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ON ZERO-DIMENSIONALITY AND FRAGMENTED RINGS

JIM COYKENDALL, DAVID E. DOBBS AND BERNADETTE MULLINS

A commutative ring R is said to be fragmented if each nonunit of R is divisible by all
positive integral powers of some corresponding nonunit of R. It is shown that each
fragmented ring which contains a nonunit non-zero-divisor has (Krull) dimension oo.
We consider the interplay between fragmented rings and both the atomic and the anti-
matter rings. After developing some results concerning idempotents and nilpotents in
fragmented rings, along with some relevant examples, we use the "fragmented" and
"locally fragmented" concepts to obtain new characterisations of zero-dimensional
rings, von Neumann regular rings, finite products of fields, and fields.

1. INTRODUCTION

All rings considered below are commutative with identity. As in [6], a ring R is said to
be fragmented if for each nonunit r € R, there exists at least one nonunit s € R such that

oo

r £ (1 Rsn. The theory of fragmented rings was initiated in the context of integral do-
n=l

mains in [7], with special attention to the semi-quasilocal case and issues involving prime
spectra and (Krull) dimension. The fragmented-theoretic arena was broadened to rings
possibly with zero-divisors, as above, in [6], which also pursued factorisation-theoretic
connections. In the present work, we first observe (Theorem 2.1) that any fragmented
ring possessing a nonunit non-zero-divisor must have infinite dimension, generalising [7,
Corollary 2.8] from the quasilocal integral domain case. Thus, a fragmented ring either
is infinite-dimensional or has the property that each of its nonunits is a zero-divisor (the
latter option holding for any zero-dimensional ring). Although zero-dimensional integral
domains are fields (and hence do not sustain interesting ideal theory), zero-dimensional
fragmented rings do relate well to several central concepts in ring theory and hence form
the focus for much of this work. In particular, Section 4 uses the "fragmented" concept
to develop new characterisations of zero-dimensional rings, von Neumann regular rings,
finite products of fields, and fields (see Theorem 4.2 and Corollaries 4.3, 4.4 and 4.8).
As a byproduct, we also find contact with connected rings (see Proposition 4.7) and
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Noetherian rings (Corollary 4.4). The semi-quasilocal case receives emphasis in Theo-
rem 4.9, which establishes that a semi-quasilocal ring is von Neuman regular if and only
if it is zero-dimensional and fragmented. Example 4.10 shows, however, that a zero-
dimensional fragmented ring need not be von Neumann regular (that is, it may have a
nonzero nilpotent element).

Prior to the applications mentioned above, Section 3 is devoted to an extensive study
of atoms, idempotents and nilpotents in fragmented rings. We exhibit interplay between
"fragmented" and factorisation-theoretic concepts such as "atomic" (in the sense of [1])
and "antimatter" (in the sense of [5, 6]). For instance, Theorem 3.5 establishes that
a zero-dimensional ring R is fragmented if and only if each nonunit of R is divisible by
some nonunit idempotent of R; and Proposition 3.11 establishes that the zero-dimensional
fragmented atomic rings are just the finite products of fields. Also noteworthy in Section
3 are examples of a fragmented ring containing a nonzero nilpotent element (in Example
3.2); and a fragmented integral domain with infinitely many maximal ideals (Example
3.8).

For a ring A, we denote the set of units of A by U(A); the set of zero-divisors of A

by Z(A); the Jacobson radical of A by J(A); the nilradical of A by Nil (A); the prime
spectrum of A by Spec (A); the Krull dimension of A by dim (A); the set of maximal ideals
of A by Max (A); and the set of minimal ideals of A by Min (A). It will be convenient to
decree that the zero ring is zero-dimensional. Additional notation and background will
be introduced as needed. Any unexplained material is standard, as in [8, 9, 10].

2. T H E DIMENSIONAL DICHOTOMY

It was shown in [7, Corollary 2.8] that any quasilocal fragmented integral domain
either is a field (that is, has dimension 0) or has dimension oo. The main result of
this section generalises this result by eliminating both the "quasilocal" and the "integral
domain" restrictions, at the cost of adding an assumption about zero-divisors.

THEOREM 2 . 1 . Let R be a nonzero fragmented ring which contains a nonunit
non-zero-divisor x. Then some maximal ideal M of R contains a strictly increasing chain
{Pn} of prime ideals of R such that x € Pn for each n. In particular, the height of M in
R is oo, and so dim (R) = oo.

P R O O F : (Sketch) This result was established in [4, Theorem 2.3] for the case in
which R is an integral domain. The proof of that result and the proofs of the lemmas
leading up to it carry over to the present situation because of the following observations.

oo

If Xi := x and xn S fl Rxn+\ with xn £ R for each n ^ 1, then each xn inherits from

x the property of being a nonunit non-zero-divisor. In particular, any product of powers

of the Xj is also a non-zero-divisor, thus permitting the "By cancellation" step near the

end of the proof of [4, Lemma 2.2]. D
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The next result follows immediately from Theorem 2.1.

COROLLARY 2 . 2 . Let R be a fragmented ring. Then at least one of the following

conditions holds:

(i) Each nonunit of R is a zero-divisor of R;

(ii) dim {R) = oo.

Any zero-dimensional ring satisfies condition (i) in Corollary 2.2 [9, Theorem 91].
We do not know of any fragmented ring which has finite positive (Krull) dimension. (Of
course, any such example would satisfy condition (i).) Apart from any such rings, other
fragmented rings R must satisfy the dichotomy referred to in the title of the section:
either dim (R) = 0 or dim (R) = oo.

3. ON IDEMPOTENTS, NILPOTENTS AND ATOMS IN FRAGMENTED RINGS

Recall from [6] that if R is a ring and r € R\U(R), then r is said to fragment (in

R) (or is said to be a fragmented element of R) if there exists s € R\U(R) such that
oo

r € f") Rsn. Of course, a ring R is a fragmented ring if and only if each of its nonunits is
n=l

fragmented. We begin with an elementary result which collects some useful information.

P R O P O S I T I O N 3 . 1 .

(a) Ifej^l is an idempotent element of a ring R, then e fragments in R.
(b) A fragmented element need not be idempotent.
(c) Each multiple of a fragmented element fragments. In particular, ife / 1 is

an idempotent of a ring R, then each element of the ideal Re fragments in
R.

(d) A divisor of a fragmented element need not fragment.

(e) There is no logical connection between the concepts of "fragmented element
of R" and "nilpotent element of R".

PROOF:

(a) For each n ^ 1, e = le" € Ren.

(b) In R = Z/12Z, r : - 3 + 12Z is a nonunit which fragments since r e fl Rrn.
n=l

Of course, r is not idempotent because 9 ^ 3 (mod 12). (In this example, R does have

nontrivial idempotents, namely 4 + 12Z and 9 + 12Z, which fragment by (a).)
(c) If r, s € R satisfy r e C\ Rsn and t € R, then tr € Rr C Q Rsn.

n=l n=l

(d) In R = Z/12Z, 6 + 12Z fragments (either by direct calculation or by combining
(b) and (c)), although its divisor 2 + 12Z does not fragment in R. (The last assertion can
be verified here by exhaustive calculation. A quicker, more conceptual proof is available
using the "very stong atom" idea which appears later in this section.)
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(e) In the ring Z/12Z, 3+12Z is a fragmented element which is not nilpotent, 2+12Z
is a non-fragmented nonunit which is not nilpotent, and 6 + 12Z is a fragmented element
which is nilpotent; and 2 + 4Z is a non-fragmented nonunit which is nilpotent in the ring
Z/4Z. D

In view of Proposition 3.1 (e), it seems reasonable to ask whether a fragmented
ring can contain a nonzero nilpotent element. The answer is in the negative for rings
of the form Z/nZ. Indeed, by [6, Proposition 17], Z/nZ is fragmented if and only if n

is a product of pairwise distinct primes, in which case Z/nZ is isomorphic to a product
of fields and hence contains no nonzero nilpotents. Nevertheless, Example 3.2 answers
the general question in the affirmative. A zero-dimensional example to the same effect
appears in Example 4.10 below.

EXAMPLE 3.2. There exists a fragmented ring which contains a nonzero nilpotent ele-

ment.

PROOF: Consider a valuation domain V (constructed, for instance, as in [11, Corol-
lary 3.6]) whose prime spectrum is the countable set {Pn : n ^ 0} U {M}, where

0 = Po C Pi C • •• C Pn C • • • C M.

Choose x € P\\PQ, and set R := V/(x2). We claim that R has the asserted properties.
First, note that V is fragmented, by [7, Corollary 2.6], since M is unbranched in V.
As (z2) CM — J{V), it follows from [6, p.223] that R is also fragmented. Moreover,
x + (x2) £ R is nilpotent (since its square is 0) and nonzero (since a; is a nonunit of V).
This establishes the claim and completes the proof. (Observe that dim (R) = oo, and so
this example does not shed light on the question of whether there exists a fragmented
ring of finite positive dimension which satisfies condition (i) in Corollary 2.2.) D

We begin our focus on the zero-dimensional case with the following straightforward

result.

PROPOSITION 3 . 3 . Let R be a zero-dimensional ring. Then:

(a) For each r 6 R, there exists n ^ 1 such that r" = ue for some u € U{R)
and some idempotent e € R.

(b) For each r € R\U(R), there exists n ^ 1 such that rn fragments in R.

(c) If R is nonzero and not quasilocal, then some nonzero element of R frag-

ments in R.

PROOF:

(a) According to [8, Theorem 3.2], the conclusion characterises ^-regularity in the

class of total quotient rings. The conclusion follows since any zero-dimensional ring is a

7r-regular total quotient ring (see [8, Theorem 3.1]).

(b) Combine (a) with Proposition 3.1 (a), (c).
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(c) The hypothesis allow us to choose M G Max (R) and to conclude that Nil (R) c
M. Pick r G M\ Nil (R). By (b), r" fragments for some n ^ 1; moreover, r n ^ 0 since r
is not nilpotent. D

We next show that, in some sense, parts (b) and (c) of Proposition 3.3 are best
possible.

R E M A R K 3.4. (a) One may verify that R := Z/12Z is an example of a zero-dimensional
ring in which r2 fragments for every r € R\U(R), although [6, Proposition 17] shows that
R is not a fragmented ring since 12 is not a square-free integer. A more trivial example
of this phenomenon is provided by the ring Z/4Z.

(b) Proposition 3.3 (c) fails without the hypothesis that R is not quasilocal. To
see this, suppose that a nonzero ring R is zero-dimensional and quasilocal. Then R has
a unique prime ideal, and so each nonunit of R is nilpotent. It follows easily that no
nonzero element of R is fragmented.

Continuing the theme in Proposition 3.3 (a), we next characterise fragmented rings
in the class of zero-dimensional rings.

THEOREM 3 . 5 . Let R be a zero-dimensional ring. Then the following conditions
are equivalent:

(1) Ifr e R\U(R), then r is divisible by some idempotent e ^ 1 of R.

(2) R is a fragmented ring.

PROOF:

(1) =>• (2): We show that each r G R\U(R) fragments. By (1), r = se for some
s G R and some idempotent e ^ 1 of R. The conclusion now follows by combining parts
(a) and (c) of Proposition 3.1.

(2) => (1): Let r G R\U(R). By (2), r e H Rsn for some s G R\U(R). By
n=l

Proposition 3.3 (a), there exists m ^ 1 such that sm — ue for some u G U(R) and some
idempotent e € R. As s is a nonunit of R, so is e; that is, e ^ 1. Since r = tsm for some
t e R, we have that r = (tu)e is divisible in R by e. D

Our focus now sharpens to the context of von Neumann regular rings. Recall that
a ring R is said to be von Neumann regular if for each a € R, there exists b in R such
that a = a2b; equivalently, if RM is a field for each M € Max (R) (see [2, Exercise 9,
page 138]). Some other characterisations of von Neumann regularity are more obviously
germane to the present work. Specifically, a ring R is von Neumann regular if and only if
each principal ideal of R can be generated by an idempotent; equivalently, if each r e R
can be expressed in the form r = ue for some u G U(R) and some idempotent e of R.
Most telling for our purposes is the following characterisation: a ring R is von Neumann
regular if and only if R is zero-dimensional and reduced (see [2, Exercise 16(d), p. 143]).

PROPOSITION 3 . 6 . Any von Neumann regular ring is a fragmented ring.
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PROOF: Let R be a von Neumann regular ring. By the above remarks, dim (R) = 0.

Accordingly, by Theorem 3.5, it suffices to show that if r £ R\U(R), then r is divisible

by some idempotent e ^ 1 of R. Now, by von Neumann regularity, the principal ideal

Rr = Rf for some idempotent / of R. Since r is a nonunit of R, so is / ; and, of course,

r is divisible by / in R. D

The next result provides other useful examples of fragmented rings.

PROPOSITION 3 . 7 . Let a ring R be ring-isomorphic to URa> a nonempty prod-

uct of rings Ra. Then R is a fragmented ring if and only if Ra is a fragmented ring for

each a.

PROOF: We first prove the "only if" assertion. Without loss of generality, R =

Ri x R2 and we need only show that Ri is fragmented. Let c £ Ri\U(Ri). Since R is
00

fragmented by assumption, r := (c, 1) £ f| R{a, b)n for some (a, b) £ R\U(R). It follows
n=l

that 6 £ U(R2) and a £ Ri\U(Ri). As c £ fl R\an, c fragments in Ru as desired.
n=l

For the "if" assertion, we may suppose that R = HRa, where each RQ is fragmented.

Let r = (rQ) £ R\U{R). Consider an index a. If ra € U{Ra), put sQ := 1 £ Ra. On

the other hand, if ra € Ra\U(Ra), choose sa £ Ra\U(Ra) such that ra £ fl -RQS^. Put
n = l

oo
•s : = (SQ) € -R- Of course, r € fl -Rs". Moreover, s £ R\U(R) because there is an index

n=l

a such that sa € RQ\U(RQ) (since the assumption on r ensures that there is an index a
such that ra € Ra\U{RQ)). D

Since any field is evidently a fragmented ring, we see (by using an infinite index set in
Proposition 3.7) that a fragmented ring need not be semi-quasilocal. The corresponding
question for integral domains has not been addressed in the earlier literature. Example
3.8 settles this issue.

EXAMPLE 3.8. There exists a fragmented integral domain with infinitely many maximal

ideals.

PROOF: An integral domain R with the asserted properties can be constructed as

follows. First, let A := F2[{xij , (xij/x"j+]) : i > 1, j ^ 1, n ^ i l l . Consider the

collection {P{ : i > 1} C Spec (A), where Pi = ({xiJf (xid/x^+1) : j > 1, n > l } ) . Then

\
oo
U Pi is a multiplicatively closed subset of A; set R := As.

We claim that R is fragmented. Observe that each X{j fragments in R since Xij €

fl Rx",+1. Thus, to prove the claim, it suffices, by Proposition 3.1 (c), to show that
n=l

each nonunit of R is a multiple of some X{j. Let y 6 R\U(R). Since y = a/s for some

a £ A\S and some s £ S, it suffices to show that a is a multiple of some x{j in R. As

a 0 S = J 4 \ U Pi, w e have that a lies in some Pi. Without loss of generality, a 6 Pi.
Then a can be expressed in the form a^i
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for some nonnegative integers s and t and some fc, gj € A. Let m = 1 + max{s, t}. Note

that Xitm divides Xij for any j ^ m and also that Xi<m divides x\j/xij+i for any j < m.

It follows that X\<m divides each term of a, and hence, xi>m divides a in A. Thus, a is a

multiple in R of a fragmented element, to complete the proof of the claim.

We show Max (R) is infinite. For each i > 1, observe that xiti is a nonunit of R,

and so must lie in a maximal ideal, say Mit of R. Suppose Mj = M?, with i ^ i'. Then

z := Zj,! + ii<,i G Mj. Viewing z 6 .4, note that z & Pi U P*'. Suppose 2 6 P*. Expand z

after expressing it as a linear combination of monomials in the ikj, (xkj/x1kj+i)> and let

A be minimal such that Xk,\ appears in a numerator. DegreeItA-considerations lead to a

contradiction; so no such k exists. Hence, 2 6 5 = A\ (J Pi C U(R), a contradiction.
X i = l

Thus, the M, are distinct. D

For the final theme of this section, we make contact with some of the factorisation-
theoretic concepts from [1, 5, 6]. Recall that if R is a ring, then a,b £ R are said to be
very strong associates (or a is very strongly associated to b) if either (i) a = b — 0 or (ii)
a ^ 0, Ra = Rb, and r € U(R) for all r € R such that a = rb. Also, a nonunit a € i? is
said to be a very strong atom if a — be with b,c £ R implies a is very strongly associated
with either b or c. It was shown in [1] that the concept of a "very strong atom" in a ring
possibly with zero-divisors is closely related to the familiar concept of an "atom" (also
called an "irreducible element") in an integral domain. Indeed, a nonzero nonunit a in a
ring R is a very strong atom of R if and only if a — be with b,c € R implies either b or c
is a unit of R [1, Theorem 2.5].

Moreover, an integral domain R is called an antimatter domain if it does not contain
any atoms. Similarly, a ring R is called an antimatter ring if R does not contain any
very strong atoms except possibly zero. It was noted in [5] that any fragmented integral
domain is an antimatter integral domain. The next proposition generalises this result to
the context of arbitrary commutative rings.

PROPOSITI ON 3 . 9 . Any fragmented ring is an antimatter ring.

PROOF: Deny. Choose a fragmented ring R which is not an antimatter ring. Then
there exists a nonzero very strong atom a € R. Since a € R\U{R) and R is fragmented,

CXI

there exists s € R\U(R) such that a € (~1 Rs"- In particular, a = rs for some r S R-
n=l

But then a = {rs)s, where neither rs nor s is a unit, contradicting the above-mentioned
criterion that a be a very strong atom of R. D

In addition to the concept of a "very strong atom," other related concepts have been
employed in the literature to study factorisation in commutative rings. Following [1], a
nonunit a in a ring R is said to be an m-atom of R if Ra is maximal in the set of proper
principal ideals of R. Also recall that if R is a ring, then a,b 6 R are said to be strong
associates (respectively, associates) if a = bu for some u € U(R) (respectively, Ra = Rb).
Then a nonunit a 6 R is said to be a strong atom (respectively, atom) if a — be with
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b,c G R implies a is strongly associated (respectively, associated) with either 6 or c. The

various types of "atoms" discussed above are related in general by the following non-

reversible implications: nonzero very strong atom =$• m-atom => strong atom => atom

[1]. It should be noted, however, that these four conditions are equivalent in the setting

of integral domains.

We further recall that a ring R is said to be very strongly atomic (respectively, m-

atomic; respectively, strongly atomic; respectively, atomic) if every nonzero nonunit of R

is a finite product of very strong atoms (respectively, m-atoms; respectively, strong atoms;

respectively, atoms). Note that the zero ring vacuously satisfies the very strongly atomic

condition. Also recall that for an integral domain, Noetherian implies atomic. This

implication holds more generally for a ring possibly with zero-divisors (see [1, Theorem

3.2]). Nevertheless, a Noetherian ring need not be very strongly atomic, as can be seen

by applying the criterion in [6, Corollary 13] to Z/12Z.

We also say that a ring R is an antimatter (respectively, m-antimatter; respec-
tively, highly antimatter; respectively, very highly antimatter) ring if R does not contain
any very strong atoms (respectively, m- atoms; respectively, strong atoms; respectively,
atoms) except possibly zero. It is easily verfied that very strongly atomic =>• m-atomic
=> strongly atomic => atomic; and that very highly antimatter => highly antimatter =>
m-antimatter => antimatter. Although Proposition 3.9 showed that a fragmented ring
cannot contain any nonzero very strong atoms, we show in Remark 3.10 (a) that it is
possible for such a ring to contain a nonzero m-atom.

REMARK 3.10. (a) A fragmented ring R need not be m-antimatter (and therefore, R

need not be highly antimatter or very highly antimatter). For an example, note that
R :— Z/6Z is a fragmented ring by Proposition 3.7 (or the criterion in [6, Proposition
17]), but R is not m-antimatter since 2 + 6Z and 3 + 6Z are evidently m-atoms of R.

(b) Let R be a zero-dimensional fragmented ring. As announced above, Example
4.10 shows that R need not be reduced; that is, R need not be von Neumann regular.
Equivalently, it need not be the case that each principal ideal of R can be generated by
an idempotent. Wre next observe, however, that at least some important principal ideals
of R are so generated.

Specifically, we claim that if R is a zero-dimensional fragmented ring and r g R is
an m-atom, then there exists an idempotent e of R such that Rr = Re. For a proof,
note that since r € R\U(R), Theorem 3.5 ensures that r is divisible by some idempotent
/ ^ 1 of R. Thus Rr C Rf c R, and hence by the maximality of Rr, it follows that
Rr = Rf, as desired.

The next result combines the "zero-dimensional fragmented" and "atomic" themes
to produce a characterisation of an important class of von Neumnann regular rings. We
first collect three useful results from [1]. First, let R = URa be a nonempty product of
rings Ra. Then an element (ra) € R is an atom of R if and only if there exists an index
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Q 0 such that rao is an atom of Rao and ra € U(Ra) for all a ^ CIQ [1, Theorem 2.15(2)].

Secondly, a nonempty product R = URa of rings Ra is atomic if and only if the index set

is finite and Ra is atomic for each a [1, Theorem 3.4(1)]. Finally, if a ring R is atomic,

then R is a finite direct product of indecomposable atomic rings [1, Corollary 3.5].

PROPOSITION 3 . 1 1 . Let Rbea ring. Then the following conditions are equiv-

alent:

(1) R is a zero-dimensional fragmented atomic ring;

(2) R is a product of finitely many fields (with an empty product being viewed

as the zero ring).

PROOF: (2) => (1): Assume (2). Then R is evidently zero-dimensional; R is frag-

mented by Proposition 3.7; and R is atomic by a result recalled above [1, Theorem

3.4(1)].

(1) => (2): Assume (1). Since R is atomic, a result recalled above [1, Corollary 3.5]
implies that R = Yi^Ri is a finite direct product of indecomposable atomic rings Ri. As
R is fragmented by hypothesis, each Ri is fragmented by Proposition 3.7. Then for each
i, Ri inherits zero-dimensionality from R and, by Theorem 3.5, each nonzero nonunit of
Ri is divisible by a nontrivial idempotent of Ri. However, since Ri is indecomposable, .Ri
contains no nontrivial idempotents. Thus, each Rj must be a field, as desired. D

Observe that each of the fragmented rings characterised in Proposition 3.11 is zero-
dimensional and reduced, hence von Neumann regular. However, not every von Neumann
regular ring satisfies the equivalent conditions in Proposition 3.11, since a product of
infinitely many fields is not atomic.

4. FRAGMENTED-THEORETIC CHARACTERISATIONS OF SOME CLASSES OF

ZERO-DIMENSIONAL RINGS

We have seen in Proposition 3.11 that the "fragmented" concept can be used to
characterise finite products of fields. Corollary 4.4 will provide another fragmented-
theoretic characterisation of such rings. In fact, this section is primarily devoted to
similar characterisations of some other important classes of zero-dimensional rings. We
begin with a result which is valid in arbitrary dimensions. Recall that distinct prime
ideals P and Q of a ring A are said to be adjacent (in A) if one of P, Q is contained in
the other and no prime ideal of A is contained properly between P and Q.

LEMMA 4 . 1 . IfQcP are adjacent prime ideals of a ring R, then RP is not a

fragmented ring.

PROOF: Deny. Then A := RP/QRp is a fragmented ring by [6, p.223], since QRP C
J{Rp). Moreover, the "adjacent" hypothesis guarantees that dim (,4) = 1; and, of course,
A is a quasilocal integral domain. However, according to [7, Corollary 2.8], any quasilocal
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fragmented integral domain which is not a field must be infinite-dimensional, and so we

have the desired contraction. D

THEOREM 4 . 2 . Let R be a ring. Then the following conditions are equivalent:

(1) RP is a fragmented ring for each P e Spec (R)\ Min (R);

(2) dim(fl) = 0.

PROOF: (2) => (1) vacuously. It suffices to establish the contrapositive of (1) => (2).
Suppose that dim (R) > 0, with P C N distinct prime ideals of R. By [9, Theorem 11],
we have P C Qx c Qi C N, for some adjacent prime ideals Q\ C Qz of R. By Lemma
4.1, RQ2 is not fragmented, although Q2 £ Spec (R)\ Min (R). D

COROLLARY 4 . 3 . Let R be a ring. Then i?p is a fragmented ring for each

P S Spec (i?) if and only if R is von Neumann regular.

PROOF: The "if" assertion is immediate since any von Neumann regular ring is
locally a field (see [2, Exercise 9, p. 138]). Conversely, suppose that RP is fragmented for
each P € Spec(R). By Corollary 4.2, dim(i?) = 0. Hence, it suffices to show that R is
reduced. Therefore, it is enough to prove that A := Rp is reduced for each P £ Spec (R).

Since A is zero-dimensional and quasilocal, its unique prime (maximal) ideal is Nil (A),
and so each nonunit of A is nilpotent. Now, suppose that a 6 A is nilpotent. Since
a € A\U(A) and A is a fragmented ring (by hypothesis), there exists b e A\U{A) such

00

that a € fl Abn. By the above remarks, b is nilpotent and so bn = 0 for some n ^ 1,

whence a = 0 and so A is reduced. • D

Before we pass to some fragmented rings possibly having Krull dimension 1, Corol-
lary 4.4 characterises the zero-dimensional Noetherian fragmented rings. These form a
subclass of the rings characterised in Corollary 4.3. Since any Noetherian ring is atomic,
one has an alternate proof of Corollary 4.4 via an application of Proposition 3.11. The
following proof avoids factorisation-theoretic ideas.

COROLLARY 4 . 4 . Let R be a ring. Then the following conditions are equivaJent:

(1) R is a zero-dimensional Noetherian fragmented ring;

(2) R is a product, of finitely many fields (with an empty product being viewed

as the zero ring).

PROOF: (2) => (1): Assume (2). Since any field is fragmented, R is fragmented by
Proposition 3.7. Then (1) follows since any finite product of zero-dimensional (respec-
tively, Noetherian) rings is zero-dimensional (respectively, Noetherian).

(1) => (2): Assume (1). As R is Noetherian and dim(i?) = 0, R is an Artinian ring.
By the fundamental structure theorem for such rings [13, Theorem 3, p.205], R — UaRa

for some indexed family {Ra} of Artin local rings Ra. For each a, Ra is fragmented
by Proposition 3.7 and zero-dimensional (because Artinian), and so Ra is von Neumann
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regular by Corollary 4.3. Therefore, since Ra is canonically the localisation at its maximal

ideal, Ra is a field. D

COROLLARY 4 . 5 . Let Rbea ring. Then the following conditions are equivalent:

(1) Rp is a fragmented ring for each P 6 Spec (R)\ Max (R);

(2) dim {R) ^ 1 and RP is a field for each P € Min {R)\ Max (R).

PROOF: (2) => (1): Trivial, since any field is fragmented.

(1) => (2): Assume (1). If dim {R) > 1, choose distinct prime ideals Qo C Q C N of
R. By [9, Theorem 11], we have Qo Q Q\ C <?2 Q Q, for some adjacent prime ideals Qx c
Qi of #. By Lemma 4.1, RQ2 is not fragmented, although Q2 € Spec (R)\ Max (.ft), a
contradiction. Therefore, dim (.ft) ^ 1. Next, consider P € Min(i?)\Max(/2). Then RP

is zero-dimensional, quasilocal and fragmented, hence von Neumann regular by Corollary
4.3, and hence a field. D

Since the localisation of an integral domain D at its unique minimal prime ideal is
the quotient field of R, the next result is a special case of Corollary 4.5.

COROLLARY 4 . 6 . Let R be an integral domain. Then the following conditions

are equivalent:

(1) RP is a fragmented ring for each P € Spec (R)\ Max (R);

(2) d i m ( i ? ) ^ l .

We next merge the "idempotent" theme from Section 3 with the topological aspect
of the "Spec" theme introduced above. Recall that a ring A is called a connected ring if
and only if 0 and 1 are the only idempotent elements of A; equivalently, if and only if
Spec(yl) (in the Zariski topology) is a connected space [2, Corollary 2, p.104].

PROPOSITION 4 . 7 . Let R be a ring. Then the following conditions are equiv-

alent:

(1) dim (R) = 0 and R is a nonzero connected ring;

(2) R has a unique prime ideal;

(3) Ni\(R) = R\U{R).

PROOF: (1) =>• (3): Assume (1). Since R is nonzero, each nilpotent element of R is
a nonunit. It remains to show that each nonunit r € R is nilpotent. As dim (R) — 0, it
follows from Proposition 3.3 (a) that there exist n ^ 1, u € U(R) and an idempotent e
of R such that rn — ue. Of course, e ^ 1 since r is a nonunit, and so e = 0 since R is
connected. Therefore, rn is a multiple of 0, and so r is nilpotent.

(3) => (2): Assume (3). Let M G Max(R) and P € Spec(R). If there exists
r € M\P, then r £ (R\U(R))\Ni\(R), contrary to (3). Therefore, M C P, and (2)
follows.

(2) => (1): Assume (2). Evidently, dim (.ft) = 0. Also, Spec(i?) is a connected
topological space (since its underlying set is singleton) and so, by the above remarks, R
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is a connected ring. Finally, R is nonzero since Spec (R) is nonempty. D

COROLLARY 4 . 8 . Let Rbea ring. Then the following conditions are equivalent:

(1) R is a nonzero zero-dimensional connected fragmented ring;

(2) R is a field.

PROOF: It is clear that (2) => (1). Moreover, Proposition 4.7 and Corollary 4.3

combine easily to yield (1) => (2). D

In view of Section 3 and the earlier material in this section, it seems reasonable
to ask for conditions guaranteeing that a zero-dimensional fragmented ring be von Neu-
mann regular. Of course, Proposition 3.6 ensures that any von Neumann regular ring is
fragmented (and it is surely also zero-dimensional). Thus, one should ask which zero-
dimensional fragmented rings must be reduced. In Theorem 4.9, we settle this in the
semi-quasilocal case. First, we indicate a role for Corollary 4.8 in an analysis of the
general case.

According to [12, Theorem 4.4], any ring R can be realised as the ring of global
sections of a suitable sheaf of connected rings defined on a Boolean space X(R). In fact,
X(R) can be taken to be Spec(B(R)j in the Zariski topology, where B(R) denotes the
Boolean ring formed by the set of idempotents of R. {B(R) inherits its multiplication
operation from R, but addition in B(R) is redefined b y e © / = e + f — 2e/ for all
idempotents e, / € R.) Recall also that if a; € B(R), then the stalk of the above-
mentioned sheaf at x is the connected ring R/xR. Hence, by standard sheaf theory,
R is canonically isomorphic to a subring of Ylxex(R)R/xR. Now, suppose that R is a
zero-dimensional fragmented ring. For R to be reduced, it would suffice to show that
R/xR is reduced for each x € X(R). Evidently, dim{R/xR) = 0 for each x £ X{R).

Therefore, in view of Corollary 4.8, it would suffice to show that R/xR is fragmented for
each x 6 X(R). The ring in Example 4.10 shows that R/xR need not be fragmented for
all x e X(R). Thus, despite [7, Lemma 2.3] and [6, p.223], an arbitrary homomorphic
image of a fragmented ring need not be fragmented, even in the zero-dimensional case.

We next give a companion for Corollary 4.3.

THEOREM 4 . 9 . Let R be a semi-quasilocal ring. Then the following conditions

are equivalent:

(1) dim (R) = 0 and R is a fragmented ring;

(2) R is von Neumann regular.

PROOF: (2) => (1) (even if R is not semi-quasilocal) by Proposition 3.6. Conversely,
assume (1). Without loss of generality, R ^ 0. Let M i , . . . , M n be all the (pairwise
distinct) maximal ideals of R. We proceed by strong induction on n. The assertion for
the case n = 1 is an easy consequence of Corollary 4.3. Assume n ^ 2. By the Prime

Avoidance Lemma [9, Theorem 81], there exists r € MA \J Mr Observe that the
xi=2
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reduced ring associated to R, namely A := R/Ni\(R), is zero-dimensional and reduced,
hence von Neumann regular. Therefore, the principal ideal of A generated by r + Nil (R)

can also be generated by some idempotent / = e+Nil (R), for some e € R. Since Nil (R) is
a nil ideal, it follows from classical idempotent-lifting (see [10, Proposition 1, p.72]) that
we may assume that e is idempotent. In other words, Ayr + Nil (R)J = A[e + Nil (.ft)),
with e = e2 e R. In particular, r € Re + Nil (R) and e G Rr + Nil {R). It follows that

\
n
U Mj. Hence, e ^ 0,1. Therefore, Re and R{\ — e) are each nonzero rings

j=2

with identity and R is the internal direct product of them: R = Re x R(l - e). Since R

is fragmented, it follows from Proposition 3.7 that Re and R(l - e) are each fragmented;
moreover, each of these rings inherits zero-dimensionality from R. As Spec (Re) and
Spec(i?(l - e)) are each nonempty and Spec (R) = Spec (Re) U Spec(i?(l - e)), Re and
R(l - e) each have fewer than n prime ideals. By the strong induction hypothesis, Re

and R(l - e) are each von Neumann regular, and hence so is their product, R. 0
Although for zero-dimensional rings, reduced implies fragmented, our next example

shows that the converse is false. Any such example is necessarily non-Noetherian by
Corollary 4.4 (in fact, non-atomic by Proposition 3.11) and must possess an infinite
number of maximal ideals (by Theorem 4.9).

EXAMPLE 4.10. There exists a zero-dimensional fragmented ring which contains a
nonzero nilpotent element (and which is therefore not a von Neumann regular ring).

PROOF: A ring R with the asserted properties will be constructed as a direct limit
(in fact, a directed union) of suitable rings Rn, as n ranges over the positive integers.
For simplicity, we begin with Ri as the ring of dual numbers over the field F2 with two
elements, namely R\ — F2[X]/(X2) = F2[z] = {0, l ,x, 1 + x}, where x is the coset
represented by X. Since dim (R\) — 0, Theorem 3.5 shows that the obstacle to R\ being
fragmented (and the reason that R\ is not fragmented) is that x is not divisible in R\ by
a nonunit idempotent. Of course, R\ can also be seen to be non-fragmented by Theorem
4.9 since Rx contains a nonzero nilpotent, x.

The next step in the construction is to produce a zero-dimensional extension ring
R2 of R\ in which each nonunit of i?i (namely, re) has a nonunit idempotent factor in R2.
Let Y\ be an indeterminate over Rx, and set R2 := R\[Yi]/(Y? - YiyxYi - x) — Ri[yi],
where y\ is the coset represented by Yx. Note that i?2 is finite since it is an integral
algebra-finite (hence module-finite) algebra over the finite ring R\. Hence, dim(i?2) = 0.
We claim that R\ is a subring of R2, more precisely, that the canonical .Ri-algebra ho-
momorphism Ri -> R2 is an injection. To prove this claim, one needs to observe that
Ri n (Yi2 - Yi,xYi — x) — 0. This, in turn, follows by considering the 7?ralgebra homo-
morphism Ri[Y\] ->• Ri determined by Yx i-> 1, and so the claim has been established.
Now, x is divisible in R2 by the idempotent y\. Moreover, it can be seen that y\ is a
nonunit of R2 by considering the i?i-algebra homomorphism J?i[yi] -¥ R\ sending Y\ to
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0, and using the fact that X is a nonunit of R\.

We proceed with the inductive construction. Suppose that we have a chain Ri C
R-2 Q • • • Q Rn of integral extensions of finite rings, for some n ^ 2, such that each
nonunit of Ri is divisible by some nonunit idempotent of Ri+i whenever 1 < z ^ n - 1.
Let {di , . . . ,Qjt} be the set of nonzero nonunits of Rn. Now, Rn+\ will be obtained by
an inductive construction (within this induction step) resulting in a chain of rings

Rn = Anfi C A n a C • • • C An,k = Rn+i.

We obtain An,i from An,o = Rn just as R2 was obtained from Rx, with ax playing
the earlier role of x. More precisely, let An,\ = An$[Z\]l{Z\ - Z\,a.\Z\ - a.x). Exactly
as above, we verify that An%\ is a finite ring which contains and is integral over An$,

and moreover that ct\ is divisible in An,\ by a nonunit idempotent (namely, the coset
represented by Zi). If k > 2, let An,2 = ^n,i[^2]/(^2 ~ Z2,a2Z2 - a2). Exactly as above,
we verify that An$ is a finite ring which contains and is integral over Any, and moreover
that a2 is divisible in An,2 by a nonunit idempotent (namely, the coset represented by
Z2). Most importantly, ot\ is also divisible in An,2 by a nonunit idempotent because
integrality ensures that nonunits of j4n,i remain nonunits of An,2 (see [9, Theorem 44]).
The above reasoning can be repeated essentially verbatim to carry out the induction step,
thus producing An<3,..., An<k = Rn+\-

The above inductive construction produces a chain Rx C R2 C • • • C Rn C • • • of
.finite (hence, zero-dimensional) rings such that for each n, Rn+l is integral over Rn and
each nonzero nonunit of Rn is divisible in Rn+l by a nonunit idempotent. It remains

00

only to show that R := dirlimi?,, — \J Rn has the desired properties. First, note that
n=l

dim (R) = 0, since a standard result on direct limits [3, Exercice 11, p.VIII.82] ensures
that dim (R) ^ sup dim {Rn)- Next, to show that R is fragmented, we employ the criterion
from Theorem 3.5 as follows. If y 6 R\U(R), choose n such that y £ i?n\C/(fln), use the
above construction to find a nonunit idempotent e of Rn+i which divides y in Rn+i (and
hence divides y in R), and observe that e remains a nonunit in R since R is integral over
Rn+i- Finally, x is the desired nonzero nilpotent element of R. D
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