigid if the only compatible map of G into i tself is

the identity. Once and for all select a finite rigid graph (V, E) with

| V\ > 1 ; such graphs exist according to Hedrlfn and Pultr [9] (see also

[7 7]). Set V = {v. : i < \v\} , and let T denote the collection of all

three-element subsets of V . For convenience, denote t. = \v. , v,, v }

for a l l i < 6 , and let C = {a. : i < 5} .

The functor ¥ is defined as follows.

For (X, R) € G , let

g = y u £ u C u { f o } u (? \ { t )) u p ,

where (P, T) = $(Z, i?) and the union is disjoint; intuitively, the

triple

Q by

t r ip le i_ will be replaced by a copy of P . Define a partial order on

(i) for V € V and e € £ , y 5 e if and only if u € e ;

( i i ) fc 5 e for al l e € E ;

( i i i ) for V € F and * € T\{t } , u 5 t if and only if

V € t ;

(iv) u , Ug, v S x for all a: € P ;

https://doi.org/10.1017/S0004972700021031 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700021031


P s e u d o c o r n p I e m e n t e d d i s t r i b u t i v e l a t t i c e s 3 1 3

(v) if i < 5 then iv, V„ 2 a. 5 a., t. for o. € C and for

the distinguished maximal element a. of P ;

(vi) for x, !/ € P , x 5 i/ in £ if and only if x S y in

P .

Let a denote the topology on Q obtained as the union of T on P

with the discrete topology on the finite set Q\P ; the space

(Q, a) = V(X, R) clearly is compact and totally disconnected.

For any morphism cp : [X2, i?2] •+ [x , R ) in G , let

V(<p) : V{XX, Rx) + V[X2, i?2) be defined as the extension of *(<p) by the

identity mapping on S-jV3-, = 62\?2 • I t i s routine to verify that

is a continuous order preserving mapping. Since *(X, R) is a total ly

order disconnected space, i t follows easily that {Q, o) also is such a

space. Clearly [5) = [Min(S)) for any clopen decreasing set S c i J ;

hence as Min(S) = V u {b} , the set [S) is either a finite subset of

Q\P or [5) contains P . In either case [5) is clopen, so that

, R) has the p-property. Since \mn(q) \ 5 3 for al l q € Q ,

Proposition 2.3 shows that V{X, R) represents an algebra in B . The

mapping ĈiJ*) is the identity on Q\P 3 Mln(Q) , and it is readily

apparent that V{y) is a p-map. This concludes the proof of the claim

below.

LEMMA 4.1. ¥ : G -*• T? is a well defined aontravariant faithful

functor.

Observe that, for j = 1, 2 , if L. € 5 is represented by (§., a.)
3 ^ 3 3

and ^ : Q -*• Q is a morphism in T representing h : L •*• L , then

hfig) € B if and only if the subspace ^(6,) c § with the order induced

by <?2 represents an algebra in B

Thus it must be shown that, for {x., R.) € G , there are only
3 3

finitely many continuous order preserving p-maps ij) : V [x , R ) •* V[x , R )

with <!»(&,) representing algebras from B2 , and that any other (p has

the form i|> = f(ip) for some ff-morphism cp : {x^, fl ) -*• [x , R } .
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For the remainder of this section l e t \\> : V[x , R) •+ V[x , R) be a

continuous order preserving p-map with \X., R.~) € G .

LEMMA 4.2. If 4> |v (V u {£}) i s not one-to-one tfren

IJJ(S ) c F u {£>} u C j and ty \* P is constant.

Proof. Recall that V u {&} = Min(Q) ; furthermore, |Min(e) | = 2

for a € C , and |Min(x) | = 3 for a l l q €

Suppose that ij>(u) = ^(u) for distinct u, v Z V ; then (J;(M) = m

is minimal since if is a p-map.

Consider the case of Mu) $ {u,, V } f i r s t . For every w € V\iu, v}

there exists t € T with Min(t) = {w, v, w) , and Min(<|/(t)) = ^(Min(t))

implies that 4"(t) = <Kw) = w • For every three-element subset f of

V c Min(S) there exists t € 21 with Min(t) = U , so that both

ty(V) = (m) and ^ ( ( T X J ^ } ) W P-L U C) = {m> easily follow. If

(w, u) € E then ^({fc, " , v}) = (m) is similarly obtained from

ty(V) = (m) , and hence H> is a constant p-map.

Assume next that m i {u,, y_} ; i f Min(t) = {M, U, U} then either
o 7= m , or if>(*) € C and m ^ <Kw) € \v,, v } . If i|<( V) = {m}

then 'J'f^ u (r\{*5})) = tm) and HE) c. C u V finish the proof. If

MV) = {u6, U } then either ty[\v , V^, V }) - m or {ug, v } ; in the

f i r s t case ty[P ) = im) , in the second 4>[p ) 5 C ; since P is order

connected while C is an antichain, f f P must be constant in either

case. The rigid graph (V, E) cannot be bipar t i te , so that ty(x) = <Kj/)

for some (x, y} € E ; therefore ty(b) € fu^, v } and, consequently,

<HMin[§ )J = {u,, v } in this case. I t is now easily seen that
1 o 7

HQj 5 C u {u6, uT} .

The remaining possibility is that *K£>) = ^( v) for some v (. V . For

any {w, u) € E then either (̂Z>) = 4>(u) = ^(u) and the previous

arguments apply, or else Min(iK{£>, u, v})) = {tv, y } . The rigidity of

(F, £•) now implies that {y, u} € £ for some w € A(w} ; i f

# ij;(y) then ij)(w) = ty(u) must hold, reducing the argument to the

https://doi.org/10.1017/S0004972700021031 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700021031


P s e u d o c o m p I e m e n t e d d i s t r i b u t i v e l a t t i c e s 315

previously considered case.

LEIWIA 4 . 3 . If i|) is one-to-one on V u {b} then ty = Ydp) for

some G-morphism <p : [x , /?„) •*• ( / , , # ) .

Proof. I f ^(x) = b for some a; € V then also iji(b) € ^ • Since

( V, E) i s a r ig id graph with more than seven v e r t i c e s , there ex is t s

{«, u} not in E and such that i>(b) ? u, v ; by f in i t eness , u = i|)(j/)

and i> = lKz) for some y, z € K . By def in i t ion , there i s a q € Q

with Min(q) = {x, y, z) , so tha t Min(tK<7)) = <|)(Min(<7)) = {b, u, v}

which contradicts the choice of {u, v} . Therefore 4>(b) = b and

H>(V) = V .

Since p > b and Min(p) " 7 # 0 i f and only i f p € E , i t follows

that (p(£) E ^ 5 hence ^ i s an endomorphism of the r ig id graph {V, E) ,

t ha t i s , ij> i s the ident i ty on V <J E . Consequently, 4> i s also the

iden t i ty on C u [T\{t }) , and ty[P) E. Po • s i n c e > f o r ^ < 5 , a. is

the only element of P . above a. i C , from ^(c . ) = a. we obtain

<Jj(a.) = a . . By Proposition 2.2 there exis ts a G-morphism

cp : [X2, i?2) •* ( / l 5 Rj with $(<p) =4) hP^^ . Altogether, \\i = 4-(tp) as

was to be shown.

To complete the proof of Theorem 1.2 i t suffices to note that

1'((P)(§-]J always represents an algebra in B \B while V u C with i t s

induced order and with the discre te topology corresponds to a f in i t e

algebra in S .

5. Proof of Theorem 1.4

The construction used and also the proof are analogous to those of the

last section. Let (V, E) and the set T of triples be as before.

Define a contravariant functor V : G •* T as follows.

For (X, R) 6 G set

Q = V u E v {b} u [T\{t }) u P ,

where the union is disjoint and $(X, R) = (P, x) . The topology a on §

again is the union of T and the discrete topology on the finite set
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Q\P . Cond i t ions ( i ) , ( i i ) , ( i i i ) , ( i v ) , ( v i ) of Sec t i on k t o g e t h e r wi th

( v 1 ) v. £ a. f o r i < 5
U If

define the partial order on Q . Set (Q, a) = ¥(*, R) .

For {x^, R^) € G and for a morphism cp : [X^, R^ •+ [x , R ) of G

l e t T(<p) : ^{x±, R±) -»- v(*2, i?2) be defined as the extension of *(<p) by

the identity on Q \P = Sp\P? * exactly as in Section h.

Again i t is routine to verify that f is a well defined faithful

contravariant functor. Note that Min($) = V o ib) once more, while

|Min(a.j| = k for i < 5 and |Min(q) | = 3 for a l l other elements of
1

; the space V{X, R) thus represents an algebra in B, \B .

Let \p : ¥ (* , R ) •* * (^ , i? 1 be a continuous order preserving

p-inap.

The proof of Lemma 5-1 below reads as that of Lemma k.2 with the

following modifications. F i r s t , i f ty(u) = m = ty{v) for some d i s t i nc t

u, V € V and i f q € Q s a t i s f i e s Min(q) = {u, V, w} , then i t i s always

the case t ha t ty(q) = ty(w) = m € Min(§2) , tha t i s , iji i s constant on V .

From b 5 {w, u} € £ i t d i r ec t ly follows that \p(b) = m as wel l . Thus

\p \t Min(§ ) i s constant and, consequently, \p i s a constant map whose

value l i e s in V u ib} . If , on the other hand, ^(fc) = ifj(i>) = m for some

u € V then , since |Min(<7)| > 3 for a l l non-minimal q € Q , ^(M) = m

whenever {w, u} € E , so tha t the previous case appl ies .

LEMMA 5.1. If \l> is not one-to-one on V u {b} then \\> is a

constant with a value in V u {£>} .

The next lemma follows along the l ines of the proof of Lemma k.3.

Once i t i s shown tha t IJJ i s the ident i ty on Q \P = S ? \P ? > and that

ip(P,) c P , i t suff ices to note that a. i s the only element of P .
• ± £1 X, Q

above v. in order to deduce tha t <Jj(a.) = a. for a l l i < 5 • Hence

\\) f> P = #(cp) as in Lemma U.3.

LEMMA 5.2. If ip is one-to-one on V u {b} then ty = ^((p) for
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some compatible cp : [x , R) •* [x , R.) .

The space ^((p) [Q ) represents an algebra in B>\B for every

compatible tp , while any other map ^ is constant; thus i t s image

represents one of the finitely many maps whose image represents a two-

element Boolean subalgebra of V[x.,, i? ) . This concludes the proof of

Theorem l.k.
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