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FINITE COVERINGS BY 2-ENGEL GROUPS
LUISE-CHARLOTTE KAPPE

Baer’s characterisation of central-by-finite groups as groups possessing s finite covering
by abelian subgroups is the starting point for this investigation. We characterise groups
with a finite covering by 2-Engel subgroups as groups for which the subgroup of right
2-Engel elements has finite index; and the groups having a finite covering by normal 2-
Engel subgroups are exactly the 3-Engel groups among those having a finite covering by
2-Engel subgroups. The second centre of a group having a finite covering by class two
subgroups does not necessarily have finite index. However, a group has a finite covering
by subgtoups in a variety containing all cyclic groups if the margin of this variety in the
group has finite index.

1. INTRODUCTION AND RESULTS

Bernhard Neumann [7],suggested the following problem:

Given a group G covered by finitely many subgroups H,,H,,...,H, with inter-
section D. If Hy,H,,...,H, possess a certain property £, what can be said about D
in relation to G, or about G ilself?

His attention was drawn to this problem by the characterisation of central-by-finite
groups given by Reinhold Baer:

THEOREM A. ([7, 9, 4.16]) A group is central-by-finite if and only if it has a finite

covering consisting of abelian subgroups.

In [7, Section 6], B.H. Neumann raises the question as to whether Baer’s result
can be extended to finite coverings by Engel-groups and k-Engel groups. To give an
affirmative answer in the case of finite coverings by 2-Engel subgroups is the main topic
of this paper.

We define £x(z,y) = [z, y] = [[€:k—1y),¥] as the k-Engel word, where ¢;(z,y) =
[zy1 9] = [z,y] is the commutator of = and y. An element @ in a group G is a right
k-Engel element if [a,x ] =1 for all z in G. A group is a k-Engel group if [z, y] = 1
for all z,y € G. Let G be a group and let

L(G) ={a€GVz € G [az22] =1}

be the set of right 2-Engel elements. In {4], W. Kappe has shown that L(G) is a
characteristic subgroup of G'. For finite coverings by 2-Engel groups we can now for-
mulate our result.
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THEOREM 1. A group G is the union of finitely many 2-Engel subgroups if and
only if G/L(G) is finite.

It remains an open question in which way Baer’s characterisation can be extended
to finite coverings by k-Engel groups, particularly in light of the fact that for k > 3
the set of right k-Engel elements does not necessarily form a subgroup (see [5}).

-In [1], Theorem A was extended to the case of finite coverings by abelian normal

subgroups as follows.

THEOREM B. ({1, Theorem 2]) A group G is the union of finitely many abelian
normal subgroups if and only if G/Z(G) is finite and G is a 2-Engel group.

A direct analogue for finite coverings by normal 2-Engel subgroups is the following

theorem.

THEOREM 2. A group G is the union of finitely many normal 2-Engel subgroups
if and only if G/L(G) is finite and G is a 3-Engel group.

This theorem is based on Theorem 1, a characterisation of 3-Engel groups given
in (3], and a corollary which is in fact another characterisation of 3-Engel groups. (See
Theorem E and Corollary 6.) Theorem A brings to mind a familiar result which is
essentially due to Schur [10]. For other sources we refer to [9, page 102].

THEOREM C. If G is a group whose centre has index n, then G' is finite and
(G')'=1.

In light of this result and Theorem 1, we may ask whether the finiteness of G/L(G)
implies that the word subgroup €2(G) = {[z,2y]; =,y € G} is finite. However, this is
not the case. In the last section a group H is constructed with H/L(H) finite but
e2(H) is not finite (Proposition 8, (iv) and (viii)).

In this context we may raise the question as to whether the k-th centre has finite
index in a group if the group has & finite covering by subgroups of nilpotency class k.
The question has a negative answer, as shown by the same counterexample. The group
H has a finite covering by subgroups of class 2, but Z,(H) does not have finite index
in H (Proposition 8, (v) and (vi)).

It is however true that the finite index of the k-th centre implies that tlie group
has a finite covering by subgroups of class k. This is a consequence of our next result,
relating the finite index of a suitable margin to the existence of a finite covering by
subgroups in a variety V.

The margin of a word was introduced by P. Hall in [2]. Let ¢(z1,...,z,) be a
word in the variables z,,...,z,. The i-th partial margin of ¥ in a group G is defined
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as
P(G)={a€G;¥(g1,--+:aGis--+19n) = ¥(91,- -1 9ir---,9n) fOr g1,...,90n € G }.

The margin of ¢ in G is defined as
$°(G) = [ ¥i(G)-
i=1

The partial margins, and thus the margin of a word in a group G, are characteristic
subgroups in G.
Let V be aset of words and V the variety of groups defined by the set V. Consider

Pv(G) = [ #*(6)-
yev
We say that ¥7,(G) is the margin of the variety V in G, Obviously ¥}, (G) isin V.
The following result holds for a large class of words, the class of all commutator

words (see 8, page 4]).

THEOREM 3. Let V be a set of words and let G be a group. Assume that the
variety V defined by V contains all cyclic groups. Then G/¢3{,(G) finite implies that
G has a finite covering by subgroupsin V.

In general, the finiteness of G/¢¥},(G) does not imply that G has a finite covering
by subgroups in V, as the following example shows. Let (z) = z*. It can be shown
easily that for any group G

P*(G)={a€ Z(G); a* =1}.

Consider G = F x E,, where F is a finite group of odd order greater than one,
and E; an elementary abelian 2-group which is not necessarily finite. Now *(Q) =
E;, and G/E; = F is finite. But G is not the union of finitely many elementary
abelian 2-groups. Observing that ~vi(z,,...,%x) = [z1,...,2x], the lower central word
of weight k, and the k-Engel word ei(z,y) are commutator words, and that the
respective margins in a group G are Z;_1(G) (see [2]) and £;(G), we obtain the
following corollary.

COROLLARY 4. Let G be a group with G/Zy(G) or G/e;(G) finite. Then G
has a finite covering by subgroups of nilpotency class k, or by k-Engel subgroups,
respectively.

The converse of Theorem 3, that is, that the existence of a finite covering of a group
by subgroups in a variety V which contains all cyclic groups implies the finiteness of
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the index of ¥3,(G), is rarely true. As already mentioned, the counterexample H has
a finite covering by class 2 subgroups, however Z;(H) does not have finite index. In
addition, e3(H), the 2-Engel margin of H, does not have finite index, but H has a
finite covering by 2-Engel subgroups (Proposition 8, (iv) and (vi)).

2. SOME PRELIMINARY STEPS

The following result of Neumann is basic in the investigation of finite coverings of
groups by subgroups. It allows us to assume that all subgroups in a finite covering of a
group have finite index.

n
THEOREM D. ([8, 4.4]) Let G = |J H.g; where Hy,...,H, are (not necessarily
i=1

distinct) subgroups of G. Then if we omit from the union any coset H;g; for which
|G : H;] is infinite, the union of the remaining cosets is still all of G .

The next lemma collects essential facts about 2-Engel elements needed throughout
this paper.

LemMaA 5. ([4]) Let a € L(G). Then:
(i) [zy20] =1 forall z € Gy
(ii) ([v,y],[z,a]] =1 for all z,y € G;
(iii) [z,a*] = [z*,a]) = [z,qa])* forall z€ G, k€ 1.

Denote by (z€) the normal closure of an element z in G, and let ¢(G) denote
the nilpotency class of a group G. The following characterisation of 3-Engel groups
was given earlier by W. Kappe and the author.

THEOREM E. ([3]) The following conditions on a group G are equivalent:
(i) c((z®) <2 forall z € G;
(i) (=€) is a 2-Engel group for all z € G;
(iii) G is a 3-Engel group.

Here we prove the following corollary.

COROLLARY 6. A group G is a 3-Engel group if and only if (x®)L(G) is a 2-Engel
group for all z € G.

PRroOF: It suffices to show that for any 3-Engel group G the normal subgroup
(z®)L(G) is a 2-Engel group for all z € G, that is [ua,; vb] = 1 for all w,v € (z€) and
all a,b € L(G). The other direction follows trivially from Theorem E.

By [11], we have L(G) = €3 ;(G), where

£21(G) = {a € G;lazpy] = [z2y] forall 2,y € G },
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the first partial 2-Engel margin. Thus for a € L(G) we observe that [uazvb] =
[, vb]. The usual commutator expansion and observing that c({(z®)) = 2, as well as

Lemma 5 (i), yield

[uy2 vb] = [u, b,vb][""’]b[[u,v]b,vb]
= [us2 8] - [,8,0]" - [[w,0]", 8] - [[u, 0], 0]°
= ([u,b,v][u,v,b])b.

Thus we arrive at

(1) [ua,z v8] = ([u,b,v][x,v,b])".

n m
Let w = [] z%% and v = [] =" with &,e; = £1 and gi,h; € G. Observing

i=1 =1
that [u,b,v] € Z({z®)), we obtain by linear expansion that [u,b,v] is a product of
commutators of the form [z*9,b,z%"] with g,h € G. Without loss of generality it
suffices to show that [z9,b,2] = 1 for z,g € G, b € L(G). But this is an immediate
consequence of Lemma 5 (ii). It follows that each of the factors in the expansion of
[,b,v] equals 1. A similar argument shows [u,v,b] = 1. By (1) we conclude that
[va,z vd] =1. (]
The following lemma is needed for the verification of certain properties of the

counterexample in Proposition 8.

LEMMA 7. Let G be a group of class 3 and ¢ € L(G). Then a € £3(G) if and
only if [a,z,y]® =1 forall z,y € G.

PROOF: By linear expansion and observing Lemma 5 (i), we obtain
(2) (2,2 ay] = [2,y, al[z, @, Y][z,2 y)-
Using 1 = [a,2 2y] = [a,%,Y][a,y, =] together with the Jacobi identity yields
[z,y,0] = [a,2,9) 7"
This together with (2) implies
(3) [2:2 ay] = [a, 2, 4] 2 ).

If {a,z,y]® =1, it follows that [z, ay] = [z,2y]. By [11], we have already [za,z y] =
[z,29] for all z,y € G, a € L(G). Hence a € ¢3(G). Conversely, if a € }(G), we
obtain [a,z,y]* =1 by (3). ]
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3. PROOFs OF THE THEOREMS

PROOF OF THEOREM 1: Suppose G = |J H; with H; a 2-Engel group. By
=1

Theorem D, we can assume that [G : H;| < oo for all H; in the covering. Thus

[G:D] < oo for D= ﬂH Let h € D and g € G. Since g € H; for some i and
=1

D C H;, we have [h,g,g] =1, as H; is a 2-Engel group. Thus D C L(G), and hence
G/L(G) is finite.

Conversely, assume that G/L(G) isfinite. Consider [y,z,z] with y = g'a, = = g7
for g € G and a,b € L(G), %,j € Z. Observing again that L(G) = ¢} ,(G), we have

[yyzaz] = [gi,m,w] = [gi,b,z].

Purther expansion and use of Lemma 5 (iii) and (i) yield

[[gi,b], gjb] = [giabi b]([[ga b]7g]b)” =1
We conclude that [y,2 z] =1 for all y,z € (9)L(G). Thus {g)L(G) is a 2- Engel group.
Choose a transversal T = {g1,...,9n} of L(G) in G. Then G = U (9:)L(G),

t_

since each g € G can be written as g = g;w for some w € L(G) and some. g; € T'. By
the above, it follows that G has a covering by finitely many 2-Eungel subgroups. 1
PROOF OF THEOREM 2: Let G = CJ N; with N; a normal 2-Engel subgroup of
i=1
G. It follows immediately by Theorem 1 that G/L(G) is finite. For'every ¢ € G there
exists an N; in the normal covering of G with (z%) C N;. Hence every normal closure
(zC) is 2-Engel as a subgroup of a 2-Engel group N;. It follows by Theorem E that G
is a 3-Engel group.
Conversely, assume that G is a 3-Engel group and that G/L(G) is finite. Corol-
lary 6 implies that (z®)L(G) is a normal 2-Engel subgroup for every z in G. Choose
a transversal T = {g1,...,9n} of L(G) in G. Since each g € G can be written as

giw for some w € L(G) and some g; € T we obtain that G = U (¢€)L(G). By the
. Al
above, it follows that G has a covering by finitely many normal 2-Engel subgroups. R
PRrooF OF THEOREM 3: For g € G let Hy = (9)¢7,(G). Every element in H,
can be written as g'a with a € ¥}(G) and ¢ € Z. Let ¢(xy,...,z,) € V. For
aj €PY(G), 1; €Z, 57 =1,...,n, we have ¢(g'tay,...,g"as) = ¥(g,...,9™) =1,
since (g) € V. Thus H, €V forall g in G.

Choose a transversal T = {g1,...,gm } of ¥ (G) in G. Then G = U {g;7¢3(G),

J_
since each g € G can be written as g;a for some a € ¥3,(G) and some g; € T'. By the
above, each (g;)¥3(G) isin V. Thus G has a finite covering by subgroups in V. 1R
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4, A COUNTEREXAMPLE

For every prime p a p-group H of class 3 is constructed whose relevant properties
are stated in Proposition 8. The construction of H follows the usual practice. Starting
from a group isomorphic to the commutator subgroup of H, we will reach H by three

split extensions.

Construction of the Counterexample. Let E, denote an elementary abelian
p-group of countable rank, and Ty the direct sum of a countable number of cyclic
groups of order 9. Set V = (vy,v2,...), W = (w;,w2,...) and Z = (21,23,...) with

E, forp+#3,

Vewz=zZx
Ty for p=23.

Define X = (u) x V x W x Z with (u) = C, for p#3, and (u) = C, for p=3.
Let A = [X]({a), the semidirect product of X with a cyclic group (a), where
(a) @ Cp for p # 3, and (a) = Cy for p = 3. The automorphism induced by a on
X has order p, or 9, respectively. The action of a on the generators of X is given as

follows:

u,a]l =1, w;,a:zi_l, 1=1,2,...
» {[1 o

[vi,a] = [2i,0] = 1, 1=1,2,....

The defining relations of A are those of X, (4),and a? =1 for p# 3, 0r ¢® =1
for p = 3, respectively.
Similarly, let B = [A](b) with

C, for 3
(b) ~ P p#
Cy for p =3,

where b induces an automorphism of order p or 9, respectively, on A. The action of b

on the generators of A is given as follows:

(5) {[u,b}=1, [wi,b] = [z,8] =1, i=1,2,...

[a,b) = w, [vi,b] = =z, 1=1,2,....

The defining relations of B are those of A, (5), and b» =1 for p #£ 3, or b° =1
for p = 3, respectively.
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For the last extension we set

C = (C],Cz,...) =

E, for p#3,
Ty forp=3.

Let H = [B]-C. The elements of C induce automorphisms of order p for p # 3, or

order 9 for p = 3.
The action of the generators of C on the generators of B is given as follows:

(6)

{[b,cd:w;, [a,ci] = viy  [u,¢i] = 22, i=12,...,

[v_,-,c,-]=[wj,ci]=[25,c;]=1, ,7=1,2,....

The defining relations of H are those of B, (6) and those of C. This concludes

the construction of H .
For the notation in Proposition 8 we refer to that used in the construction of H .

PROPOSITION 8. Let H be the group constructed above. Then:
(i) H =(ae,b,c) and ¢(H) =3, precisely.

(i) exp H = p forp>5,
pa= p? forp=2,3;
C-H' for p # 3,

(iii) L(H)= { (a®,83,C - H') forp=3;
(iv) H/L(H) is finite, and H is the union of finitely many (normal) 2-Engel
subgroups;
(v) H is the union of finitely many (normal) class 2 subgroups;
(vi) H/e3(H) and H/Z,(H) are not finite;
(vii) e2(H) is not finite.

PROOF: The verification of (i) and (ii) is straightforward and will be omitted here.
(iii) Let A = a®tPc-z € H withc € C, z € X, a,8 € Z. The relations of H
together with ¢(H) = 3 imply that

[eis hy R] = ([cs) @, B][cq, b, a))*® = (zizi_l)‘aﬁ =1.

Hence C C L(H). Since H' C L(H) because of ¢(H) = 3, it follows that CH' C
L(H).

To establish the rest of the claim, let = = a®b?ch’ with ¢ € C, h' € H', and
a, € L. Using the relations of H, we obtain for s,t € Z

(7) [a*d*, 2, 2] = z*P*==Y for some z € Z.
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Let p=3.If s =3 and { =0, 0or s =0 and ¢t = 3, we have [a’},z,z] = 1 for
all z € H. Hence a®,b% € L(H) in this case.

Conversely, for any p,let 0 < s<p—-1,0<¢t<p—1, and set ¢ =c;. Then (7)
becomes

[a*dt, z, 2] = zf(ﬁ'_at).

It can be easily seen that for given s and ¢, not both equal to zero, there exist integers
a, 3 such that z:w"at) # 1, hence a’b® ¢ L(H) in this case. It follows that
L(H)C CH' for p# 3, and L(H) C (a®,b®,CH') for p = 3.

(iv) The finiteness of H/L(H) is an immediate consequence of (iii). The rest
follows by Theorem 1, Theorem 2, and the fact that ¢(H) = 3.

(v) First let p # 3. The 2-Engel group (g)L(H), g € H, is of nilpotency class 2.
Thus the finite covering by 2-Engel groups resulting from Theorem 1 is a finite covering
by (normal) subgroups of class 2.

This is not the case if p = 3, for example for a,b%,¢; € (a)L(H) we have
[a,b%,¢1] = z§ # 1. Thus c({a)L(H)) > 2. However, for p = 3 we will show that

H= | (a°*)C-H'is a finite covering by (normal) subgroups of class 2.
0 e,t<8

Set g = a’b*, 0 < s,t < 8, and let y;,y2,y3 € CH'. Using CH' C L(H) and
¢(H) = 3, we obtain by linear expansion

(8) [9°y1,97v2, 9*vs] = 9, v2, v3) [v1, 9, 9a)7-

Using the relations of H, we obtain [y;,g9] = g1 and [g,y2] = g» with ¢,,9; €
V x W x Z. Hence [g9,¥2,¥3] = [y1,9,y3) = 1. This together with (8) leads to
[9*v1,97y2,9%y3) = 1. Thus we may conclude that the above finite covering consists of
subgroups of class 2.

(vi) We will show ¢; # ¢; mod e3(H) for ¢ # j. By Lemma 7, it suffices to
establish [c.'c;l,a,, b]® # 1. Using the relations of H, we obtain

lese; 0, 8° = [eiy @, 8% [cj,0,8]7% = 27%2) £ 1.

Thus there exist infinitely many different cosets mod e3(H) in H. Since Z»(H) C
e3(H) by [11], we have that H/Z;(H) is not finite either.

(vii)) We observe that [a,bc;,bc;] = z} # 1. Thus Z3 C e,(H). Since Z* is not
finite, the claim follows. 1
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