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UNSTEADY WAVES ON AN OPEN TWO LAYER FLUID
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Abstract

The evolution of small amplitude waves on an open two layer fluid is investigated. The
spatially periodic surface and interface displacements are represented as Fourier series
with time dependent coefficients, for which evolution equations with all significant
quadratic interactions included, are derived. Solutions to these equations are found
analytically for a small number of harmonics, and numerically for a larger number of
harmonics. Two numerical solutions are given to illustrate the evolution properties.

1. Introduction

The classical theory of gravity wave propagation based on a linearised form of the
equation of motion has wave solutions which propagate independently of one
another, with no energy transfer between waves. When the nonlinear interactions
are included PhilUps [8] has shown that if the interactions occur over a sufficiently
long time, and if a resonance condition (to be stated later) is satisfied, then there
will be a significant transfer of energy between the waves. Phillips found for
gravity waves on a deep single layer fluid that the interaction rate was of O(e2)
where e «: 1 is a measure of the wave amplitude. Thus for a complete description
of the evolution of the wave field over a time interval of 0{e'2) the linear theory
must be extended to include the nonlinear terms. Following Phillips, Bretherton
[3] introduced the idea of near resonance where the resonance condition is
satisfied to 0{t).

When the fluid, because of the presence of a thermocline or a layer of
freshwater upon saltwater must be regarded as a two layer fluid the wave
evolution is more complicated. It has long been known (see for example Lamb [7])
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184 P. W. Sharp [2 ]

that two types of wave modes are possible. One is a fast surface mode and the
other is a slow interface mode. Ball [1] has shown that when both types of modes
are present with the interface waves long compared with the surface waves,
resonance is possible between two surface waves and one interface wave. The
resonance condition is then, for unidirectional propagation

uk + l ~ ul ~ uk = 0, / » &, (1-1)

where wi + / , w, are the frequencies of the two surface modes with wavenumbers
k + 1,1, and uk is the frequency of the interface mode with wavenumber k.

The perturbation scheme used by Phillips [8] shows that this type of interaction
occurs at an O(e) rate. Thus for gravity waves on deep water with both
surface-surface and surface-interface wave interactions present the latter interac-
tion dominates the wave field evolution up to a time of O(e~l).

The evolution of gravity waves on a two layer fluid has been studied theoreti-
cally by several authors. Ball [1] for shallow water, and Hashizume and Ikeda [6]
for arbitrary depths have found analytic solutions for two surface waves and one
interface wave satisfying equation (1.1). Watson et al [13] considered the interac-
tion between linear surface and interface wave fields, while Rizk and Ko [10]
studied the interaction between surface Stokes waves and large scale internal
waves.

The approach used here has both the interface and surface displacement as
unknown functions, resolved into as many wave modes as are required (to be
defined more precisely in Section 5). To simplify the algebra we have taken the
wave propagation to be unidirectional and the lower layer to be of depth far
greater than any wavelengths present. A limit is placed on the wave slopes to
exclude large amplitude waves.

The waves are represented as spatially periodic Fourier series with coefficients
which vary slowly with time (see Bretherton [3] for a precise definition of slowly
varying in time). Evolution equations with all the significant quadratic interac-
tions included are derived for the rates of change of the Fourier coefficients. The
cubic and higher order interactions are omitted because as stated above they
occur on a longer time scale than the quadratic interactions.

Several analytic results are given but in general numerical methods must be
used to solve the evolution equations. Two contrasting numerical solutions are
given and these are used to illustrate general properties of all the solutions found,
as well as properties that are unique to different sets of solutions.

2. Governing equations

The two layer fluid consists of an upper layer of density p2, mean depth h and a
lower layer of density px and infinite depth with the difference pj - p2 being
small compared with px and p2. The fundamental wavelength is 2-nL and au a2
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131 Unsteady waves 185

are a measure of the amplitude of the interface and surface waves respectively.
The horizontal coordinate x and the vertical coordinate y (positive upwards) are
both in units of h with the origin on the mean interfacial level. The interface and
surface displacements are r^ and TJ2 respectively, both in units of ax and the
corresponding velocity potentials are <J>X and <J>2 in units of (gh)1/2av where g is
gravity. The time / is in units of (h/g)l/2 and the principal parameter is
e = ax/h <s 1. The other parameters are /x = h/L, e' = a2/h « 1 and p = px/p2-

The governing equations for this inviscid, incompresible and irrotational flow
are:

(i) Laplace's equation for the velocity potentials <f>v 4>2;
(ii) the bottom boundary condition;

(iii) the interface kinematic and dynamic boundary conditions;
(iv) the surface kinematic and dynamic boundary conditions.
When the surface and interface boundary conditions are expanded in e about

y = 1 and 0 respectively the governing equations become

«2« + *2,, = 0, 0<y<l, (2.1a)

*u* + * i , , = 0, -cc<y<0, (2.1b)

<f>ly ^ 0 as>> -» -oo, (2.1c)

P<t>L -<t>2,+(p-^)Vl= eVl<t>2y, - Wildly, + \*(&x + <t>ly)

Jx + Oie2) ony = l,

^ x + <t>2
2y) + O(e2)

The details of the derivation can be found in Sharp ([12], pages 7-8).
Spatially periodic solutions of the form

0 0

0 0

0 0

1 IvAU i I rvUA

/ ^ & "̂ CXD i( leu.

«*o + *.

* - w*0 + *.

(2.2a)

(2.2b)

(2.2c)
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00

<P2
 = l H (B2k(t)coshkny + C2k(t)sinh kfiy)exp i(kfix - ukt) + *,

k = l

(2.2d)

are sought where * denotes the complex conjugate, k is the wavenumber in units
of L~x and wk is the frequency in units of (g/h)l/1.

The linear solutions to equations (2.1) are found by substituting in the above
Fourier series and neglecting the right hand sides. This gives

A\k = (l - Tkkn/u2
k)coshknA2k = iik^/^k)Bik

^k)C2k

ak){al/kp - Tk)/{\ - Tkt*l/kv)B2k (2.3)

and the dispersion relation

(p + Tk){wl/kpf - p(l + Tjal/kfL +(p - \)Tk = 0

where Tk = Tanh kp.
The two roots of this equation are

and

The larger root uAk is the frequency of a free surface wave mode and is the
same as for waves on deep water, indicating that these modes propagate indepen-
dently of the properties of the interface. The smaller root uBk is the frequency of a
free interface wave mode and depends on the reduced gravity (p - 1).

The evolution equations for Alk and A2k are now derived by evaluating the
nonlinear terms in equations (2.1) and eliminating Blk, B2k and C2k to give two
second order ordinary differential equations involving Alk and A2k. One of these
equations can be integrated twice and the other once to give the equations which
form the basis of our paper. The details of this method of elimination and
subsequent integrations are given in Bryant [5]. Only the important points will be
presented here.

The method of eliminating Blk, B2k and C2k depends on whether they occur in
the linear or nonlinear terms. If they occur in the linear terms they must be found
by simultaneous solution. If they occur in the nonlinear terms then it is possible
to substitute for them in terms of Alk and A2k from equations (2.3). With e
nonzero the values of Blk> B2k and C2k differ from those in equations (2.3) by
0(e). This difference, when included in the nonlinear terms, becomes of 0(e2)
and hence is neglected.
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The resulting differential equations, after the integrations, become

Alk — (l — Tkkn/u^)cosh kfiA2k

k—\ n A A

00

E Dk / 1/ 1K + / / / \ \

- — - j — -exp(-i(ak+l -a,- uk)t)

+ O(£
2), ife-1,2

(2.4a)
and

D{A2k+(p-

~ - ~ -*

(2.4b)

where D = d/dt and the frequencies are extended to k < 0 by defining uk = -u.k.
The coefficients RDkj and REk t are given in the Appendix.

On comparing the left hand sides of equations (2.4a) with the first equality in
equations (2.3) we see that the right hand sides of equations (2.4a) give the
quadratic corrections to the linear solutions. The right hand sides of equations
(2.4a) contains factors of the form (u, + uk_, - ^AkUBk/uk)'1 a n d ("*+/ ~ ui ~
i6Ako)Bk/wk)~

l. It will be shown in the next section that these are of 0(1) and
hence the integration used above is valid. Finally while it is possible at this stage
to obtain an expression for dAlk/dt from equation (2.4a) and substitute into
equation (2.4b) to obtain a differential equation for A2k, this is not done until the
next section after the final form of the nonlinear terms is given.

3. Evolution equations

The final form of the nonlinear terms in equations (2.4a) and (2.4b) depends on
which quadratic interactions are included. The possible interactions are outlined
below and reasons given for including or excluding them.

A. Two interface wave modes interacting with a third interface wave. Equation
(1.1) requires

(* -
P+Tk+I I [p+T,
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188 P. W. Sharp [6]

In general this is impossible to satisfy but for long interface waves the left hand
side of the above condition is of 0{fi2). The near resonance condition will then be
satisfied when e/fi2 = 0(1). Because («B/t+/ - wB/ — uAk) is of 0(1) equation
(2.4a) is valid. Therefore this interaction is included in order to consider long
interface waves such that e/fi2 = 0(1).

B. Two surface wave modes interacting with an interface wave mode. Equation
(1.1) requires

= 0, A: + /, / » k.

This can be satisfied by taking
- 1) - ( p

where /? = (21/k) + 1 - 2((l/k)2 + l/k)l/2.
Because (uAk+l — uA/ — uAk) is of 0(1), equation (2.4a) is valid and this

interaction is included.
C. An interface wave mode and a surface wave mode interacting with a surface

wave mode. This is similar to case B above and is included.
Two surface wavemodes may interact with a third surface wave mode. Equa-

tion (1.1) would require uAk+t — wAt — uAk to be zero. As stated above this is of
O(l) and hence the interaction is excluded.

Finally an interface wave mode and a surface wave mode may interact with an
interface wave mode or two interface wave modes may interact with a surface
wave mode. These interactions are excluded as the smallness of the interface
wavenumbers compared with the surface wavenumbers makes it impossible to
satisfy the resonance or near resonance condition.

Benney [2] has shown that for short surface waves and long interface waves, the
resonance condition (1.1) with e = 0 is equivalent to requiring the group speed of
the surface waves to equal the phase speed of the interface waves, with the centre
of the surface waveband at k. When e is nonzero this interpretation is not strictly
true. However we will be considering solutions with e •« 1 and thus the centre of
the waveband will be in a small neighbourhood of k. In this sense a frame of
reference moving with the speed duAk/dk\i in the positive x direction represents
the 'best' frame in which to investigate the nonlinear interaction.

Therefore solutions of the form
n

1i = l Z a1/k(/)expi(M* " <*)) + * (3.1a)
ft-i

and
rj2 = £(•*, Oexp i(Knx - uAKt) + * (3.1b)

are sought, where

€(*. 0 = i t «2*(<)exp i ( (* - * M * - ct))
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171 Unsteady waves 189

and c = dwAK/dkp. The alk and a2k are complex and £(x, t) is the envelope
function. If the alk and a2/t

 a r e r e a l anc^ constant then the expression for TJ2 is that
of a wave group of central wavenumber K and central frequency uAK propagating
in the positive x direction with a group speed c. The expression for T\X is then that
of a wave moving in phase with the surface envelope with phase speed c.

As stated in Section 1 the long interface wave modes are important. Therefore
in equation (1.1) we take k = 1 and choose n for a given K such that

dkp. \i

Expressing the complex amplitudes Alk and A2k from equations (2.2a) and
(2.2b) in terms of alk and a2k leads to the following evolution equations for alk

and a2k;

dau i(uBk-knc) _ "-1

~rr + : fli* ~ v L KAk,-iaua\k-i

n-k u2-k

+ ' E RAk,la*ia\l+k + ' E RBk,la*la2k + l + °(e)>
1 = 1 l = l 2

1 < k =$ n, (3.2a)

folk , '{"Ak -(k-K)nC- iOAK) mm(njc-l2)
—rr + : aik = ' L Rck,-iaua2k-i

" T fc / = 1
m i n ( n , u 2 —A:)

+ * E Rck,ia*ia2k+i + O(e),
1=1

I2^k^u2, (3.2b)

where the interaction coefficients RA, RB, Rc are given in the Appendix and
T = et.

4. Analytical results

Defining s"2 U2 to be the set of equations (3.2a) and (3.2b) with \t, chosen such
that the equation (1.1) is satisfied for some k e [/2, w2] the following analytical
solutions are known.

For sj2ii+l, Hashizume and Ikeda [6] have given a full set of solutions.
Expressing their solutions in our notation with the initial conditions an = 0,
a2,2 = a2/j = A (A real, /3 = l2 + 1) we obtain

« T - r ) | , (4.1a)

a)1/2drn>T - T), (4.1b)
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h / 3 ( T ) | = ^ | s n ( u T - 7 % (4.1c)

«l*l«2/2a2/3 + «ll«2J2*2/3 = 0,

where en, dn, sn are the Jacobi elliptic functions,

and - - ' " " d+

with RBi,t2> ^c/2,i
 a n ^ ^c/3,-i

 aU greater than zero.
The essential features of this solution are the strict periodicity, the inverse

dependence of the period on the initial amplitude, and the maximum value of the
interface wave mode being /L4 where /? < 1 in general.

When either the number of surface or interface wave modes was increased it
was not possible to solve analytically the corresponding system of evolution
equations. However for s}2 Ui the following two independent complete integrals
were found.

2 " 2 2

lalll + L «,l«2,l = Cl> h < m < "2>

and

E

where a,, )3, are functions of the interaction coefficients and Q, C2 are constants
determined by the initial conditions. The explicit form of a,, /?, is not given
because other complete integrals were used in subsequent calculations. Similarly
for s?2j2+2 o n e complete integral of the above form involving all five wave modes
was found. From these analytical results it can be seen that numerical methods
are required to solve the evolution equations when an arbitrary number of wave
modes are present. One such method is outlined in Section 5. However because of
their nearness to resonance the evolution of the wave modes an, alt and a2/ as
given in equation (4.1) dominates these numerical solutions. A way of measuring
the degree of dominance is given in Section 5.
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5. Numerical solutions

The numerical method used to solve the evolution equations is the integrator of
Shampine and Gordon ([11], pages 156-223). Briefly, their integrator is a variable
order, variable stepsize, linear multistep method using an Adams-Bashforth
predictor and an Adams-Moulton corrector. The integrator endeavours to keep
the local error at each step below a value set by the user and at the same time
using as large a stepsize as possible.

This is achieved by varying the order and stepsize. An estimate of the global
error at the end of the integration can be found by resolving the equations with a
more severe local error tolerance and noting the change in the solution. This
method of estimating the global error is explained more fully in ([11], pages
122-125) and the results of numerical experiments on equations (3.2) using STEP

are given in Sharp ([12], pages 43-45).
For a particular p and K, n was found such that duAK/dkn = wBi/ju. Then for

a given set of p, K, n and e, s"2 Ui was solved numerically for a small number of
wave modes. The number of modes was increased until the last mode added
altered the previous solution by less than 10 "2. This last mode was then excluded
and the previous solution taken as the final solution. The initial conditions were

flu = U, K — 1 , . . . , n ,

alk^0, k = l2,...,K- l,K+ 2 , . . . , K 2 ,

= A

where A was chosen so that the time average of Efcodd|a1)c| was approximately 1 to
be consistent with the definition of av The parameter £ was chosen so that the
initial slope of a2k was approximately 0.1.

The complete integrals (4.1d) and (4.1e) were combined to give

M 2 +1*2// +[(RCL1,-I ~ Ra2,i)/RBi,tl\K\ = 2A2 (5.2)

For each numerical solution the time average of the left hand side of equation
(5.2) was expressed as a fraction of 2A2. This fraction was used as a measure of
the dominance of the wave modes an, a2,2 and a2/j over the remaining modes.
Because RCi3,-\ - ^c/2,i equation (5.2) gives (see for example Phillips [9]) an
estimate of the energy of a2/2

 a n ^ ^2/3' a result that is used later.
All the numerical solutions were found on a Prime 750 using double precision

arithmetic with fourteen significant figures.
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6. Numerical examples

[10]

In this section two numerical solutions are given for two values of ju. These two
solutions are used to illustrate the general properties of all solutions found and
also properties that apply only to subsets of our solutions with each subset
characterized by a unique value of /t.

The first example has p = 1.05, e = .015, A = .8 and K = 22 giving ju, = .319.
Eight interface modes and twenty-five surface modes with wavenumbers eleven to
thirty-five were required to describe the solution fully as outlined in Section 5.
The interface displacement and surface envelope are given in Figures l(a) and
l(b) for two different time intervals.

The first general principle as seen from the figures is that although the
evolution is oscillatory it is not strictly periodic. The integration was continued
until T = 400 for this example and at the end of the integration the solution had

U ( X - Ct )

Figure l(a). One wavelength of the surface envelope (upper graph) and interface displacement for
T = 0 - 9 with p = 1.05, E = 0.015, p. = .319 and K = 22. The vertical magnification is 25.
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Ill] Unsteady waves 193

not become steady or periodic. However because of the oscillatory evolution it
was found possible to refer to a period of oscillation. This was taken to be that of
\an\ and was 18 with the maximum amplitude of |au | being 1.1. The correspond-
ing results for s\2 n were 7.5 and .52, with the fractional value of equation (5.2)
being .23.

Using the result from the linear wave theory that the energy of a wave is
proportional to the square of its amplitude we have the following conclusion. The
extra modes (compared with s\2ri) did not increase the rate of change of \an\ but
they enabled four times the amount of energy to be transferred to an with a
corresponding decrease in the average energy of a2a2 and a22V This increase in
interface energy and decrease in surface energy compared with the three wave
mode solution was found to occur in all our solutions with the effect, in general,
being greater, the smaller n was.

The next result to be taken from Figures l(a) and l(b) is that the wave system,
the centre of which is conveniently defined by the trough of the interface

Figure l(b). One wavelength of the surface envelope (upper graph) and interface displacement for
T = 30 - 39 with p = 1.05, E = 0.015, ji .319 and K = 22. The vertical magnification is 25.
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displacement, moves at a near constant velocity AC relative to the frame of
reference moving with speed duAK/dkji. An estimate of AC can be made in the
following way.

Assuming that the properties of the interface are dominated by the lowest
interface mode ( a u ) and that locally in time about t = t0 the magnitude of an

does not change, an(t) can be written as

for a small interval in time about t = t0. Substituting into the evolution equations
(3.2a) for this form of an gives

A C = { -

The time average of this expression was found to obtain AC, which for this
example was 0.009 while the value of AC from Figures l(a), l(b) was 0.010.

U ( x - c t )

Figure 2(a). One wavelength of the surface envelope (upper graph) and interface displacement for
T = 0 - 6 with p = 1.05, e - .006, /i = 1.35 and K = 11. The verticial magnification is 25.
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The final result taken from the figures was that peaks in the envelope occurred
above the region of convergence of the interface displacement and that the
troughs of the interface displacement were narrower than the crests.

The second example considered was with p = 1.05, e = .006, A = 1.0, K = 11
and n = 1.35.

Two interface modes and ten surface modes with wavenumbers seven to sixteen
were required to describe the motion. This reduction in the number of modes
compared with the first example follows from the larger value of n giving a
weaker interaction between modes on the two layers. The surface envelope and
interface displacement are given in Figures 2(a) and 2(b) for two time intervals.

Referring to the figures the wave evolution as before was oscillatory and not
strictly periodic. The graphs have a simpler structure than in the first example, a
property that follows from the smaller number of modes present. The period \an\
was 4.6 with a maximum amplitude of 1.35 and the fractional value of equation
(5.2) was 0.60. For s{ll2 the period of | a n | was 3.5 and maximum amplitude 0.86.
Therefore as in the first example we have an increase in the amount of energy

U < X - C t )

Figure 2(b). One wavelength of the surface envelope (upper graph) and interface displacement for
T = 25 - 31 with p = 1.05, e = .006, n = 1.35 and K = 11. The verticial magnification is 25.
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transferred to an compared with the three wavemode solution. However because
the value of fi was larger the interaction between waves on the two layers was
weaker giving a smaller increase in energy.

Using the method given in the first example, AC was found to be 0.0019 which
agrees to the accuracy quoted with that obtained from Figures 2(a) and 2(b). This
improved agreement compared with the first example follows from the fact that
there are only two interface modes with the time average amplitude of au being
0.02. Thus the assumption that the lowest interface mode dominates the interface
is very realistic in this example.

7. Discussion

The method used here of having both the interface and surface displacements
as unknown functions and allowing an arbitrary number of wave modes has
enabled us to solve the unsteady wave problem (for small amplitude waves) on an
open two layer fluid in greater generality than in the past.

We have found that although the analytical solutions with three wave modes
present are periodic, the solutions when an arbitrary number of wave modes are
present, are far from being periodic. We have also found no evidence that
solutions tend asymptotically towards a strictly periodic solution. The addition of
wave modes to complete the description of the motion allowed considerably more
energy to be transferred to the interface and increased the period of evolution
compared with the three wave mode solution. It was found in general that these
effects increased as did the number of wave modes as ju decreased.

The results on the periodicity contrast with the work of Bryant [4] for the one
layer case. Bryant found that the analytical solutions with three wave modes
present were periodic, and increasing the number of wave modes made the
solutions only slightly nonperiodic.

If the lower layer was assumed to be of finite and not infinite depth the
analysis would be longer but we would expect similar results to those found here.
However if ju was small, additional resonances would be possible and the
evolution more complicated.

Finally, to illustrate the time scale and the strength of the nonlinear interac-
tions considered in this paper the results from the first example in Section 6 are
expressed as dimensioned quantities. Initially, two surface waves with wave-
lengths 45m and 47m respectively and each of 0.6m amplitude generate an
interface wave with wavelength 905m and amplitude 0.93m. This takes 1380
seconds corresponding to 250 surface wave periods or 6 interface wave periods.
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Appendix

Defining

Fk = uj. cosh kp — kp. sinh kp,

Gk = u2. sinh kp - kp cosh kp

gives

Tk)

X (p - l)(uj - u>,uk

wlwk+l r T?
r l r k + l

p (p — l)pk\( Gk+i Gt

~T~ 73 II ^k+l~F Ul~F
2k cot \ rk+i ri

REk,l ~ -j1

GiGiGk+l

2 / 2
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RAk,l ~

R Ck.l

with uk = uBk, a, = uBI, uk + l = uBk+l.

RBk,l Y~2
- Ul~ Uk)RDk.l

utREk,l

- ul ~ uk)RDk,l

«* + / - W / + W*J ;

A = wB^, w, = wAI, uk + l = aAk + l.

- a , -

k + l

with wt =

1 k+l

°k + l

= uAk, u, = = u
Ak+l.

Although the expressions for RDkj and REk t simphfy when the explicit forms
of the frequencies uk, u, and «A+/ are substituted the above form was retained to
increase the efficiency of the program coding for the computer.
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