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1. Introduction. Let H be a real Hilbert space and let A: H— H be a nonlinear
operator such that A(0) = 0. We consider the eigenvalue problem

A(x)=Ax (A eR,x#0). (1.1)

Recall that Ay € R is said to be a bifurcation point for (1.1) if every neighbourhood of
(A0, 0) in R X H contains solutions of (1.1).

In the variational case—namely, when A is the gradient of a functional ¢ on H—a
classical theorem of Krasnosel’skii guarantees, under suitable assumptions on A and ¢,
the existence of infinitely many bifurcation points for (1). To that purpose, let us recall
that a functional ¢ : H— R is said to be weakly continuous if it maps weakly convergent
sequences of H into convergent sequences; while an operator A: H— H is said to be
completely continuous if it is continuous and compact (i.e., it maps bounded sets into sets
having compact closure). Krasnosels’kii result ([6], Theorem 6.2.2) can then be stated as
follows.

THEOREM 0. Assume that ¢ : H— R is weakly continuous and uniformly differentiable
in a neighbourhood of 0, and assume that A = grad ¢ : H— H is completely continuous.
Then, if A is differentiable at 0, every eigenvalue Ay#0 of the derivative A'(0) is a
bifurcation point for (1).

More precisely, for any sufficiently small r >0 there exists A, € R, x, € H with ||x,||=r
such that A(x,) = Ax,, and furthermore

A —Ae  (r—0). (1.2)

Recall that under the above assumptions A’(0) is a (linear) compact self-adjoint oper-
ator, so that “generically” it has infinitely many nonzero eigenvalues. We refer to [6] for
the concept of uniform differentiability, which is however easy to imagine.

Though the proof of the above Theorem is far from immediate, its basic lines run as
follows. Finding an x € H with |x|| = r >0 which solves (1.1), i.e.

grad ¢(x) = Ax : 1.3)

for some A e R, is equivalent to finding a constrained critical point of ¢ on the sphere
S, ={x € H: |x|| =r}. These critical points are obtained in [6] by a “minimax” process—
over a certain class of compact subsets of S,—that we shall shortly recall later. Formula
(1.2) for the eigenvalues is then a consequence of the differentiability of A in 0. Our point
in this note is that, if the differentiability assumption is strengthened, then more precise
information on the behaviour of A, as r—0 can be gained. To be clearer, consider
Taylor’s formula for A at 0:

A(x) = Tx + R(x), (1.4)
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where T=A'(0) and the remainder term R(x) is o(|jx]|) as |x||—0. Assuming
R(x)=0O(||x|I”) as ||x]| — 0 with p >1, we prove that rather than (1.2) one gets
A =x+00H) (r-0).

We also show that such condition appears naturally in the applications of bifurcation
theory to nonlinear elliptic eigenvalue problems like

{—Au =pulu+f(x,u)), xeQ

u(x) =0, x € 0Q

where Q is an open bounded subset of R” and f = f(x, s) is a function on Q X R satisfying
the usual growth assumptions in s: see e.g. [4], [8].

Remark. In the last decades, Theorem 0 has been established in greater generality.
Essentially, it is sufficient to consider any isolated eigenvalue of finite multiplicity of the
derivative A'(0) without requiring any compactness: see e.g. [10]. We believe that our
sharpening of the conclusion also holds in this generality.

2. Asymptotic behaviour of the eigenvalues. In order to prove our result, we need
recall the main points of the method followed in [6]. Let therefore (A;) be the nonzero
eigenvalues of the compact self-adjoint operator T = A'(0), repeated according to
multiplicities, and let (e;) be the corresponding orthonormal eigenvectors; we then have

(Tx,x) = i Ail(x,e)* VxeH. 2.1)

Let A, be one of the eigenvalues A;; suppose, to fix the ideas, Ao>0. Denote by H, the
eigenspace associated with A, and by H, the sum of the eigenspaces associated to the
eigenvalues A; = A, i.e.

H, = span{e; : Te; = Aje;, A; = Ag}.
We thus have (Tx,x)=Aq|x|*> if x € Hy, and (Tx,x)= A, |x||* if x € H;. Next set
R ={x e H: Pix #0}, with P; the orthogonal projection on H onto H,, and
M, ={F < S,N R ; F compact, noncontractible in R}. (2.2)

(Recall that a subset F of a topological space R is said to be contractible (in R) to the
point x; € R if there exists a continuous map U : [0,1] X F— R such that U(0,x)=x and
U(1,x) = x, for any x € F). We finally set
¢, = sup min ¢(x) (2.3)
FeM, xeF
and note this is a good definition since M, is nonempty, as we shall see later. Now,

Krasnosels’skii proves that, for r >0 less than some r,, ¢, is a critical value of ¢ on §,:
namely, there exist x, € S,, A, € R so that

¢(x,)=c, and A(x,)=A.x,. (2.4)

Moreover, the condition R(x) = A(x) — Tx = o(||x| )—expressing the differentiability of A
at 0—is used to show that A, — Ay, which proves the bifurcation from A,. We have the
following improvement to this result:

THEOREM 1. Under the same assumptions as in Theorem 0, suppose further that the
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remainder term R satisfies R(x) = O(||x||”) for x — 0 with p > 1. Then the eigenvalues A,

satisfy
A=A+ 00 (r—0). (2.5)
Proof. Let k>0, r,>0, p>1 be such that
IRC =k Ix1” (llxll <ro). (2.6)

Recall (e.g. [2], [9]) that ¢(x) = [} (A(tx), x) dr and so
$(x) = (Tx, x) + fo ' (R),x) d.
From (2.6) it then follows that
66) = KTr 0 = 1l [ 1RGo)) di <

Since p > 1, one thus obtains

p+1 )P+ (el <ro).

k k
}(Tx,x) —Er"’“s¢(x)s%(Tx,x)+-2-r”+l 2.7
for any x : ||x|| =r <r,. We can now estimate ¢, and prove that
k
le, — gr? = 3 ! (r<r). (2.8)

To this end, we need two basic properties of the family M, [6):
(i) S! e M,, where S!=S,NH,,
(ii) for any F € M,, there exists z € F such that P,z € H,.
From (i) it follows that

¢, = sup min ¢(x) =min ¢(x).
FeM, xeF xeS}

On the other hand if x € S?, r <r, (2.7) yields (on recalling that (Tx,x) = A, ||x]|* on
H,)

k
d(x) = 3ror” - Erpﬂ,
which gives one half of the estimate (8). To prove that

k
C,S%A072+Erp+l

we first let H, denote the orthogonal subspace to H,; thus, writing x =x; +x, with
x, = Pix € H,, x, € H,, we have (by virtue of (2.1)) (Tx,, Xx2) < Aq || x2]%
Let now F € M,; by (ii), there exists z € F such that z; = P,z € H, and so

(Tz,2) = (Tz1, 21) + (T2, ) = Aol 2> + 1 z211) = Ao 12 |1
On using this inequality in (2.7), we obtain

k
min ¢(x) < y(z) =§ror? + = 7™
xeF 2

and since this is true for any F € M,, the result follows.
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We now go on to estimate A,, the eigenvalue corresponding to x, € S, with ¢(x,) =¢,.
One has A,7” = (A(x,), x,) and so

1
A= Ap= ’3 [(A(xr)’ xr) - )‘O(xn xr)]
= % (A(x,) = Tx, + Tx, = Agx,, x,)

whence, by virtue of (2.6),
2

1 2 | (Tx,,x,) r
[A; = Agl = 3 lAG) = Tx, || l|1x,f + 2 £2__ Ao;
1 2 |(Tx,,x,) r

= +1 + = ATy +c — —

r2 krp r2 2 ¢(xr) Cr '\0 2

Finally, using (2.7) and the estimate (2.8) for ¢, we have
A, = Ag| < krP™1 4 2krP™ = 3krP! (r<r)
which concludes the proof of Theorem 1. O

3. An application. Let Q be an open bounded subset of R". Consider the nonlinear
eigenvalue problem

“Au=pu+f(x,u)), xeQ

{u(x) =0, x € 9Q

where f=f(x,t):QXR—R is a Caratheodory function (i.e. continuous in ¢ for a.a.
x € Q and measurable in x for any ¢ e R) satisfying the growth condition

Ifx, )| =<alt? (a.a.x e Q,teR) (3.2)

niiﬁn>21<p<wﬁn52

3.1)

for some a=0and some p:1<p<
n

We consider the real Sobolev space H = WE(Q), which is a Hilbert space under the
scalar product (u,v)= fqVu. Vv, and recall that a weak solution of (P) is a function
u € H such that

L Vu.Vv= [.L(L uv + J;f(x,u)v) Vv e H. (3.3)

If u # 0 we say that u is an eigenfunction of (3.1) associated to the eigenvalue u; note
that by (3.2) f(x,0) =0 for a.a. x € Q, so that u =0 is a solution for any u € R.

Let 0<pu, <pup=... denote the eigenvalues of the linear problem

{—Au =uu, xe
u(x)=0, xeaQ

THEOREM 2. Let po be an eigenvalue of (3.4). For any sufficiently small r >0, there
exists an eigenvalue p, of (3.1) with corresponding eigenfunction u, € H such that |u|| =r.
We have p,— uo as r—0 (i.e., po is a bifurcation point for (3.1)), and more precisely

we=po+ O™ as r—0. (3.5)

Proof. We shall limit ourselves to sketch the relevant points; for a detailed discussion

of semilinear elliptic problems like (3.1), standard references are e.g. [4], [8].

(3.4)
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Define operators T, R in H by the rules

(Tu,v)=J;uv, (R(u),v)=J;f(x,u)v

for u, v € H; then (3.3) becomes
(u,v) = p[(Tu,v)+ (R(u),v)] VveH
so that u is a weak solution of (3.1) if and only if
AWw):=Tu+R(u)=Au
where A = ! (u 520). A is the gradient of the functional

¢(u)=%Lu2+LF(x,u)

where F(x,t) = [5f(x,s) ds. We now check that
IR@HI =c |ul” (3.6)

for some ¢>0 and all u € H (]| . || is the norm in H). Indeed, using (3.2) and Holder’s
inequality with exponents p +1, (p +1)/p one has

pli(p+1) 1/(p+1)
<a [ wpnisa([ wre) ([ W)
Q Q Q

=a lulZrsay Wl vy = ¢ lluf? vl

where the last inequality is a consequence of the Sobolev embedding H < L?*'(Q); (3.6)
now follows readily from the definition of R. The compactness of this embedding—
together with well-known properties of the Nemitskii operator in L” spaces ([4],
[8])—also shows that R is not only completely continuous but in fact strongly continuous,
namely it maps weakly convergent sequences into strongly convergent ones. This in turn
implies that ¢ is weakly continuous and uniformly differentiable on each bounded subset
of H (see e.g. [1], Lemma 3.2 and [9], Theorem 4.2).

We thus see that all conditions of Theorem 1 are satisfied and—since the eigenvalues
of T are clearly the reciprocals of the eigenvalues p, of (3.4)—we deduce that if u, is one
such eigenvalue, then for small » >0 there exist a solution pair (A,,u,) € R X H of (3.1)
with |lu, || =r while A, = ug' + O(r"™") as r— 0. This yields immediately the correspond-
ing formula (3.5) for u, = A;

Uof(x,u)v

Remark. Recall (see e.g. [7], Remark 3.3) that the Nemitskii operator induced by a
Caratheodory function maps L”*'(Q) into LY(Q) (g = (p + 1)/p) if and only if there exist
a>0 and b € L(2) such that

Ifx, ) =alt? +b(x) (aa.x e Q,reR). 3.7

In the applications to eigenvalue problems, one takes b=0 in (3.6), so that
f(x,0)=0 for a.a.x € Q. In this sense we can say that (3.2) is the natural condition to
consider in the present context.
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