n-JORDAN HOMOMORPHISMS

M. ESHAGHI GORDJI

(Received 28 November 2008)

Abstract

Let $n \in \mathbb{N}$ and let A and B be rings. An additive map $h: A \rightarrow B$ is called an n-Jordan homomorphism if $h\left(a^{n}\right)=(h(a))^{n}$ for all $a \in A$. Every Jordan homomorphism is an n-Jordan homomorphism, for all $n \geq 2$, but the converse is false in general. In this paper we investigate the n-Jordan homomorphisms on Banach algebras. Some results related to continuity are given as well.

2000 Mathematics subject classification: primary 47B48; secondary 46L05, 46H25.
Keywords and phrases: Jordan homomorphism, n-homomorphism, Banach algebra.

1. Introduction and preliminaries

Let A, B be two rings (algebras). An additive map $h: A \rightarrow B$ is called an n-Jordan homomorphism if $h\left(a^{n}\right)=(h(a))^{n}$ for all $a \in A$; it is an n-ring homomorphism if $h\left(\prod_{i=1}^{n} a_{i}\right)=\prod_{i=1}^{n} h\left(a_{i}\right)$ for all $a_{1}, a_{2}, \ldots, a_{n} \in A$. If $h: A \rightarrow B$ is a linear n-ring homomorphism, we say that h is an n-homomorphism. The concept of n-homomorphism was studied for complex algebras by Hejazian, Mirzavaziri, and Moslehian [3] (see also [1, 7]). A 2-Jordan homomorphism is a Jordan homomorphism, in the usual sense, between rings. Every Jordan homomorphism is an n-Jordan homomorphism, for all $n \geq 2$ (see, for example, [6, Lemma 6.3.2]), but the converse is false, in general. For instance, let A be an algebra over \mathbb{C} and let $h: A \rightarrow A$ be a nonzero Jordan homomorphism on A. Then $-h$ is a 3-Jordan homomorphism. It is easy to check that $-h$ is not 2-Jordan homomorphism or 4-Jordan homomorphism. The study of ring homomorphisms between Banach algebras A and B is of interest even if $A=B=\mathbb{C}$. For example the zero mapping, the identity and the complex conjugate are ring homomorphisms on \mathbb{C}, which are all continuous. On the other hand the existence of a discontinuous ring homomorphism on \mathbb{C} is well known. More explicitly, if G is the set of all surjective ring homomorphisms on \mathbb{C}, then $\operatorname{Card}(G)=2^{\operatorname{Card}(\mathbb{C})}$. In fact, Charnow [2, Theorem 3] proved that there exist $2^{\operatorname{Card}(\mathbb{C})}$ automorphisms for every algebraically closed field K. It is also known that if A is a

[^0]uniform algebra on a compact metric space, then there are exactly $2^{\operatorname{Card}(\mathbb{C})}$ complexvalued ring homomorphisms on A whose kernels are nonmaximal prime ideals (see [4, Corollary 2.4]). As an example, take
\[

\mathcal{A}:=\left[$$
\begin{array}{cccc}
0 & \mathbb{R} & \mathbb{R} & \mathbb{R} \\
0 & 0 & \mathbb{R} & \mathbb{R} \\
0 & 0 & 0 & \mathbb{R} \\
0 & 0 & 0 & 0
\end{array}
$$\right]
\]

then \mathcal{A} is an algebra equipped with the usual matrix-like operations. It is easy to see that

$$
\mathcal{A}^{3} \neq 0=\mathcal{A}^{4} .
$$

So any additive map from \mathcal{A} into itself is a 4-Jordan homomorphism, but its kernel does not need to be an ideal of \mathcal{A}. Now let \mathcal{B} be the algebra of all \mathcal{A}-valued continuous functions from [0, 1] into \mathcal{A} with supremum norm. Then \mathcal{B} is an infinite-dimensional Banach algebra, and the product of any four elements of \mathcal{B} is 0 . Since \mathcal{B} is infinitedimensional, there are linear discontinuous maps which are 4-Jordan homomorphisms from \mathcal{B} into itself (see [3]). In this paper we study the continuity of linear n-Jordan homomorphisms on C^{*}-algebras.

2. Main result

By definition, it is obvious that n-ring homomorphisms are n-Jordan homomorphisms. Conversely, under a certain condition, n-Jordan homomorphisms are ring homomorphisms. For example, each Jordan homomorphism h from a commutative Banach algebra A into \mathbb{C} is a ring homomorphism: Fix $a, b \in A$ arbitrarily. Since $h\left((a+b)^{2}\right)=h(a+b)^{2}$ a simple calculation shows that $h(a b+$ $b a)=2 h(a) h(b)$. The commutativity of A implies that $h(a b)=h(a) h(b)$ and hence h is a ring homomorphism. In 1968, Zelazko [8] proved the following theorem (see also [5, Theorem 1.1]).

Theorem 2.1. Suppose that A is a Banach algebra, which need not be commutative, and suppose that B is a semisimple commutative Banach algebra. Then each Jordan homomorphism $h: \rightarrow B$ is a ring homomorphism.

We prove the following result for 3-Jordan homomorphisms and 4-Jordan homomorphisms on commutative algebras.

THEOREM 2.2. Let $n \in\{3,4\}$ be fixed, A, B be two commutative algebras, and let $h: A \rightarrow B$ be an n-Jordan homomorphism. Then h is an n-ring homomorphism.
Proof. First, let $n=3$. Recall that h is additive mapping such that $h\left(a^{3}\right)=(h(a))^{3}$ for all $a \in A$. Replacement of a by $x+y$ results in

$$
\begin{equation*}
h\left(x^{2} y+x y^{2}\right)=h(x)^{2} h(y)+h(x) h(y)^{2} . \tag{2.1}
\end{equation*}
$$

Hence, for every $x, y, z \in A$,

$$
\begin{aligned}
h(x y z)= & \frac{1}{2} h\left\{(x+z)^{2} y+(x+z) y^{2}-\left(x^{2} y+x y^{2}+z^{2} y+z y^{2}\right)\right\} \\
= & \frac{1}{2}\left\{h\left[(x+z)^{2} y+(x+z) y^{2}\right]-h\left[x^{2} y+x y^{2}\right]-h\left[z^{2} y+z y^{2}\right]\right\} \\
= & \frac{1}{2}\left\{[h(x+z)]^{2} h(y)+(x+z)[h(y)]^{2}-[h(x)]^{2} h(y)+h(x)[h(y)]^{2}\right. \\
& \left.\quad-[h(z)]^{2} h(y)+h(z)[h(y)]^{2}\right\} \\
= & h(x) h(y) h(z) .
\end{aligned}
$$

This means that h is a 3 -ring homomorphism. Now suppose that $n=4$. Then h is additive and $h\left(a^{4}\right)=(h(a))^{4}$ for all $a \in A$. Replace a by $x+y$ in the equality above to get

$$
\begin{equation*}
h\left(4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}\right)=4 h(x)^{3} h(y)+6 h(x)^{2} h(y)^{2}+4 h(x) h(y)^{3} . \tag{2.2}
\end{equation*}
$$

Replacing x by $x+z$ in (2.2), we obtain

$$
\begin{align*}
& h\left\{\left(4 x^{3} y+\right.\right.\left.\left.6 x^{2} y^{2}+4 x y^{3}\right)+\left(4 z^{3} y+6 z^{2} y^{2}+4 z y^{3}\right)+12\left(x^{2} z y+x z^{2} y+x z y^{2}\right)\right\} \\
&=\left(4 h(x)^{3} h(y)+6 h(x)^{2} h(y)^{2}+4 h(x) h(y)^{3}\right)+\left(4 h(z)^{3} h(y)+6 h(z)^{2} h(y)^{2}\right. \\
&\left.+4 h(z) h(y)^{3}\right)+12\left(h(x)^{2} h(z) h(y)+h(x) h(z)^{2} h(y)\right. \\
&\left.\quad+h(x) h(z) h(y)^{2}\right) . \tag{2.3}
\end{align*}
$$

Combining (2.2) and (2.3) gives

$$
\begin{equation*}
h\{(x y z)(x+y+z)\}=(h(x) h(y) h(z))(h(x)+h(y)+h(z)) . \tag{2.4}
\end{equation*}
$$

Replace z by $-x$ in (2.4) to obtain

$$
\begin{equation*}
h\left(x^{2} y^{2}\right)=h(x)^{2} h(y)^{2} \tag{2.5}
\end{equation*}
$$

and replace y by $y+w$ in (2.5) to get

$$
\begin{equation*}
h\left(x^{2} y w\right)=h(x)^{2} h(y) h(w) \tag{2.6}
\end{equation*}
$$

Now replace x by $x+t$ to obtain

$$
h(x t y w)=h(x) h(t) h(y) h(w) .
$$

Hence, h is a 4-ring homomorphism.
By Theorem 2.2 and [1, Theorem 3.2] we deduce the following result.
Corollary 2.3. Let $h: A \rightarrow B$ be a linear involution preserving 3-Jordan homomorphism between commutative C^{*}-algebras. Then h is norm contractive (that is, $\|h\| \leq 1$).
Also, by Theorem 2.2 and [7, Theorem 2.3], we have the following corollary.

Corollary 2.4. Let $h: A \rightarrow B$ be a linear involution preserving 4-Jordan homomorphism between commutative C^{*}-algebras; then h is completely positive. Thus h is bounded.

Now we prove our main theorem.
THEOREM 2.5. Suppose that A is a Banach algebra, which need not be commutative, and suppose that B is a semisimple commutative Banach algebra. Then each 3-Jordan homomorphism $h: A \rightarrow B$ is a 3-ring homomorphism.

Proof. We prove the theorem in two steps as follows.
Step I. Suppose $B=\mathbb{C}$. We have $h\left(a^{3}\right)=h(a)^{3}$ for all $a \in A$. Replace a by $x+y$ to obtain

$$
\begin{equation*}
h\left(x y x+y x^{2}+y^{2} x+x^{2} y+x y^{2}+y x y\right)=3\left(h(x)^{2} h(y)+h(x) h(y)^{2}\right) \tag{2.7}
\end{equation*}
$$

and replace y by $-y$ in (2.7) to get

$$
\begin{equation*}
h\left(-x y x-y x^{2}+y^{2} x-x^{2} y+x y^{2}+y x y\right)=3\left(-h(x)^{2} h(y)+h(x) h(y)^{2}\right) . \tag{2.8}
\end{equation*}
$$

By (2.7) and (2.8) we obtain the relation

$$
\begin{equation*}
h\left(x y^{2}+y^{2} x+y x y\right)=3\left(h(x) h(y)^{2}\right) . \tag{2.9}
\end{equation*}
$$

Replacing y by $y-z$ in (2.9), we get

$$
\begin{align*}
& h\left(x y^{2}+x z^{2}-2 x y z+y x y-y x z-z x y+z x z+z^{2} x+y^{2} x-2 y z x\right) \\
& \quad=3\left(h(x)^{2} h(y)+h(x) h(y)^{2}\right)-6 h(x) h(y) h(z) \tag{2.10}
\end{align*}
$$

By (2.9) and (2.10), we obtain

$$
\begin{equation*}
h(y x z+z x y+2 x y z+2 y z x)=6 h(x) h(y) h(z) \tag{2.11}
\end{equation*}
$$

Replacing z by x in (2.11), we get

$$
\begin{equation*}
h\left(3 y x^{2}+x^{2} y+2 x y x=6 h(x)^{2} h(y)\right. \tag{2.12}
\end{equation*}
$$

and combining (2.9) and (2.12), we obtain

$$
\begin{equation*}
h\left(x y x+2 y x^{2}\right)=3 h(x)^{2} h(y) \tag{2.13}
\end{equation*}
$$

From (2.8) and (2.13), we conclude that

$$
\begin{equation*}
h\left(y x^{2}-x^{2} y\right)=0 \tag{2.14}
\end{equation*}
$$

Replacing x by $x+z$ in (2.14), we get

$$
h\left(y x^{2}+y z^{2}+2 y x z-x^{2} y-z^{2} y-2 x z y\right)=0
$$

and from this equality and (2.14) it follows that

$$
\begin{equation*}
h(y x z-x z y)=0 . \tag{2.15}
\end{equation*}
$$

Combining (2.11) and (2.15) gives

$$
\begin{equation*}
h(y x z+3 x y z+2 y z x)=6 h(x) h(y) h(z) \tag{2.16}
\end{equation*}
$$

and then replacing z by x in (2.16) leads to

$$
\begin{equation*}
h\left(x y x+y x^{2}\right)=2 h(x)^{2} h(y) . \tag{2.17}
\end{equation*}
$$

Finally, combining (2.13) and (2.17) to obtain

$$
\begin{equation*}
h\left(y x^{2}\right)=h(y) h(x)^{2} \tag{2.18}
\end{equation*}
$$

and then replacing x by $x+z$ in (2.18), we conclude that

$$
h(y x z)=h(y) h(x) h(z)
$$

hence, h is a 3 -ring homomorphism.
STEP II. B is arbitrary semisimple and commutative. Let M_{B} be the maximal ideal space of B. We associate with each $f \in M_{B}$ a function $h_{f}: A \rightarrow \mathbb{C}$ defined by

$$
h_{f}(a):=f(h(a))
$$

for all $a \in A$. It is easy to see that h_{f} is additive and $h_{f}\left(a^{3}\right)=\left(h_{f}(a)\right)^{3}$ for all $a \in A$. So step I applied to h_{f} implies that h_{f} is a 3-ring homomorphism. By the definition of h_{f}, we obtain that

$$
f(h(a b c))=f(h(a)) f(h(b)) f(h(c))=f(h(a) h(b) h(c)) .
$$

Hence

$$
h(a b c)-h(a) h(b) h(c) \in \operatorname{Ker}(f)
$$

for all $a, b, c \in A$ and all $f \in M_{B}$. Since B is assumed to be semisimple, we get $h(a b c)=h(a) h(b) h(c)$ for all $a, b, c \in A$. We thus conclude that h is a 3-ring homomorphism, and the proof is complete.

From now on we consider such n-Jordan homomorphisms as are linear.
Corollary 2.6. Suppose that A, B are C^{*}-algebras, where A need not be commutative, and suppose that B is semisimple and commutative. Then every involution preserving 3-Jordan homomorphism $h: A \rightarrow B$ is norm contractive (that $i s,\|h\| \leq 1$).

Proof. It follows from Theorem 2.5 and [1, Theorem 2.1].

THEOREM 2.7. Let $h: A \rightarrow B$ be a bounded involution preserving k-Jordan homomorphism between C^{*}-algebras such that $h\left(a^{*} a\right)=h(a)^{*} h(a)$ for all $a \in A$. Then h is norm contractive (that is, $\|h\| \leq 1$).

Proof. From [7, Lemma 2.4],

$$
\begin{aligned}
\|h(a)\|^{4 k+2} & =\left\|\left(h(a)^{*} h(a)\right)^{2 k+1}\right\|=\left\|\left(h(a)^{*} h(a)\right)^{k}\left(h(a)^{*} h(a)\right)\left(h(a)^{*} h(a)\right)^{k}\right\| \\
& =\left\|\left[h(a)\left(h(a)^{*} h(a)\right)^{k}\right]^{*}\left[h(a)\left(h(a)^{*} h(a)\right)^{k}\right]\right\| \\
& =\left\|h(a)\left(h(a)^{*} h(a)\right)^{k}\right\|^{2}=\left\|h(a)\left(h\left(a^{*} a\right)\right)^{k}\right\|^{2} \\
& =\left\|h(a)\left(h\left(a^{*} a\right)^{k}\right)\right\|^{2} \leq\|h(a)\|^{2}\left\|h\left(\left(a^{*} a\right)^{k}\right)\right\|^{2} \\
& \leq\|h\|^{2}\|a\|^{2}\|h\|^{2}\left\|\left(a^{*} a\right)^{k}\right\|^{2} \\
& \leq\|h\|^{4}\|a\|^{4 k+2},
\end{aligned}
$$

for all $a \in A$, which implies that $\|h\| \leq 1$ by taking $(4 k+2)$ th roots.

References

[1] J. Bracic and M. S. Moslehian, 'On automatic continuity of 3-homomorphisms on Banach algebras', Bull. Malays. Math. Sci. Soc. (2) 30(2) (2007), 195-200.
[2] A. Charnow, 'The automorphisms of an algebraically closed field', Canad. Math. Bull. 13 (1970), 95-97.
[3] Sh. Hejazian, M. Mirzavaziri and M. S. Moslehian, ' n-homomorphisms', Bull. Iranian Math. Soc. 31(1) (2005), 13-23.
[4] T. Miura, S.-E. Takahasi and N. Niwa, 'Prime ideals and complex ring homomorphisms on a commutative algebra’, Publ. Math. Debrecen 70(3-4) (2007), 453-460.
[5] T. Miura, S.-E. Takahasi and G. Hirasawa, 'Hyers-Ulam-Rassias stability of Jordan homomorphisms on Banach algebras', J. Inequal. Appl. 2005(4) (2005), 435-441.
[6] T. Palmer, 'Banach algebras and the general theory of $*$-algebras', in: Vol. I. Algebras and Banach algebras, Encyclopedia of Mathematics and its Applications, 49 (Cambridge University Press, Cambridge, 1994).
[7] E. Park and J. Trout, 'On the nonexistence of nontrivial involutive n-homomorphisms of C^{*} algebras', Trans. Amer. Math. Soc. 361 (2009), 1949-1961.
[8] W. Zelazko, 'A characterization of multiplicative linear functionals in complex Banach algebras', Studia Math. 30 (1968), 83-85.
M. ESHAGHI GORDJI, Department of Mathematics, Semnan University, PO Box 35195-363, Semnan, Iran
e-mail: madjid.eshaghi@gmail.com

[^0]: (C) 2009 Australian Mathematical Society 0004-9727/2009 \$16.00

