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Abstract

Optimal control of stochastic bandwidth-sharing networks is typically difficult. In order to
facilitate the analysis, deterministic analogues of stochastic bandwidth-sharing networks,
the so-called fluid models, are often taken for analysis, as their optimal control can be
found more easily. The tracking policy translates the fluid optimal control policy back
to a control policy for the stochastic model, so that the fluid optimality can be achieved
asymptotically when the stochastic model is scaled properly. In this work we study the
efficiency of the tracking policy, that is, how fast the fluid optimality can be achieved in
the stochastic model with respect to the scaling parameter. In particular, our result shows
that, under certain conditions, the tracking policy can be as efficient as feedback policies.
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1. Introduction

Let us start this article with the following adopted conventions.

• By R
L, RL+, and Z

L+ we respectively indicate the sets ofL-vectors of real, nonnegative real,
and nonnegative integer numbers. By D[0, ∞) we denote the space of right-continuous
left-limit functions on [0, ∞). By {el}, e, ‘�’, 1{·} we respectively denote the natural
basis of R

L, the element in R
L with all its components equal to 1, the transposition, and

the indicator function. For all x, y ∈ R, x ∧ y := min{x, y}. By O(1/n) and O(1/
√

n)

we respectively mean that there exists some constant C such that O(1/n)/(1/n) → C

and O(1/
√

n)/(1/
√

n) → C as n → ∞.

• Unless stated otherwise, by a vector we always mean a column vector.

• When we say that X1 ≤ X2, where X1 and X2 are vectors, ‘≤’ is understood component-
wise, and likewise for other vector inequalities.

A bandwidth-sharing network can be described as follows. Through a network of J resources
(links), L flows are routed in a predetermined way. The L flows are assumed to be distinct in

Received 21 December 2009; revision received 27 November 2010.
∗ Postal address: INRIA, MAESTRO Team, 2004 Route des Lucioles - BP 93 FR-06902 Sophia Antipolis Cedex,
France. Email address: k.avrachenkov@sophia.inria.fr
∗∗ Postal address: Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK.
∗∗∗ Email address: piunov@liverpool.ac.uk
∗∗∗∗ Email address: zy1985@liverpool.ac.uk

90

https://doi.org/10.1239/jap/1300198138 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1300198138


Bandwidth-sharing networks 91

the sense that each one is routed differently. The flows represent aggregate streams of finitely
sized files sent according to Poisson processes. Thus, the files are classified according to which
flow they belong to. Files belonging to flow l are called files of type l. Each resource has
a finite capacity shared among the flows passing through it. Let us introduce some notation.
A network is described by a configuration (A, Z), where A is a (J × L)-matrix with Ajl = 1
if resource j participates in serving files of type l and Ajl = 0 otherwise. We assume that each
column of A has at least one nonzero component, meaning that each file (flow) must be served
somewhere. Let Z be a J -vector with Zj > 0 indicating the maximal capacity of resource j . If
the current number of files of each type is Y ∈ Z

L+ and the current time is t ≥ 0, then let U(Y, t),
an L-vector satisfying 0 ≤ AU(Y, t) ≤ Z, represent the instantaneous (feasible) allocations
of resources for each type of files. Here, we are restricted to the class of deterministic Markov
control policies, so that U(Y, t) will be assumed to be a mapping measurable in t ≥ 0. For
brevity, below, when we say a control policy (for the stochastic model), we shall often omit its
argument, but simply indicate U .

We shall model the network dynamics as a Markovian system. To the best of the authors’
knowledge, this bandwidth-sharing network model originated in [15] and [25]. It has subse-
quently been extensively studied. An interested reader can find a thorough literature review
about the model in [27].

Quite formally, given a fixed U, our stochastic model is a regular Q-process {Yt , t ≥ 0}
in the state space Z

L+ with the conservative and stable Q-matrix given by qY,Y+el
(t) = λl and

qY,Y−el
(t) = µlUl(Y, t) 1{Y l > 0}, where Y l is the lth component of Y. See Chapter 2 and

Appendix B of [11] and [29] for more details. Here, we have decided not to indicate any of the
nonpositive ‘diagonal’ components and the other zero components of the Q-matrix: this does
not generate any confusion, with the conservativeness of the Q-matrix in mind. Note also that
the dependence of the Q-matrix on U will not be signified for simplicity. Put differently, in
our model we assume that the files of flow l arrive according to a Poisson process and have
exponentially distributed service times. In greater detail, denoting by Yt ∈ Z

L+ the instantaneous
number of files of each type in the network, we suppose that {Yt , t ≥ 0} is a continuous-time
Markov chain with λl the transition rate from Yt to Yt + el and µlUl the transition rate from Yt

to Yt − el (if the corresponding component of Yt is positive). This is equivalent to saying that
files of type l arrive in a Poisson process with intensity λl , and each file is of an exponentially
distributed size with mean 1/µl ; hence, the mean time for its service to be completed will be the
ratio of Ul , its allocated capacity, against 1/µl. Here, we have assumed that all the exogenous
arrivals of files are independent. Furthermore, if the fixed U means that Ul(Y, t) can be written
as Ul(Y

l, t) for all l = 1, . . . , L, t ≥ 0, and Y ∈ Z
L+, i.e. the allocation of resources for files of

type l depends only on the current time as well as the number of files of type l, then it will be our
standing assumption that, under this U, {Y l

t , t ≥ 0} are independent continuous-time Markov
chains with transition rates λl and Ul(Y

l
t , t)µl , where Y l

t is the lth component of Yt , i.e. each
file is served independently, and the presences of different types of files at a common resource
do not interfere with each other. Below, we shall frequently refer to this standing assumption
of independence.

For such a system, the performance measure of our interest is the expected total holding
cost, and the optimization problem of our concern is in the form of

EY0

[∫ T

0
e�Yt dt

]
→ min

U
,
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92 K. AVRACHENKOV ET AL.

where EY0 is the expectation with the initial state Y0 (fixed and deterministic) and T > 0 is a
given finite horizon. Note that, without leading to confusion, we have decided not to signify
the dependence of EY0 on U . In words, we aim at finding the optimal resource allocation to
minimize this performance measure. The optimization with this criterion can be interpreted
as the minimization of the total workload. More discussions about this criterion can be found
in [27].

On the other hand, we can consider a deterministic analogue of the above stochastic (Marko-
vian) bandwidth-sharing network model, its so-called fluid model, which we now describe. Let
y(t) and u(y(t), t) be the analogues of Yt and U(Yt , t). In fact, below we shall only write u(t)

for the fluid control policy, which, in such a deterministic system, is a plausible thing to do. If
we further agree on the notation � = (λ1, λ2, . . . , λL)� and

M = diag(µ1, µ2, . . . , µL) :=

⎛
⎜⎜⎝

µ1 0 · · · 0
0 µ2 · · · 0
0 · · · · · · 0
0 · · · · · · µL

⎞
⎟⎟⎠ ,

then the fluid model can be written as the following linear program:

∫ T

0
e�y(t) dt → min

u,y
(1)

such that
dy

dt
= −Mu(t) + �, y(0) = Y0, Au(t) ≤ Z, y(t), u(t) ≥ 0.

We emphasize that in the fluid model the state space is R
L+ instead of Z

L+.
In spite of some loss of accuracy compared to its corresponding stochastic counterpart, often

a fluid model is more amenable for analysis. For example, Verloop and Núñez-Queija [28] (see
also [27, Chapter 5]), for a certain set of parameters, found the optimal solution to the above fluid
problem for a bandwidth-sharing network with two resources and three flows. Once an optimal
policy is obtained for the fluid model, one may translate it into a policy for the stochastic model.
It is of interest to see how well the resulting policy performs. In general, directly applying the
fluid optimal policy to the stochastic model may be far from optimal. Here, by directly we
mean without scaling the stochastic model. To illustrate this point, let us consider the following
example.

Example 1. Suppose that we are concerned with a controlled M/M/1 queueing system, where
the initial state is Y0 = 1, qYt ,Yt+1(t) = λ > 0 (if Yt ∈ Z+), and qYt ,Yt−1(t) = µ − π(Yt ) (if
Yt ∈ Z+ \ {0}) with µ > 0 and λ > µ (by a sufficiently small difference), where π(·) is a
mapping from the state space to {0, µ}. In words, this means that we are restricted to the class
of deterministic stationary policies to choose actions from {0, µ}. We shall fix the absorbing
state to be some large enough integer, so that the state space is indeed finite. Suppose that the
cost rate is c(x, a) = C 1{x ∈ [0, 1

5 ]} + a 1{x ∈ [ 1
2 , 1]}, where C > 0 is a sufficiently large (in

relation to µ) penalty constant. We are concerned with the problem of

Eπ
1

[∫ ∞

0
c(Yt , π(Yt )) dt

]
→ min

π
,

which is well defined for any π(·). Clearly, since C is much larger than µ, which is then rather
close to λ, the optimal control at state 1 should be π(1) = µ, meaning that the value of its
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performance functional will be strictly positive. Indeed, on the one hand, if we set π(1) = 0
then the process visits state 0 after the first jump at a significant probability, but visiting state 0
(and staying there for a while) is heavily penalized. In this case, the expected total cost is
more than (µ/(λ + µ))C/λ, with µ/(λ + µ) representing the probability that the first jump is
downward. On the other hand, if we set π(x) = µ, x ≥ 1 (so, in particular, π(1) = µ), then
the process definitely jumps upward and never visits state 0. In this case, the total cost will be
given by µ/λ (i.e. the expected cost incurred up to the first jump), which is close to 1 since µ

is close to λ. This quantity is smaller than (µ/(λ + µ))C/λ for sufficiently large C, which is
the case here. Hence, the optimal control at state 1 should be given by π(1) = µ.

Now consider its fluid model. Since y(0) = 1 and λ−µ > 0, π(y) = 0 is optimal, resulting
in

∫ ∞
0 c(y, π(y)) dt = 0, y is read as a function of t, which we decide not to indicate explicitly

for simplicity. Therefore, we see that in this example both the optimal policies and the values of
performance functionals differ significantly between the stochastic model and its fluid model.
Another observation of this type can be found in [19, Section 5, p. 427], where the authors
considered an epidemic model proposed in [10].

Intuitively, the reason for the discrepancy in the above example lies in the stochastic and
discrete nature of the stochastic model versus the deterministic and continuous nature of the
fluid model. However, when the stochastic process is scaled properly, in the limiting case,
by referring to the ‘functional strong law of large numbers’, the randomness gets eliminated
(or alleviated, at least). See [5], [6], and [14] for more details. Let us call the underlying
scaling ‘fluid scaling’. Then it is natural to consider the case when the fluid optimal policy
is translated to a scaled stochastic model and to examine its limiting case with respect to the
fluid scaling parameter. This gives rise to the concept of asymptotic fluid optimality. See [8]
and [9]. Basically, a policy is said to be asymptotically fluid optimal (AFO) if applying it
to a sequence of scaled stochastic models results in a sequence of performance functionals
converging to that optimal for the fluid model. The question then becomes one of asking
whether or not naively translating the fluid optimal policy can provide an AFO policy. In
fact, generally speaking, translations that look natural can result in policies not AFO, according
to [13, Section 2]. See also [20, Example 1] for another example where the fluid model provides
inaccurate approximations even in the sense of fluid scaling.

Clearly, to define the asymptotic fluid optimality more accurately, we firstly need to define
the fluid scaling. The general idea is to scale the parameters (rates) and to aggregate the space
both linearly, while the time scale is kept unchanged: given the (fluid) scaling parameter n ∈ N

fixed, we consider {nYt , t ≥ 0} with nY0 := nY0 a continuous-time Markov chain in the state
space Z

L+ with parameters nλl and nµlUl , and performance measure of the form

nŴ (nY0) := EnY0

[∫ T

0
e� nYt

n
dt

]
.

Here, we recall that Y0 is a constant that has appeared above, and U stands for the control
policy. It should also be emphasized that in the scaled stochastic model the parameter n, as the
denominator in the above expression, aggregates the space, and, as the multiplicative factor,
scales up the transition rates. Then a policy is AFO if it results in the convergence

lim
n→∞ |nŴ (nY0) − ŵ(Y0)| = 0,

where

ŵ(Y0) :=
∫ T

0
e�y(t) dt, y(0) = Y0,
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is the performance functional for the fluid model under its optimal control policy. As mentioned
earlier, we have dropped the indication of the control policy, because below we shall always
fix a control policy, and, thus, deal with essentially uncontrolled processes. As the initial state
nY0 is fixed, from now on we shall even only write nŴ and ŵ instead of nŴ (nY0) and ŵ(Y0)

for simplicity. Furthermore, we shall call |nŴ − ŵ| the actual accuracy of the fluid model.
Now we can describe the translation of the fluid optimal policy. Potentially, there are several

options. One possibility is a feedback-type translation, which was studied in [18] and [20]
for controlled birth-and-death processes, in [17] for a multiclass single-station system, and
in [8] and [9] for tandem queues, to mention some. Another possibility is the tracking policy
translation, considered in [2], which is also the object of the current work. The tracking policy
translation is a naive translation, because, for the scaled stochastic model, the same action
as for the fluid model will be taken on the same time interval, unless the state is null in the
stochastic model, on which occasion we do not allocate any capacity. More exactly, given the
fluid optimal control u∗, the tracking policy U∗ is defined via

U∗
l (nYt , t) = U∗

l (nY l
t , t) = u∗

l (t) 1{nY l
t > 0}, l = 1, 2, . . . , L, (2)

where we recall that u∗
l , U∗

l , and nY l
t are the lth components of u∗, U∗, and nYt , respectively.

In [2], the author considered a scheduling problem for a multiclass queueing network. There,
for a discount model, the tracking policy was proved to beAFO, which was done by showing the
convergence of performance functionals. However, the author revealed no information about
the rate of convergence. Given the preliminary belief that the tracking policy translation also
results in an AFO policy in our case, which is indeed the case as shown below, it is natural to
ask the following question.

• How fast can we achieve the fluid optimality? Or, in other words, how efficient is the
tracking policy?

This question is important, as the efficiency helps compare different AFO translations of fluid
optimal policies, and at the same time provides the accuracy of the fluid approximations.

In the present work, for the concerned finite-horizon problem, we provide two answers to this
question with upper boundary estimates for the rate of convergence of performance functionals.
Specifically, we show that the tracking policy can be as efficient as or less efficient than the
feedback-type translation, depending on the parameters of the underlying fluid model. While
one example in [9] showed that the tracking policy was less efficient than the feedback-type
translation considered there, we shall provide an opposite example to show that the tracking
policy can also be efficient, and, hence, favoured due to the less information it requires to be
implemented. The result obtained for the efficiency implies that the tracking policy is AFO.
In addition, we discuss a modification of the tracking policy towards the improved efficiency.
To the best of the authors’ knowledge, the question about the efficiency of translations of fluid
optimal policy has not yet been studied intensively. Relevant works include [9], [17], [18], [20],
and [21], all of which focus on feedback-type translations, with the exception of [9], which
mainly focuses on feedback-type translations, but also has a short discussion on the tracking
policy.

The rest of the work is organized as follows. In Section 2 we state the main results, which
are verified with two examples in Section 3. Finally, we sum up this work with a conclusion.
The proofs of the main statements, alongside some auxiliary lemmas, are given in Appendix A.
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2. Main statements

In this section we shall provide two answers to the question about the efficiency of the
tracking policy raised at the end of Section 1. The first answer given in Theorem 1 below
corresponds to the general case, where we do not impose extra assumptions on the parameters
of the network; the second answer given in Theorem 2 below looks more interesting, but is
based on some extra assumptions.

Let us start with a lemma, giving the form of the optimal control policy for the fluid model,
following which the main notation used in this section, in addition to those given in Section 1,
can be introduced.

Lemma 1. There is an optimal policy u∗(t) for fluid model (1) in the form of a piecewise-
constant function in time t ≥ 0 with N subintervals [Ti−1, Ti), where i = 1, . . . , N < ∞, with
T0 := 0 and TN := T .

Owing to the form of the tracking policy U∗ (see (2)) and our standing assumption about
independence mentioned in Section 1, for all l = 1, 2, . . . , L, we refer to files of type l as
the lth (Markovian) ‘queue’. Let iµl := µlu

∗
l (t) on [Ti−1, Ti) for all l = 1, 2, . . . , L and

i = 1, 2, . . . , N be the potential service rate of the lth queue on the ith subinterval.

2.1. Efficiency of the tracking policy for the general case

Now we are in the position to state the following theorem.

Theorem 1. Let us set γ := maxi=1,...,N, l=1,...,L{λl,
i µl} and T̄ := maxi=1,...,N {Ti − Ti−1}.

For any fixed initial state and network configuration, the above quantities are fixed. Then

|nŴ − ŵ| ≤ T L√
n

{12
√

N(N + 1)γ T̄ }.

In particular, limn→∞ |nŴ − ŵ| = 0.

It will be confirmed by an example in Section 3 that, as far as the order is concerned, the
obtained O(1/

√
n) is correct and cannot be improved. Given the uniformity in the values of

parameters, Theorem 1 does not require extra assumptions on the primary data. Then, with
Theorem 1, we say that the efficiency of the tracking policy is O(1/

√
n). It is then interesting

to compare the efficiency of the tracking policy with that of the feedback-type translation, as
considered in, for example, [17], [18], and [20]. There, for an (absorbing) birth-and-death
process (or, say, M/M/1 queue), the author(s) considered a feedback-type translation, which
was shown to be of efficiency O(1/n). If we consider a corresponding bandwidth-sharing
network with only one resource and flow, then Theorem 1 somehow suggests that the tracking
policy is in general less efficient than feedback-type translations. This is in line with the result
in [9], where, for a different model, the authors also observed that the tracking policy could be
less efficient than feedback-type translations.

On the other hand, suppose that we still consider the simple case of the M/M/1 queue,
i.e. the bandwidth-sharing network is of one resource and one flow. In addition, we impose
some assumptions on the parameters so that, for the given Y0 = y(0) > 0, the time horizon
T is sufficiently small. Then, with the absorbing case considered in [20] in mind, instead of
O(1/

√
n), we might expect |nŴ − ŵ| to converge as fast as O(1/n), because we now count

the deviation of the stochastic model from the fluid model for less time. This motivates our
study of a preabsorbing case in the next subsection, where the time horizon is small enough so
that over it, for each type of file, the fluid model does not reach 0.
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2.2. Efficiency of the tracking policy for a preabsorbing case

Assumption 1. Define λ := minl=1,...,L{λl}, λ := maxl=1,...,L{λl}, and µ := (maxl=1,...,L{µl})
(maxl=1,...,L{Zl}), where Zl is the lth component of Z. Then T > 0, the time horizon, satisfies
the condition that there exists a y > 0 such that, for all l = 1, . . . , L, Y l

0 − |λ − µ|T ≥ y > 0.

Here we emphasize that the above inequality holds uniformly in l = 1, . . . , L, y is a
(deterministic) constant, and we recall that Y l

0 is the lth component of Y0, which is then a
fixed (deterministic) constant (see Section 1).

With the fixed T > 0, satisfying Assumption 1 or not, we can always fix two (deterministic)
constants y > 0 and K > 0 such that maxl=1,...,L{Y l

0 + λT } ≤ y < K. In fact, below K, as
can always be fixed, will be regarded as a sufficiently large constant. In words, Assumption 1
means that T > 0 is so small that over the time horizon, the number of files of any type never
reaches either 0 or K in the fluid model. If we view state 0 as ‘absorbing’ then, naturally, we
call a bandwidth-sharing network model a ‘preabsorbing’ case, if Assumption 1 is satisfied.

Theorem 2. Under Assumption 1,

|nŴ − ŵ| ≤ O

(
1

n

)
.

Here, the exact expression of the upper boundary estimate (O(1/n)) can be obtained from the
primary data by scanning the proof of this theorem.

Theorem 2 implies that the tracking policy can be as efficient as some feedback-type
translations, at least for a certain set of parameters. While one way of understanding the
better efficiency of the tracking policy in the preabsorbing case has been explained at the end of
the last subsection (after Theorem 1), we shall give another intuitive explanation in Section 3.

3. Examples

Let us illustrate the obtained results via two examples in this section.

Example 2. (The simplest example.) Let us set L = J = 1, A = [1], Z1 = 1, and
nY 1

0 = ny1(0) = 0. Fixing a constant M > 0, we suppose that µ1 = 2M and λ1 = M.

Suppose also that some T > 0 is fixed. Since L = 1, throughout this example, we shall omit
the index standing for the type of file under consideration.

For the fluid model (1), clearly, u∗(t) = 1
2 (on [0, T )) is optimal, because, under it,∫ T

0
y(t) dt = 0.

For the (scaled) stochastic model, under the tracking policy U∗(nY (t), t) = 1
2 1{nYt > 0}

(see (2)), we effectively deal with an M/M/1 queue with the arrival and (potential) service rates
both equal to nM . Then

|nŴ − ŵ| = E0

[∫ T

0

nYt

n
dt

]
= 1

n

∫ T

0
E0[nYt ] dt,

where E0[nYt ] can be computed as follows. For a small enough time increment h, we have,
omitting the subscript for the initial position,

E[nYt+h | nYt > 0] = (nYt + 1)(nhM + o(h)) + (nYt − 1)(nhM + o(h))

+ nYt (1 − nhM − nhM + o(h))
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and
E[nYt+h | nYt = 0] = nhM + o(h),

where o(h) stands for a term of order lower than h in the sense that limh→0 o(h)/h = 0. This
leads to

E[nYt+h | nYt ] = nYt + nhM 1{nYt = 0} + o(h)

⇒ E[nYt+h] = E[nYt ] + nhM P{nYt = 0} + o(h)

⇒ E[nYt+h] − E[nYt ]
h

= nM P{nYt = 0} + o(h)

h

⇒ E[nYt ] =
∫ t

0
nM P{nYs = 0} ds,

where the last step is a result of first taking h → 0 and then integrating. Therefore, we have

|nŴ − ŵ| = E

[∫ T

0

nYt

n
dt

]

= 1

n

∫ T

0

∫ t

0
nM P{nYs = 0} ds dt

= M

∫ T

0

∫ t

0
e−2nMs{I0(2nMs) + I1(2nMs)} ds dt, (3)

where, in accordance with [3, Equation (1)] (see also [1, pp. 110–112]), P{nYs = 0} =
e−2nMs{I0(2nMs)+I1(2nMs)} with I0(2nMs) and I1(2nMs) standing for the modified Bessel
functions of the first kind of orders 0 and 1 at 2nMs, respectively.

For the convenience of numerical evaluations, let us set M = T = 1 (for simplicity), and
recall that T̄ = γ = N = 1. Then the difference between our upper boundary estimate and
the actual accuracy given by (3) is plotted in the Figure 1, and the ratio of our estimate against
the actual accuracy is given in Figure 2, both against the scaling parameter. From the figures

2.3

2.2

2.1

2.0

1.9

1.8

1.7

1.6

1.5

1.4

100 150 200 250 300
n

Figure 1: The difference between the actual accuracy and the estimated accuracy for the example of the
M/M/1 queue. The vertical axis gives the difference, and the horizontal axis gives the scaling parameter, n,

ranging from 100 to 300.
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Figure 2: The ratio of the estimated accuracy against the actual accuracy for the example of the M/M/1
queue. The vertical axis gives the ratio, and the horizontal axis gives the scaling parameter, n, ranging

from 100 to 200.
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Figure 3: A log-scale plot of the actual accuracy for the example of the M/M/1 queue. The vertical axis
gives the log of the actual accuracy, and the horizontal axis gives log(n), with n ranging from 100 to 150.

Note that the curve is very close to a straight line with slope of about − 1
2 .

we see that our estimate is a rather rough estimate. In particular, Figure 2 suggests that the
convergence happens around thirty times faster than estimated. In fact, when n = 10 000, the
ratio of our estimate against the actual accuracy is about 32, and, when n = 100 000 000, the
ratio is also around 32. On the other hand, Figure 3 shows that the actual rate of convergence is
of order O(1/

√
n), which is exactly our estimate. This says, given the uniformity in parameters

as in Theorem 1, that we do not have convergence faster than O(1/
√

n).

Let us mention three reasons for the simple settings of Example 2.
The first reason is to have a simple expression for P{nYs = 0} and, thus, for the actual rate

of convergence (accuracy). In fact, according to [3], for an arbitrary initial state n0 ∈ Z+,
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denoting by ρ := λ/µ the traffic intensity for the standard M/M/1 queue, we have

P{nYs = 0} = e−(1+ρ)nµs

{
ρ−n0/2I−n0(2ρ1/2nµt) + ρ(−n0−1)/2In0+1(2ρ1/2nµs)

+ (1 − ρ)ρn
∞∑

l=n0+2

ρ−l/2Il(2ρ1/2nµt)

}
,

which is difficult to evaluate. Other alternative formulae, though available (see, e.g. [26,
Section 1]), are also rather complicated. In addition, when there are at least two subintervals, we
deal with a time-dependent M/M/1 queue, for which the transient probability is provided in [30],
as a solution to some Volterra-type integral equation, making it very difficult to evaluate also.
After all, even in our simplified setting, the obtained expression for E[∫ T

0 (nYt/n) dt] is still not
of a very simple form. However, at least it is easy to compute its numerical values.

The second reason is that this simple setup itself is interesting and typical. Suppose now
that we modify the primitives of the above example by letting nY0 = nY0 > 0 and T = Y0/M ,
while we keep all the other primitives unchanged. Then, for the fluid model, obviously, u∗
given by u∗(t) = 1µ = 2M on [0, T /2) and u∗(t) = 1µ = M on [T/2, T ) is optimal, because,
under it, the fluid model decreases at the fastest rate to 0 at T/2 and stays at 0 from T/2 to
the end of the horizon. Therefore, on [T/2, T ), we have exactly the situation as in the above
example. On the other hand, under the tracking policy U∗, the (scaled) stochastic model can be
viewed as a time-dependent M/M/1 queue. As we increase the scaling parameter n, because the
trajectory converges (see [4]–[7] and [14]) at T/2, we are likely to end up with the stochastic
model starting with initial state close to 0 as well as a unit traffic intensity, which, as we have
seen in the above example, will result in the rate of convergence O(1/

√
n). This also explains

another piece of intuition for avoiding the fluid model reaching 0 in the preabsorbing case (see
Subsection 2.2).

Thirdly, in Example 2 if we modify the tracking policy via U∗
modified(

nYt , t) = 1{nYt > 0}
(compared to U∗(nYt , t) = 1

2 1{nYt > 0} in Example 2), then simulations suggest that U∗
modified

leads to the better efficiency (compared to the efficiency of O(1/
√

n) obtained in Theorem 1),
in the sense of |nŴmodified − ŵ| ≤ O(1/n), where nŴmodified stands for the value of the
performance measure for the stochastic model given the fixed initial state and ŵ = 0. Indeed,
Figure 4 is produced by simulations using MATLAB®, with the diamond symbols standing
for the actual accuracy (on a log scale). The solid line (against log n) is the best fitted line
coming from the least squares method. In the simulations, for each fixed scaling parameter n,
we simulate one hundred trajectories, and, thus, obtain one hundred cost values, whose sample
mean is then taken as the estimate for nŴmodified. Here we set T = M = 1 for numerical
evaluations as above. The slope of the best fitted line is approximately −1, suggesting the
improved efficiency (compared to the slope of − 1

2 in the case of the original tracking policy).
This situation suggests that without influencing the service of other types of file, allocating
extra resources than needed (in the fluid model) could potentially lead to the better efficiency.

Example 3. (A linear bandwidth-sharing network.) Let us fix the following primitives: L = 3,

J = 2, µ1 = 4, µ2 = µ3 = 2, λ1 = λ2 = λ3 = 1, Y 1
0 = 3, Y 2

0 = Y 3
0 = 10, T = 2,

Z1 = Z2 = 1, and

A =
(

1 1 0
1 0 1

)
.

This so-called linear bandwidth-sharing network has been studied intensively in [27, Chapter 5]
(see also [28]). In particular, by [27, Proposition 5.2.3, Chapter 5], u∗ is given by u∗

1(t) = 1,
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Figure 4: The actual accuracy on a log scale for the example of the M/M/1 queue. The vertical axis
gives the accuracy (on a log scale), and the horizontal axis gives the scaling parameter (on a log scale), n,

ranging from 10 to 1010 in increments of 100.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
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�1.5

�1.0

�0.5
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0.5

log(n)

y �0.47x � 0.28 Data 1 
Linear

=

Figure 5: The actual accuracy on a log scale for the example of the linear bandwidth-sharing network.
The vertical axis gives the accuracy (on a log scale), and the horizontal axis gives the scaling parameter

(on a log scale), n, ranging from 1 to 61 in increments of 5. The sample size is 100.

u∗
2(t) = u∗

3(t) = 0 on [0, 1) and u∗
1(t) = 1

4 , u∗
2(t) = u∗

3(t) = 3
4 on [1, 2). Furthermore, the

fact that u∗ is piecewise constant confirms Lemma 1. Trivial calculations result in ŵ = 44.

Unfortunately, the calculation for nŴ tends to be overwhelmingly difficult. However, Figure 5,
with the slope of the line in it being approximately −0.5, obtained from simulations, confirms
the efficiency of O(1/

√
n). The simulations are carried out using MATLAB in the same way as

explained at the end of Example 2, and, thus, we shall omit the explanations to avoid repetition.
Here we would like to mention that, under u∗, files of type 1 in the fluid model will reach 0
at t = 1 and stay there for the rest of the horizon with the unit traffic intensity, while files of
the other two types never reach 0 on the horizon. This accounts for the order of O(1/

√
n)

(compared with Example 2). In fact, with the slope of the line in it being approximately −1,
Figure 6 suggests that |nŴ 2 − ŵ2| is of order O(1/n), confirming Theorem 2.
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Figure 6: The actual accuracy on a log scale for the files of type 2 for the example of the linear bandwidth-
sharing network. The vertical axis gives the accuracy (on a log scale), and the horizontal axis gives the
scaling parameter (on a log scale), n, ranging from 1 to 61 in increments of 5. The sample size is 1500.

4. Conclusion

To sum up, in this work we have studied the efficiency of the tracking policy for the
bandwidth-sharing network model. While it was known for some other networks in the literature
that the tracking policy is AFO, its efficiency, to the best of the authors’ knowledge has not
been studied intensively. Indeed, [9] is the only work we know that contains a short discussion
on that topic. We have shown, in terms of explicit upper boundary estimates for the rate of
convergence for performance functionals, that the tracking policy could be as efficient as or
less efficient than the feedback-type translation, depending on the parameters of the underlying
fluid model. In particular, our result is in favour of the tracking policy over the feedback-type
translations, at least for short enough time horizons, owing to its good efficiency as well as to
the small amount of required information. The current work contributes new insights about
the accuracy of fluid approximations. It appears that the existing knowledge on the accuracy
of fluid approximations is very scarce and needs significant development. We hope that the
present work becomes an important step in this development.

Appendix A. Proofs of the main statements

A.1. Proof of Lemma 1

For the linear program (1), integrating by parts results in an objective function of the form
∫ T

0
e�y(t) dt =

∫ T

0
e� dt y(T ) −

∫ T

0

(∫ t

0
e� ds

)
(−Mu(t) + �) dt

=
∫ T

0
e� dt

(
y(0) +

∫ T

0
(−Mu(t) + �) dt

)

−
∫ T

0

(∫ t

0
e� ds

)
(−Mu(t) + �) dt

(write �t := ∫ t

0 e� ds = (t, . . . , t))

= �T y(0) −
∫ T

0

�T Mu(s) ds + �T �T +
∫ T

0
�tMu(t) dt −

∫ T

0
�t� dt.
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Here �T denotes the vector (T , . . . , T ), and we similarly understand �s below. Therefore,
by ignoring the uncontrolled terms in the above expression, fluid model (1) is equivalent to
considering

−
∫ T

0

�T Mu(s) ds +
∫ T

0
�sMu(s) ds =

∫ T

0
(�s − �T )Mu(s) ds

as the objective function. Now we note that (�s − �T )M , �, and Z, being respectively linear,
constant, and constant, are respectively piecewise analytic, piecewise linear, and piecewise
constant on [0, T ], and the problem has a feasible region, nonempty and bounded, which
altogether validate [22, Theorem 3.3], implying that the optimal control for the fluid model is
a function u(t)∗, constant on intervals [Ti−1, Ti), where i = 1, . . . , N < ∞ with T0 := 0 and
TN := T .

A.2. Proof of Theorem 1

Let us recall that in this proof, though we do not indicate them explicitly, u∗ and U∗
are the fixed policies under consideration. Then, in addition to our standing assumption of
independence made in Section 1, we also observe that

∫ T

0
e� nYt

n
dt =

L∑
l=1

∫ T

0

nY l
t

n
dt,

meaning that, under the fixed U∗ and u∗, we could effectively deal with only one ‘queue’,
and apply the same approach to the others. Therefore, from now on we shall focus on files of
type l, and, consequently, we have two one-dimensional processes, {yl(t), 0 ≤ t ≤ T } and
{nY l

t , 0 ≤ t ≤ T }, where we recall that nY l
t and yl(t) are the lth components of nYt and y(t).

For a real function x(t), we define

‖x(t)‖[t1,t2] := sup
t∈[t1,t2]

{|x(t)|} and ‖x(t)‖T := sup
t∈[0,T ]

{|x(t)|}.

Lemma 2. Consider a Poisson process with the counter nAt and intensitynλ. Then P{‖nAt/n−
λt‖T ≥ ε} ≤ λT /nε2.

Proof. Clearly, for all T > 0, nM(t) := nAt −nλt gives a martingale with right-continuous
trajectories (with the natural filtration) and the index interval [0, T ]. By the well-known Doob’s
Lp-inequality [23, Chapter 2, Theorem 1.7],

P

{∥∥∥∥
nM(t)

n

∥∥∥∥
T

≥ ε

}
= P

{
sup

0≤t≤T

|nM(t)| ≥ nε
}

≤ E[nM(T )2]
(nε)2 = λT

nε2 ,

as required.

Lemma 3. Consider files of type l, that is, the lth ‘queue’ on the first subinterval. Then
P{‖nY l

t /n − yl(t)‖T1 ≥ ε} ≤ D1 := 72T̄ γ /nε2. Here we recall that the notation iµl, γ , and
T̄ have been introduced in Section 2.

Proof. Without generating confusion, throughout this proof, we omit the index for the
underlying ‘queue’. Also, without loss of generality (see also Remark 1 below), we assume
that 1µ > 0. Define nX̃t = nY0 + nAt − nSt , where nSt is a Poisson process with intensity
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n 1µ, and nAt is as in Lemma 2. Of course, nX̃t ,
nSt , and nAt are defined on the same

probability space and independent by assumption. Define also nX̂t = ∫ t

0 1{nYs− = 0} d nSs.

Then it follows that nX̂t is nondecreasing and such that
∫ ∞

0 1{nYt > 0} d nX̂t = 0. In this
way we can write nYt = nX̃t + nX̂t in the form of the one-dimensional Skorokhod problem,
where nX̃t is the free process and nX̂t is the unused capacity process. This representation
was also adopted in [14]. See also [16] and [24, Chapter 9]. The solution to this one-
dimensional Skorokhod problem is well known (see [14, Appendix A]), so that we have
nYt = ϕ(nX̃t ) = nX̃t + sup0≤s≤t [−(nX̃s ∧ 0)]. Here, ϕ is a Lipschitz mapping with Lipschitz
constant 2 on D[0, ∞) in the following sense: for all xs, ys ∈ D[0, ∞),

‖ϕ(xt ) − ϕ(yt )‖T1 =
∥∥∥xt + sup

0≤s≤t

[−(xs ∧ 0)] − yt − sup
0≤s≤t

[−(ys ∧ 0)]
∥∥∥

T1

≤ ‖xt − yt‖T1 +
∥∥∥ sup

0≤s≤t

[−(xs ∧ 0)] − sup
0≤s≤t

[−(ys ∧ 0)]
∥∥∥

T1
,

where the second term in the last expression is clearly not larger than ‖xt −yt‖T1 . Furthermore,
the mapping ϕ is homogeneous in the sense that, for any xs ∈ D[0, ∞), ϕ(nxs) = nϕ(xs)

(see [14, Appendix A]). Define x̃(t) = y(0) + (λ − 1µ)t , the deterministic analogue of nX̃t .
We can write down the Skorokhod problem for the fluid model as well. Then we have

P

{∥∥∥∥
nYt

n
− y(t)

∥∥∥∥
T1

≥ ε

}
= P

{∥∥∥∥ϕ

(
nX̃t

n

)
− ϕ(x̃(t))

∥∥∥∥
T1

≥ ε

}

≤ P

{
2

∥∥∥∥
nX̃t

n
− x̃(t)

∥∥∥∥
T1

≥ ε

}

= P

{∥∥∥∥
nX̃t

n
− x̃(t)

∥∥∥∥
T1

≥ ε

2

}

≤ P

{∥∥∥∥
nY0

n
− y(0)

∥∥∥∥
T1

≥ ε

6

}
+ P

{∥∥∥∥
nAt

n
− λt

∥∥∥∥
T1

≥ ε

6

}

+ P

{∥∥∥∥
nSt

n
− 1µt

∥∥∥∥
T1

≥ ε

6

}
(4)

≤ 36T λ

nε2 + 36T 1µ

nε2 (see Lemma 2) (5)

≤ 72T̄ γ

nε2 ,

where the first equality and inequality are due to the homogeneity and Lipschitz continuity of
ϕ, and the last inequality follows from the definitions of γ and T̄ . Note also that the first term
in (4) vanishes, because nY0 = nY0 = ny(0) by definition (see Section 1).

Remark 1. In the proof of Lemma 3, it was assumed that 1µl > 0. Even if this fails to hold,
the same result still holds, as then the term in (5) will be absent.

Corollary 1. For all i = 1, . . . , N and l = 1, . . . , L,

P

{∥∥∥∥
nY l

t

n
− yl(t)

∥∥∥∥[Ti−1,Ti ]
≥ ε

}
≤ iD1.
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Proof. Clearly, the statement holds for i = 1. Now arguing similarly as in the proof of
Lemma 3, we have, for files of type l on the second subinterval, P{‖nY l

t /n − yl(t)‖[T1,T2] ≥ ε} ≤
D1 +D1 = 2D1, where the extra D1 comes from the first term in (4). Here D1 is accumulated
as we consider future intervals, and the statement thus follows. The uniformity in l follows
from the universal maximality of γ and T̄ , defined in the statement of Lemma 3.

Proof of Theorem 1. According to Corollary 1, we have

P

{∥∥∥∥
nY l

t

n
− yl(t)

∥∥∥∥
T

≥ ε

}
≤

N∑
i=1

P

{∥∥∥∥
nY l

t

n
− yl(t)

∥∥∥∥[Ti−1,Ti ]
≥ ε

}
≤ D1N(1 + N)

2
. (6)

Note that the above estimate is uniform in l. Now

|nŴ − ŵ| =
∣∣∣∣EnY0

[∫ T

0

L∑
l=1

nY l
t

n

]
dt −

∫ T

0

L∑
l=1

yl(t) dt

∣∣∣∣

≤
L∑

l=1

EnY0

[∫ T

0

∣∣∣∣
nY l

t

n
− yl(t)

∣∣∣∣ dt

]

=
L∑

l=1

∫ T

0
EnY0

[∣∣∣∣
nY l

t

n
− yl(t)

∣∣∣∣
]

dt

=
L∑

l=1

∫ T

0

∫ ∞

0
PnY0

{∣∣∣∣
nY l

t

n
− yl(t)

∣∣∣∣ ≥ ε

}
dε dt

≤
L∑

l=1

∫ T

0

{∫ 6
√

N(N+1)γ T̄ /
√

n

0
dε

+
∫ ∞

6
√

N(N+1)γ T̄ /
√

n

36N(N + 1)γ T̄

nε2 dε

}
dt (see expression (6))

= T L√
n

{12
√

N(N + 1)γ T̄ },
where the interchange of integrals is by Fubini’s theorem. Note that in the inequality lines, we
set the lower limit and upper limit of the two integrals to be C/

√
n in order to get the fastest

possible convergence of order O(1/
√

n), and set C = 6
√

N(N + 1)γ T̄ for the same reason.

A.3. Proof of Theorem 2

Let us introduce some additional notation to be used in this subsection. We shall define ŵl and
nŴ l to be the lth summands of ŵ and nŴ , i.e. ŵl = ∫ T

0 yl(t) dt and nŴ l = EY l
0
[∫ T

0 (nY l
t /n) dt].

Again, the indications of control policies are omitted, as they are fixed. Define, for t < T ,
wl(x, t) = ∫ T

t
ỹl(s) ds, where ỹl(t) = x, dỹl/ds = λl − u∗

l (s)µl, while wl(x, t) ≡ 0 for
t ≥ T . We shall modify wl such that it becomes null for all its state arguments larger than K,

i.e. we define vl(x, t) := wl(x, t) 1{x ≤ K}. In this subsection we are in the framework of
Theorem 2.

Lemma 4. There exist an n-independent positive constant Cl and positive function �l such
that, for any ε > 0,

PnY l
0

{∥∥∥∥
nY l

t

n
− yl(t)

∥∥∥∥
T

≥ ε

}
≤ Cle

−�l(ε)n.
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Proof. In this proof, it is convenient to omit the subscript indicating the initial position, so
that we simply write P instead of PnY l

0
. Under the tracking policy (see also Lemma 1), the

process nY l
t is stationary on subintervals [0, T1), . . . , [TN−1, T ]. Moreover, on each subinterval,

the process has arrival and potential services which are both renewal processes. Consider now
the first subinterval. By Theorem 3.1 of [4] we have an n-independent positive constant 1Cl

and positive function 1�l such that

P

{∥∥∥∥
nY l

t

n
− yl(t)

∥∥∥∥
T1

≥ ε

}
≤ 1Cle

−1�l(ε)n. (7)

In particular, we have

P

{∣∣∣∣
nY l

T1

n
− yl(T1)

∣∣∣∣ ≥ ε

}
≤ 1Cle

−1�l(ε)n.

Furthermore, Chen [4] showed that, for nỸ l
t := Y l

nt /n and nỸ0 := nY0,

P{‖nỸ l
t − yl(t)‖T1 ≥ ε} ≤ 1Cle

−1�l(ε)n.

However, Mandelbaum and Pats [14, Section 4.4] showed that nỸ l
t = nY l

t /n almost surely (see
also [6, Section 2.5.3]), and this thus justifies and validates the application of [4, Theorem 3.1]
here.

Keeping in mind inequality (7), if we take nYT1 as the initial state of the process on the
next subinterval, then the above reasoning (repeatedly based on [4, Theorem 3.1]) can again
be applied, and so on. Eventually, there will be N positive 1Cl-like constants and 1�l(ε)-like
functions. Finally, we have

P

{∥∥∥∥
nYt

n
− y(t)

∥∥∥∥
T

≥ ε

}
≤

N∑
i=1

P

{∥∥∥∥
nYt

n
− y(t)

∥∥∥∥[Ti−1,Ti ]
≥ ε

}

≤
N∑

i=1

iCle
−i�l(ε)n

≤ Cle
−�l(ε)n,

where �l(ε) := mini=1,...,N {i�l(ε)} and Cl := ∑N
i=1

iCl .

Remark 2. In Lemma 4, the exact expressions for the constants Cl and the functions �l for all
l = 1, . . . , L can be obtained by examining the proofs of [4, Theorems 2.2, 2.3, 3.1]. In fact,
we can check from [4, p. 813] that, for all l = 1, . . . , L,

∫ ∞
0 Cle−�l(K+x/n−y)nx dx ≤ O(1).

However, the obtained expressions are much more complicated than those obtained in (6), and
are difficult to use in the proof of Theorem 1. On the other hand, the exponentially fast decrease
is needed in the proof of Theorem 2 below.

Lemma 5. For all l = 1, . . . , L, the following assertions hold on [0, T ).

(a) wl solves the following equation of dynamic programming type, or the so-called Poisson
equation:

−∂wl(ỹl, t)

∂t
= ỹl + ∂wl(ỹl, t)

∂ỹl

dỹl(t)

dt
(8)

with boundary condition wl(ỹl, T ) = 0. Here we take ∂wl(ỹl, t)/∂t at Ti, i = 0, . . . ,

N − 1, as the right derivatives. In particular, ŵl = wl(Y l
0, 0).
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(b) There exists an R > 0 so that

|wl(ỹl, t)|,
∣∣∣∣∂wl(ỹl, t)

∂ỹl

∣∣∣∣,
∣∣∣∣∂wl(ỹl, t)

∂t

∣∣∣∣, and

∣∣∣∣∂
2wl(ỹl, t)

∂ỹ2
l

∣∣∣∣
are all bounded by R on [0, K] × [0, T ), uniformly in l = 1, . . . , L.

(c) |vl(ỹl, t)| is bounded and has a bounded partial derivative |∂vl(ỹl, t)/∂t |. Here we take
∂vl(ỹl, t)/∂t at Ti, i = 0, . . . , N − 1, as the right derivatives.

Remark 3. Here we recall that, for all l = 1, . . . , L, ỹl(t) defined at the beginning of this
subsection differs from yl(t) in that ỹi (t) can be negative while yl(t) cannot. In other words,
on [0, T ), yl(t) = ỹl(t) under Assumption 1. This explains the equality of ŵl = wl(Y l

0, 0) in
Lemma 5(a).

Proof of Lemma 5. We shall omit the index l = 1, . . . , L for brevity, and, thus, simply write
w instead of wl , and so on throughout this proof. Hopefully, this abuse of notation will not
lead to confusion. Clearly, all the assertions hold trivially for the case of only one subinterval,
i.e. N = 1. Moreover, it is not hard to see that parts (b) and (c) follow from part (a) and the
definition of vl. Therefore, let us verify part (a) only for the case in which N ≥ 2, by induction.

Consider the case in which N = 2, i.e. the case of only two subintervals and, thus, T2 = T .

Let us calculate w(y, t) and its partial derivatives. Suppose that t ∈ [T1, T ). Then we have
ỹt = y and ỹs = y + (s − t)(λ − 2µ) if s ∈ [t, T ), leading to

w(y, t) =
∫ T

t

(y + (s − t)(λ − 2µ)) ds

= y(T − t) + (λ − 2µ)
T 2 − t2

2
− (λ − 2µ)t (T − t)

and

∂w

∂y
= T − t,

∂2w

∂y2 = 0,
∂w

∂t
= −y − (λ − 2µ)(T − t),

∂2w

∂t2 = λ − 2µ.

Suppose that t ∈ [0, T1). Then we have ỹt = y and ỹs = y + (s − t)(λ − 1µ) if s ∈ [t, T1),

and ỹs = y + (T1 − t)(λ − 1µ) + (s − T1)(λ − 2µ) if s ∈ [T1, T ), leading to

w(y, t) =
∫ T1

t

(y + (s − t)(λ − 1µ)) ds

+
∫ T

T1

(y + (T1 − t)(λ − 1µ) + (s − T1)(λ − 2µ)) ds

= y(T − t) + (λ − 1µ)
T 2

1 − t2

2
− (λ − 1µ)(tT1 − t2)

+ (T1 − t)(T − T1)(λ − 1µ) + (λ − 2µ)
T 2 − T 2

1

2
− (λ − 2µ)T1(T − T1)

and

∂w

∂y
= T − t,

∂2w

∂y2 = 0,
∂w

∂t
= −y − (λ − 1µ)(T − t),

∂2w

∂t2 = λ − 1µ.
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Now, for the case in which N = 2, part (a) follows immediately from the direct substitution of
the corresponding expressions obtained above into both sides of (8).

Suppose that part (a) holds for N = k. Now let us verify that part (a) also holds for the
case in which N = k + 1. Suppose that t ∈ [T1, T ). Then, as there are only k subintervals on
[T1, T ), part (a) follows from the inductive supposition. Suppose that t ∈ [0, T1). Then

w(y, t) =
∫ T1

t

y + (s − t)(λ − 1µ) ds

+
∫ T

T1

(y + (T1 − t)(λ − 1µ) +
N∑

i=2

(λ − iµ)(s − T1) 1{s ∈ [Ti−1, Ti)}) ds,

based on which, direct calculations result in

∂w

∂y
= T1 − t + (T − T1) = T − t

and
∂w

∂t
= −y + (−t − (T1 − t − t))(λ − 1µ) − (T − T1)(λ − 1µ)

= −y − (λ − 1µ)(T − t)

= −
(

y + ∂w

∂y

dy

dt

)
.

Thus, part (a) has been proved by induction.

Since U∗ is nonstationary, the resulting process is nonstationary, and we shall apply the
extended generator L̃, whose definition can be found in, for example, [12, Chapter 1]. Here,
we refer the reader to the references for this definition to avoid extra definitions and notation.

Lemma 6. For all l = 1, . . . , L, vl is in the domain of L̃, with the form

L̃vl(j, t) = ∂vl(j, t)

∂t
+

∑
k∈Z+

lqj,k(t)v
l(k, t),

where [lqjk(t)]j,k∈Z+ gives the Q-matrix of the continuous-time Markov chain corresponding to
the lth queue (recall the standing assumption of independence made in Section 1, the definition
of the tracking policy U∗, and Lemma 1).

Proof. Given Lemma 5, this statement directly follows from the proof of [12, Proposi-
tion 14.4].

Proof of Theorem 2. Define λl(t) := λl = lqj,j+1(t) ≤ λ and µl(t) := U∗
l (nY l, t)µl =

lqnY l ,nY l−1(t) ≤ µ, where lq0,−1(t) = 0. For simplicity, in what follows, unless necessary, we
shall not indicate the control policy, and omit the index l = 1, . . . , L corresponding to the type
of file. For example, for an arbitrarily fixed l = 1, . . . , L, we shall write nYt for nY l

t , and so on.
Owing to Lemma 6 and [12, Lemma 2.1], the following Dynkin’s formula is valid:

0 = EnY0

[
v

(
nYT

n
, T

)]
= v

(
nY0

n
, 0

)
+ EnY0

[∫ T

0
L̃v

(
nYt

n
, t

)
dt

]
. (9)
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The first equality above follows from the definition of v given at the beginning of this subsection.
Adding the finite expectation of EnY0 [

∫ T

0 (nYt/n) dt] to the both sides of (9), some arrangements
then lead to∣∣∣∣nŴ − v

(
nY0

n
, 0

)∣∣∣∣ =
∣∣∣∣EnY0

[∫ T

0

(
nYt

n
+ L̃v

(
nYt

n
, t

))
dt

]∣∣∣∣
≤ EnY0

[∫ T

0

∣∣∣∣
(

nYt

n
+ L̃v

(
nYt

n
, t

))∣∣∣∣ 1{0 < nYt < nK} dt

]

+ EnY0

[∫ T

0

∣∣∣∣
(

nYt

n
+ L̃v

(
nYt

n
, t

))∣∣∣∣ 1{nYt = 0} dt

]

+ EnY0

[∫ T

0

∣∣∣∣
(

nYt

n
+ L̃v

(
nYt

n
, t

))∣∣∣∣ 1{nYt ≥ nK} dt

]

=: S1 + S2 + S3. (10)

This is justified by the fact that EnY0 [
∫ T

0 (nYt/n) dt] is bounded by a function of nY0 < ∞.
Recall that the scaled queue is stochastically dominated by a Poisson process with intensity nλ.
In addition, recall that ŵ = w(Y0, 0) = v(Y0, 0) (see Lemma 5, Remark 3, and Assumption 1).
Note also that the fact that nYt ∈ Z+ will often not be indicated explicitly.

Next let us analyze the three terms on the right-hand side (RHS) of (10) case by case.
Case (i): estimating S1. Clearly, on the set {0 < nYt < nK}, we have the integrand in the

above expectation to be of the form∣∣∣∣
nYt

n
+ ∂v(nYt/n, t)

∂t
+ nλv

(
nYt + 1

n
, t

)
+ nµ(t)v

(
nYt − 1

n
, t

)
− n(λ + µ(t))v

(
nYt

n
, t

)∣∣∣∣
=

∣∣∣∣
nYt

n
+ ∂v(nYt/n, t)

∂t
+ nλ

(
v

(
nYt + 1

n
, t

)
− v

(
nYt

n
, t

))

+ nµ(t)

(
v

(
nYt − 1

n
, t

)
− v

(
nYt

n
, t

))∣∣∣∣. (11)

Rewriting nYt/n according to (8), and using the fact that w = v for 0 < nYt < nY, which is
due to the definition of v given at the beginning of this subsection, we find that

RHS of (11) =
∣∣∣∣nλ

(
v

(
nYt + 1

n
, t

)
− v

(
nYt

n
, t

))
+ nµ(t)

(
v

(
nYt − 1

n
, t

)
− v

(
nYt

n
, t

))

− (λ − µ(t))
∂v(nYt/n, t)

∂y

∣∣∣∣.
As a result, we have

EnY0

[∫ T

0

∣∣∣∣
(

nYt

n
+ L̃v

(
nYt

n
, t

))∣∣∣∣ 1{0 < nYt < nK} dt

]

≤ EnY0

[∫ T

0

{
λ

∣∣∣∣n
(

v

(
nYt + 1

n
, t

)
− v

(
nYt

n
, t

))
− ∂v(nYt/n, t)

∂y

∣∣∣∣
+ µ

∣∣∣∣∂v(nYt/n, t)

∂y
− n

(
v

(
nYt

n
, t

)
− v

(
nYt − 1

n
, t

))∣∣∣∣ 1{0 < nYt < nK}
}

dt

]

≤ (λ + µ)RT

2n
,
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where the last inequality follows by applying Taylor’s theorem to v(nYt/n,t)−v((nYt − 1)/n,t)

and v((nYt + 1)/n, t) − v(nYt/n, t), bounding the indicator by 1, and using Lemma 5.
Case (ii): estimating S2. By Lemma 6 and the substitution of nYt/n = 0, we have

EnY0

[∫ T

0

∣∣∣∣
(

nYt

n
+ L̃v

(
nYt

n
, t

))∣∣∣∣ 1{nYt = 0} dt

]

= EnY0

[∫ T

0

∣∣∣∣
(

∂v(0, t)

∂t
+ nλv

(
1

n
, t

)
− nλv(0, t)

)∣∣∣∣ 1{nYt = 0} dt

]

≤ R(1 + 2nλ) EnY0

[∫ T

0
1{nYt = 0} dt

]

= R(1 + 2nλ) EnY0 [time spent by nYt at 0 up to time T ]
= R(1 + 2nλ) EnY0

[
time spent by

nYt

n
at 0 up to time T

]

= R(1 + 2nλ) EnY0

[
time spent by

nYt

n
at 0 up to time T

∣∣∣∣
nYt

n
visits 0 up to time T

]

× PnY0

{
nYt

n
visits 0 up to time T

}

≤ R(1 + 2nλ)T PnY0

{∥∥∥∥
nYt

n
− y(t)

∥∥∥∥
T

≥ y

}

≤ R(1 + 2nλ)T Cle
−�l(y)n, (12)

where the last inequality follows from Lemma 4. Furthermore, we clearly see that the upper
bound for PnY0{‖nYt/n − y(t)‖T ≥ y} based on (6), which converges to 0 as fast as O(1/n),
is not enough for our purpose here.

Case (iii): estimating S3. By the definition of v (given at the beginning of this subsection)
and Lemma 6, we have

EnY0

[∫ T

0

∣∣∣∣
(

nYt

n
+ L̃v

(
nYt

n
, t

))∣∣∣∣ 1{nYt ≥ nK} dt

]

= EnY0

[∫ T

0

∣∣∣∣
(

K + ∂v(K, t)

∂t
+ nµ(t)v

(
nK − 1

n
, t

)
− n(λ + µ(t))v(K, t)

)∣∣∣∣
× 1{nYt = nK} dt

]

+ EnY0

[∫ T

0

∣∣∣∣K + 1

n
+ nµ(t)v(K, t)

∣∣∣∣ 1{nYt = nK + 1} dt

]

+ EnY0

[∫ T

0

nYt

n
1{nYt ≥ nK + 2} dt

]

=: S31 + S32 + S33.

Subcase (iii.1): estimating S31. We have

EnY0

[∫ T

0

∣∣∣∣
(
K+ ∂v(K, t)

∂t
+ nµ(t)v

(
nK − 1

n
, t

)
− n(λ + µ(t))v(K, t)

)∣∣∣∣ 1{nYt = nK} dt

]

≤ (K + R + nλR + 2nµR) EnY0

[∫ T

0
1
{

nYt

n
= K

}
ds

]
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= (K + R + nλR + 2nµR) EnY0

[
time spent by

nYt

n
at K up to time T

]

= (K + R + nλR + 2nµR)

× EnY0

[
time spent by

nYt

n
at K up to time T

∣∣∣∣
nYt

n
visits K up to time T

]

× PnY0

{
nYt

n
visits K up to time T

}

≤ (Y + R + nλR + 2nµR)T PnY0

{∥∥∥∥
nYt

n
− y(t)

∥∥∥∥
T

≥ K − y

}

≤ (K + R + nλR + 2nµR)T Cle
−�l(K−y)n,

where the last inequality follows from Lemma 4.
Subcase (iii.2): estimating S32. Similarly to how we treated subcase (iii.1), we have

EnY0

[∫ T

0

∣∣∣∣K + 1

n
+ nµ(t)v(K, t)

∣∣∣∣ 1{nYt = nK + 1} dt

]

≤
(

K + 1

n
+ nµR

)
EnY0

[∫ T

0
1{nYt = nK + 1} dt

]

=
(

K + 1

n
+ nµR

)
EnY0

[
time spent by

nYt

n
at K + 1

n
up to time T

]

=
(

K + 1

n
+ nµR

)

× EnY0

[
time spent by

nYt

n
at K + 1

n
up to time T

∣∣∣∣
nYt

n
visits K up to time T

]

× PnY0

{
nYt

n
visits K up to time T

}

≤
(

K + 1

n
+ nµR

)
T PnY0

{∥∥∥∥
nYt

n
− y(t)

∥∥∥∥
T

≥ K − y

}

≤
(

K + 1

n
+ nµR

)
T Cle

−�l(K−y)n,

where the last equality follows from that fact that nYt/n visits K + 1/n up to time T only if
nYt/n visits K up to time T , and the last inequality follows from Lemma 4.

Subcase (iii.3): estimating S33. We have

EnY0

[∫ T

0

nYt

n
1{nYt ≥ nK + 2} dt

]

= EnY0

[∫ T

0

∞∑
j=2

(
K + j

n

)
1{nYt = nK + j} dt

]

=
∞∑

j=2

EnY0

[∫ T

0
K 1{nYt = nK + j} dt

]
+

∞∑
j=2

EnY0

[∫ T

0

j

n
1{nYt = K + j} dt

]
,
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where, similarly to subcases (iii.1) and (iii.2) we have

∞∑
j=2

EnY0

[∫ T

0
K 1{nYt = nK + j} dt

]

= K EnY0

[∫ T

0
1{nYt ≥ nK + 2} dt

]

= K EnY0

[
time spend by

nYt

n
on

{
K + 2

n
, K + 3

n
, . . .

}
up to time T

]

= K EnY0

[
time spend by

nYt

n
on

{
K + 2

n
, K + 3

n
, . . .

}

up to time T

∣∣∣∣
nYt

n
visits K up to time T

]

× PnY0

{
nYt

n
visits K up to time T

}

≤ KT Cle
−�l(K−y)n

and
∞∑

j=2

EnY0

[∫ T

0

j

n
1{nYt = K + j} dt

]

= 1

n

∞∑
j=2

j EnY0

[
time spent by

nYt

n
at K + j up to time T

∣∣∣∣
nYt

n
visits K + j

n
up to time T

]

× PnY0

{
nYt

n
visits K + j

n
up to time T

}

≤ T

n

∞∑
j=2

j PnY0

{∥∥∥∥
nYt

n
− y(t)

∥∥∥∥
T

≥ K + j

n
− y

}

≤ T

n

∞∑
j=2

jCle
−�(K+j/n+y)n

≤ O

(
1

n

)
,

where the last inequality follows from Remark 2. Hence,

EnY0

[∫ T

0

nYt

n
1{nYt ≥ nK + 2} dt

]
≤ O

(
1

n

)
.

Now the above estimates together with (10), (11), and (12) result in |nŴ l − ŵl | ≤ O(1/n).
Repeating the above reasoning L − 1 times and adding the resulting upper boundary estimates
together will lead to |nŴ − ŵ| ≤ O(1/n), as required.
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