SYMPLECTIC COMPLEX BUNDLES
OVER REAL ALGEBRAIC FOUR-FOLDS

WOJCIECH KUCHARZ

(Received 28 April, 1988)

Communicated by J. H. Rubinstein

Abstract

Let X be a compact affine real algebraic variety of dimension 4. We compute the Witt group of symplectic bilinear forms over the ring of regular functions from X to \mathbb{C}. The Witt group is expressed in terms of some subgroups of the cohomology groups $H^{2k}(X, \mathbb{Z})$ for $k = 1, 2$.

1. Introduction

Let X be an affine real algebraic variety, that is, X is biregularly isomorphic to an algebraic subset of \mathbb{R}^n for some n (for definitions and notions of real algebraic geometry we refer to [3]). Denote by $\mathcal{R}(X, \mathbb{C})$ the ring of regular \mathbb{C}-valued functions on X (cf. [3, page 279]). Thus if X is an algebraic subset of \mathbb{R}^n and $X_\mathbb{C}$ is its Zariski closure in \mathbb{C}^n, then $\mathcal{R}(X, \mathbb{C})$ is canonically isomorphic to the localization of the affine ring $A(X_\mathbb{C})$ of $X_\mathbb{C}$ with respect to the multiplicatively closed subset

$$S = \{ f \in A(X_\mathbb{C}) | f(X) \subset \mathbb{C} \setminus \{ 0 \} \}.$$

In this note we study symplectic (that is, skew-symmetric) nonsingular bilinear forms over $\mathcal{R}(X, \mathbb{C})$. More precisely, let $W^{-1}(\mathcal{R}(X, \mathbb{C}))$ denote the Witt group of symplectic bilinear forms over $\mathcal{R}(X, \mathbb{C})$ (cf. Section 2 or [1, 2, 11]).
In [4, 6] (cf. also Section 2) we have defined the graded subring

\[H^{\text{even}}_{\text{alg}}(X, \mathbb{Z}) = \bigoplus_{k \geq 0} H^{2k}_{\text{alg}}(X, \mathbb{Z}) \]

of the cohomology ring \(H^{\text{even}}(X, \mathbb{Z}) \). Assuming that \(X \) is compact, nonsingular, \(\dim X = 4 \), we compute the group \(W^{-1}(\mathcal{H}(X, \mathbb{C})) \otimes \mathbb{Z}/2 \) and, in some cases, also the group \(W^{-1}(\mathcal{H}(X, \mathbb{C})) \) in terms of the groups \(H^{2k}_{\text{alg}}(X, \mathbb{Z}) \), \(k = 1,2 \). Combining this result with [4], we obtain that for “most” algebraic hypersurfaces \(X \) of the real projective space \(\mathbb{R}P^5 \) of sufficiently high degree, the group \(W^{-1}(\mathcal{H}(X, \mathbb{C})) \) is zero (the precise meaning of “most” is explained in Section 2). We also give examples of “exceptional” algebraic hypersurfaces \(X \) in \(\mathbb{R}P^5 \) of arbitrarily high degree with \(W^{-1}(\mathcal{H}(X, \mathbb{C})) \neq 0 \).

Let us recall that the real projective space \(\mathbb{R}P^n \) with its usual structure of an abstract real algebraic variety is in fact an affine variety [3, Theorem 3.4.4]. Hence every algebraic subvariety of \(\mathbb{R}P^n \) is also affine.

2. Results

Let \(A \) be a commutative ring with an identity element. A symplectic space over \(A \) is a pair \((P, s)\), where \(P \) is a finitely generated projective \(A \)-module and \(s : P \times P \to A \) is a bilinear nonsingular symplectic form (recall that \(s \) is said to be nonsingular if the homomorphism \(P \to P^* = \text{Hom}(P, A) \), \(x \to s(x, \cdot) \) is bijective). Every finitely generated projective \(A \)-module \(Q \) gives rise to a symplectic space \(H(Q) = (Q \oplus Q^*, h) \), where \(h((x, x^*), (y, y^*)) = x^*(y) - y^*(x) \) for \(x, y \) in \(Q \) and \(x^*, y^* \) in \(Q^* \). An isometry of symplectic spaces is an isomorphism of the underlying modules preserving the forms. The orthogonal sum of two symplectic space \((P_1, s_1)\) and \((P_2, s_2)\), denoted by \((P_1 \oplus P_2, s)\), where \(s((x_1, x_2), (y_1, y_2)) = s_1(x_1, y_1) + s_2(x_2, y_2) \) for \(x_1, y_1 \) in \(P_1 \) and \(x_2, y_2 \) in \(P_2 \). Two symplectic spaces \((P_1, s_1)\) and \((P_2, s_2)\) are said to be equivalent if there exist finitely generated projective \(A \)-modules \(Q_1 \) and \(Q_2 \) such that the symplectic spaces \((P_1, s_1) \perp H(Q_1)\) and \((P_2, s_2) \perp H(Q_2)\) are isometric. The set \(W^{-1}(A) \) of equivalence classes of symplectic spaces over \(A \) forms an abelian group with operation induced by orthogonal sum (we shall use additive notation). The equivalence class of \((P, s)\) in \(W^{-1}(A) \) will be denoted by \([P, s]\). The group \(W^{-1}(A) \), called the Witt group of symplectic bilinear forms over \(A \), is an interesting invariant of \(A \) (cf. [1, 2, 11]).

Now we need to recall some notions introduced in [4, 6].
Let V be a quasi-projective nonsingular n-dimensional complex algebraic variety. One defines the natural ring homomorphism

$$cl: A^*(V) \to H^*(V, \mathbb{Z}),$$

where $A^*(V) = \bigoplus_{k \geq 0} A^k(V)$ is the Chow ring of V and $H^*(V, \mathbb{Z})$ is the Čech cohomology of V, as follows. Let $Y \subset V$ be a closed irreducible subvariety of dimension k and let $\{Y\}$ be the elements of $A^{n-k}(V)$ represented by Y. Denote by $[Y]$ the fundamental class of Y in the Borel-Moore homology group $\tilde{H}^{BM}_2(Y, \mathbb{Z})$ (cf. [5] or [7, Chapter 19]). Then $cl(\{Y\})$ is the element of $H^{2n-2k}(V, \mathbb{Z})$ which corresponds, via Poincaré duality, to the image of $[Y]$ in $\tilde{H}^{BM}_2(V, \mathbb{Z})$ under the homomorphism $\tilde{H}^{BM}_2(Y, \mathbb{Z}) \to H^{BM}_2(V, \mathbb{Z})$ induced by the inclusion $Y \subset V$. Extending by linearity, cl defines a natural homomorphism $cl: A^*(V) \to H^*(V, \mathbb{Z})$. We set

$$H^{2k}_{\text{alg}}(V, \mathbb{Z}) = cl(A^k(V)).$$

Now let X be an affine nonsingular real algebraic variety and suppose for a moment that X is embedded in $\mathbb{R}P^n$ as a locally closed subvariety. We shall consider $\mathbb{R}P^n$ as a subset of the complex projective space $\mathbb{C}P^n$. Let X_C be the Zariski (complex) closure of X in $\mathbb{C}P^n$ and let U be a Zariski neighborhood of X in the set of nonsingular points of X_C. We set

$$H^{2k}_{\text{C-alg}}(X, \mathbb{Z}) = H^*(i_U)(H^{2k}_{\text{alg}}(U, \mathbb{Z})),
H^{\text{even}}_{\text{C-alg}}(X, \mathbb{Z}) = \bigoplus_{k \geq 0} H^{2k}_{\text{C-alg}}(X, \mathbb{Z}),$$

where $H^*(i_U)$ is the homomorphism induced by the inclusion mapping $i_U: X \to U$. One easily sees that $H^{\text{even}}_{\text{C-alg}}(X, \mathbb{Z})$ does not depend on the choice of U (cf. [4] and [6]).

Given a continuous complex vector bundle ξ on X, let $c_k(\xi)$ denote its kth Chern class (cf. [10]). We shall consider $\mathcal{R}(X, \mathbb{C})$ as a subring of the ring $\mathcal{C}(X, \mathbb{C})$ of continuous \mathbb{C}-valued functions on X (note that $\mathcal{R}(X, \mathbb{C})$ is dense in $\mathcal{C}(X, \mathbb{C})$ in the C^0 topology). If P is a finitely generated projective $\mathcal{R}(X, \mathbb{C})$-module, then $\mathcal{C}(X, \mathbb{C}) \otimes P$ is a finitely generated projective $\mathcal{C}(X, \mathbb{C})$-module. We shall denote by ξ_P the continuous complex vector bundle on X associated with $\mathcal{C}(X, \mathbb{C}) \otimes P$ in the usual way (cf. [12]).

Lemma 1. Let X be an affine nonsingular real algebraic variety.

(i) If P is a finitely generated projective $\mathcal{R}(X, \mathbb{C})$-module, then $c_k(\xi_P)$ belongs to $H^{2k}_{\text{C-alg}}(X, \mathbb{Z})$ for $k \geq 0$.

(ii) If v is in $H^2_{\text{C-alg}}(X, \mathbb{Z})$, then there exists an invertible $\mathcal{R}(X, \mathbb{C})$-module L with $c_1(\xi_L) = v$.

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 20 Mar 2019 at 00:29:49, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1446788700033152
PROOF. Both (i) and (ii) are quite straightforward consequences of the definition of $H^k_{\text{C-alg}}(X,\mathbb{Z})$; (i) is proved in [4, Theorem 5.3] (cf. also [6]), while (ii) follows from [4, Proposition 5.1, Remark 5.4] (cf. also the proof of Lemma 2 below).

Lemma 2. Let X be a compact affine nonsingular real algebraic variety of dimension 4.

(i) For every element u in $H^4_{\text{C-alg}}(X,\mathbb{Z})$, there exists a symplectic space (P, s) over $\mathcal{R}(X,\mathbb{C})$ with $c_2(\xi_P) = u$.

(ii) If (P, s) is a symplectic space over $\mathcal{R}(X,\mathbb{C})$ and $c_2(\xi_P) = 0$, then (P, s) is isometric to $H(\mathcal{R}(X,\mathbb{C})^n)$, where $2n = \text{rank } P$.

Proof. First observe that every finitely generated projective $\mathcal{R}(X,\mathbb{C})$-module M with $\text{rank } M \geq 3$ has a unimodular element. Indeed, since $\dim X = 4$, the complex vector bundle ξ_M admits a nowhere zero continuous section (cf. [9, Chapter 8, Proposition 1.1]). This implies, from [13, Theorem 2.2(a)], that M has a unimodular element.

In the proof of (i) we may assume that X is a locally closed subvariety of $\mathbb{R}P^n$. Let U be a Zariski neighborhood of X in the set of nonsingular points of the Zariski (complex) closure of X in $\mathbb{C}P^n$. By definition of $H^4_{\text{C-alg}}(X,\mathbb{Z})$, there exists an element v in $A^2(U)$ such that $H^*(i)(\text{cl}(v)) = u$, where $H^*(i): H^4(U,\mathbb{Z}) \to H^4(X,\mathbb{Z})$ is the homomorphism induced by the inclusion mapping $i: X \to U$. Clearly, we may assume that U is an affine variety (cf. for example the proof of [4, Proposition 5.1]). Now it follows from [7, Example 15.3.6] that there exists an algebraic (complex) vector bundle η on U with $C_1(\eta) = 0$ and $C_2(\eta) = v$, where $C_k(\cdot)$ stands for the kth Chern class with values in the Chow ring. Since $\text{cl} \circ C_k = c_k$ (cf. [5, (4.13)]), where this relation is proved for $k = 1$; by a standard argument, $\text{cl} \circ C_k = c_k$ must be true for all k), we obtain $c_1(\eta|X) = 0$ and $c_2(\eta|X) = u$, where the restriction $\eta|X$ is considered as a continuous complex vector bundle on X. It easily follows (cf. [4, Proposition 5.1]) that $\eta|X$ is topologically isomorphic to a vector bundle of the form ξ_Q for some finitely generated projective $\mathcal{R}(X,\mathbb{C})$-module Q. By the remark at the beginning of the proof, $Q = P \oplus F$, where F is free and $\text{rank } P = 2$. In particular,

$$c_1(\xi_P) = c_1(\xi_Q) = 0, \quad c_2(\xi_P) = c_2(\xi_Q) = u.$$

Let $L = \det P$. Since $c_1(\xi_L) = c_1(\xi_P) = 0$, the bundle ξ_L is topologically trivial (cf. [9, Chapter 16, Theorem 3.4]) and, by virtue of [13, Theorem 2.2(a)], L is free.
In order to finish the proof of (i) it suffices to show that there exists a
symplectic nonsingular bilinear form on P. This however is obvious because
$\det P$ is free and rank $P = 2$.

Now we turn to the proof of (ii). First suppose that rank $P > 2$. Then P has
a unimodular element and, by [2, (4.11.2)], (P, s) is isometric to a symplectic
space of the form $(Q, t) \perp H(\mathcal{R}(X, \mathbb{C}))$. Since, obviously, $c_2(\xi_Q) = 0$, using
induction with respect to rank P, one reduces the proof to the case rank $P = 2$. In that case, $c_2(\xi_P) = 0$ implies that ξ_P has a nowhere zero continuous
section (cf. [10, page 171, Problem 14-C]). Thus, by [13, Theorem 2.2(a)], P
has a unimodular element and, finally, by [2, (4.11.2)], (P, s) is isometric to
$H(\mathcal{R}(X, \mathbb{C}))$.

Let X be an affine nonsingular real algebraic variety. Observe that
$$G(X) = \{ 2u + v^2 | u \in H^4_{c-\text{alg}}(X, \mathbb{Z}), v \in H^2_{c-\text{alg}}(X, \mathbb{Z}) \}$$
is a subgroup of $H^4_{c-\text{alg}}(X, \mathbb{Z})$. Indeed, if u_i are in $H^4_{c-\text{alg}}(X, \mathbb{Z})$ and v_i are in
$H^2_{c-\text{alg}}(X, \mathbb{Z})$ for $i = 1, 2$, then
$$(2u_1 + v_1^2) - (2u_2 + v_2^2) = 2(u_1 - u_2 + v_1v_2 - v_2^2) + (v_1 - v_2)^2$$
is in $G(X)$.

For every finitely generated projective $\mathcal{R}(X, \mathbb{C})$-module Q, we have
$$c_2(\xi_{Q \oplus Q^*}) = c_2(\xi_Q \oplus \xi_{Q^*})
= c_2(\xi_Q) + c_2(\xi_{Q^*}) + c_1(\xi_Q)c_1(\xi_{Q^*})
= c_2(\xi_Q) + c_2((\xi_Q)^*) + c_1(\xi_Q)c_1((\xi_Q)^*)
= 2c_2(\xi_Q) - c_1(\xi_Q)^2$$
and hence, by Lemma 1(i), $c_2(\xi_{Q \oplus Q^*})$ is in $G(X)$. It easily follows (again
from Lemma 1(i)) that
$$\varphi_X : W^{-1}(\mathcal{R}(X, \mathbb{C})) \to H^4_{c-\text{alg}}(X, \mathbb{Z})/G(X)$$
$$\varphi_X([P, s]) = c_2(\xi_P) + G(X)$$
is a well-defined group homomorphism.

Theorem 3. Let X be a compact affine nonsingular real algebraic variety
of dimension 4. Then the homomorphism
$$\varphi_X : W^{-1}(\mathcal{R}(X, \mathbb{C})) \to H^4_{c-\text{alg}}(X, \mathbb{Z})/G(X)$$
is surjective and
$$\ker \varphi_X = 2W^{-1}(\mathcal{R}(X, \mathbb{C})).$$

In particular,
$$W^{-1}(\mathcal{R}(X, \mathbb{C}))/2W^{-1}(\mathcal{R}(X, \mathbb{C})) \cong W^{-1}(\mathcal{R}(X, \mathbb{C})) \otimes \mathbb{Z}/2$$
is canonically isomorphic to $H^4_{C\text{-alg}}(X, \mathbb{Z})/G(X)$. Moreover, if $2H^4_{C\text{-alg}}(X, \mathbb{Z}) = 0$, then φ_X is bijective.

Proof. It follows from Lemma 2(i) that φ_X is surjective.

Now we turn to the proof of $\ker \varphi_X = 2W^{-1}(\mathcal{R}(X, \mathbb{C}))$.

Let $[P, s]$ be in $W^{-1}(\mathcal{R}(X, \mathbb{C}))$. Then

$$\varphi_X(2[P, s]) = c_2(\xi_P \oplus \xi_P) + G(X)$$

$$= c_2(\xi_P \oplus \xi_P) + G(X)$$

$$= 2c_2(\xi_P) + c_1(\xi_P)^2 + G(X) = 0.$$

This shows that $2W^{-1}(\mathcal{R}(X, \mathbb{C}))$ is contained in $\ker \varphi_X$.

Suppose that $[P, s]$ is in $\ker \varphi_X$. Then $c_2(\xi_P) = 2u + v^2$, where u is in $H^4_{C\text{-alg}}(X, \mathbb{Z})$ and v is in $H^2_{C\text{-alg}}(X, \mathbb{Z})$. By Lemma 2(i), there exists a symplectic space (Q, t) over $\mathcal{R}(X, \mathbb{C})$ such that $c_2(\xi_Q) = -u$. Also, by Lemma 1(ii), one can find an invertible $\mathcal{R}(X, \mathbb{C})$-module L with $c_1(\xi_L) = v$. Let

$$(P', s') = (P, s) \perp (Q, t) \perp (Q, t) \perp H(L).$$

Then one obtains

$$c_2(\xi_{P'}) = c_2(\xi_P) + 2c_2(\xi_Q) - c_1(\xi_L)^2$$

$$= (2u + v^2) - 2u - v^2 = 0.$$

By Lemma 2(ii), $[P', s'] = 0$ and hence $[P, s] = -2[Q, t]$. Thus $[P, s]$ is in $2W^{-1}(\mathcal{R}(X, \mathbb{C}))$, which shows that $\ker \varphi_X$ is contained in $2W^{-1}(\mathcal{R}(X, \mathbb{C}))$.

To finish the proof of the theorem, we note that if $2H^4_{C\text{-alg}}(X, \mathbb{Z}) = 0$, then, by Lemma 2(ii), $2W^{-1}(\mathcal{R}(X, \mathbb{C})) = 0$ and hence φ_X is an isomorphism.

Theorem 3 immediately implies the following

Corollary 4. Let X be a compact affine nonsingular real algebraic variety of dimension 4. Assume that each connected component of X is nonorientable as a C^∞ manifold. Then the groups $W^{-1}(\mathcal{R}(X, \mathbb{C}))$ and $H^4_{C\text{-alg}}(X, \mathbb{Z})/G(X)$ are canonically isomorphic.

Proof. Let M be a connected component of X. Since M is nonorientable, $H^4(M, \mathbb{Z}) \cong \mathbb{Z}/2$ (cf. [8, (23.28), (22.28), (26.18)]). It follows that $2H^4(X, \mathbb{Z}) = 0$ and hence $2H^4_{C\text{-alg}}(X, \mathbb{Z}) = 0$. Now it suffices to apply Theorem 3.

Our next result says that for a “generic” hypersurface X of $\mathbb{R}P^5$ of sufficiently high degree, one has $W^{-1}(\mathcal{R}(X, \mathbb{C})) = 0$.

More precisely, let n and k be positive integers. Denote by $P(n, k)$ the projective space associated with the vector space of all homogeneous polynomials in $\mathbb{R}[x_0, \ldots, x_n]$ of degree k. If an element H in $P(n, k)$ is represented
by a polynomial G, then $V(H)$ will denote the subvariety of \mathbb{RP}^n defined by G.

Theorem 5. There exists a nonnegative integer k_0 such that, for every integer k greater than k_0, one can find a subset Σ_k of $P(5,k)$ which is a countable union of proper Zariski closed algebraic subvarieties of $P(5,k)$ and has the property that for every H in $P(5,k) \setminus \Sigma_k$, the set $V(H)$ is empty or $V(H)$ is nonsingular, $\dim V(H) = 4$, and $W^{-1}(\mathcal{R}(V(H),\mathbb{C})) = 0$.

Proof. Let n be an integer, $n \geq 3$. It is proved in [4, Theorem 4.10] (cf. also [6]) that there exists a positive integer k_0 such that for every integer k greater than k_0, one can find a subset Σ_k of $P(n,k)$ which is a countable union of proper Zariski closed algebraic subvarieties of $P(n,k)$ and has the property that for every H in $P(n,k) \setminus \Sigma_k$, the set $V(H)$ is empty or $V(H)$ is nonsingular, $\dim V(H) = n - 1$, and $H^4_{\text{alg}}(V(H),\mathbb{Z})$ is equal to the image of the homomorphism

$$H^{\text{even}}(\mathbb{RP}^n,\mathbb{Z}) \to H^{\text{even}}(V(H),\mathbb{Z})$$

induced by the inclusion $V(H) \subset \mathbb{RP}^n$.

Recall that $H^{2k}(\mathbb{RP}^n,\mathbb{Z}) \cong \mathbb{Z}/2$ for $0 < 2k \leq n$. Moreover, if $n \geq 4$, then the nonzero element u of $H^4(\mathbb{RP}^n,\mathbb{Z})$ is of the form $u = v^2$, where v is the nonzero element of $H^2(\mathbb{RP}^n,\mathbb{Z})$. Hence $2H^{2k}_{\text{alg}}(V(H),\mathbb{Z}) = 0$ for $0 < 2k \leq n$ and $H^4_{\text{alg}}(V(H),\mathbb{Z}) = G(V(H))$ for H in $P(n,k) \setminus \Sigma_k$.

With $n = 5$, the conclusion follows from Theorem 3.

Remark 6. Theorem 5 cannot be much improved. More precisely, for every positive integer k_0 there exists an integer k greater than k_0 and an element H_{2k} in $P(5,2k)$ such that $V(H_{2k})$ is a nonsingular algebraic hypersurface of \mathbb{RP}^5 and $W^{-1}(\mathcal{R}(V(H_{2k}),\mathbb{C})) \neq 0$. Let H_{2k} be the element of $P(5,2k)$ represented by the polynomial $x_0^{2k} - \sum_{i=1}^5 x_i^{2k}$. Clearly, $V(H_{2k})$ is a nonsingular algebraic hypersurface of \mathbb{RP}^5 diffeomorphic to the 4-dimensional sphere S^4. Moreover, by [4, Proposition 4.8],

$$H^4_{\text{alg}}(V(H_{2k}),\mathbb{Z}) = H^4(V(H_{2k}),\mathbb{Z}) \cong \mathbb{Z}.$$

Since $H^2(V(H_{2k}),\mathbb{Z}) \cong H^2(S^4,\mathbb{Z}) = 0$, one obtains

$$G(V(H_{2k})) = 2H^4_{\text{alg}}(V(H_{2k}),\mathbb{Z}).$$

Hence, by Theorem 3, $W^{-1}(\mathcal{R}(V(H_{2k}),\mathbb{C})) \otimes \mathbb{Z}/2$ is isomorphic to $\mathbb{Z}/2$, and $W^{-1}(\mathcal{R}(V(H_{2k}),\mathbb{C})) \neq 0$.

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 20 Mar 2019 at 00:29:49, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1446788700033152
References

Department of Mathematics and Statistics
University of New Mexico
Albuquerque, New Mexico 87131
U.S.A.