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Abstract. The interferometry is the most promising way to directly observe exoplanets, their
spectra and surfaces at optical or infrared domain. The complex imaging process can be de-
scribed as the extraction of information from the data gathered by the interferometer. This
information can be treated to be independend on any a priori knowledge or the integration
process. In this case it is analyzed in a classical way. In fact, the imaging of exoplanets is not
the classical way of the data reconstruction. The best extraction of information requires all
accessible a priori knowledge. This is the bayesian way. The knowledge gathered during an inte-
gration is also contributing as a priori information for futher image reconstruction. We disscuss
both approaches supporting the analysis with the estimates of information flow through the
interferometer and examples of simulations of imaging.
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1. Introduction

The motivation for this investigation comes from multidisciplinary point of view on
exoplanet imaging science. Interferometers seem to be the best tools to image exoplanet
(Angel & Woolf (1986), Bracewell (1978)). Serving first as a detectors of exoplanets
in IR and visible domain (Léger (1999)), they are expected to provide first resolved
images of exoplanets surfaces and their features (Labeyrie (1995)). This will allow the
detailed investigation of their properties leading to the determination of life signs (Woolf
& Angel (1998), Des Marais et al. (2002)). The main reason for this work is to understand
the way how the interferometer process the information and hence, how to recover this
information, classically or in a Bayesian way. We simulate the interferometric imaging
process and investigate the information flow through different steps.

2. Simulations of exoearths interferometric imaging
2.1. Observing conditions

We start the simulation with the parameters typical for Earth-like planet placed at 10
pc from the Solar System. The interferometr is pointed towards the planet which is 1
AU far away from its host star. This results in planet angular size of 2.0645 - 107! rad
or 8.5 parcsec. The field of view (FoV) of interferometer was set to 40 parcsec yielding
the ratio FoV/D = 4.7, where D is planet angular diameter. The star flux is completely
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Figure 1. From left to right: the interferometer array design, its Fourier transform, the
corresponding optical transmission function or interferometer response function for R and B
band.

Figure 3. The flux pattern. The multiwavelength image of Earth taken by Apollo crew.

removed and has no influence on the reconstructed image. To simulate the flux coming
from the distant planet we adapted the image of Earth as taken from space by Apollo
crew (Fig. 3). The natural RGB components are then separated and serving as an image
of exoearth for particular bands.

2.2. Interferometer setup

We have designed a space interferometer composed of sparse array of free flying tele-
scopes. The array forms a pattern that corresponds to seven arms star with 3 rings (left
of Fig. 1). The most distant spaceships are placed at 75 km from the centre, yielding
150 km of synthesized aperture. Such design results in interferometer response function
or square modulus of Fourier transform of the initial array as shown on Fig. 1, right.
Such optical transmission function yields

the patterns given on Fig. 2, with left picture for R (800 nm) band and next one for B
(400 nm). The corresponding interferometer response functions (Absil (2001)) are shown
as 3D plots on Fig. 2 for all 3 bands. The interferometer is not allowed to rotate, since
we are interested only in its general information processing and not in the detailed (u,v)
coverage necessary for accurate imaging. The instrument also stay tuned for the initial
baseline length for all bands. No delay lines are assumed nor phase shifts introduced or
we assume that all occuring phase shifts are compensated by achromatic phase shifters.
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Figure 4. The data provided by the instrument for R,G,B bands and combined multichannel
data on the left. The same data affected by instrumental noise with SNR=10.

Figure 5. The MEM (left) and ML (right) deconvolved image of noise affected data after 50
iterations.

Figure 6. Multiscale entropy H (X) for noise free data reconstruction compared with the mul-
tiscale entropy of initial data. Solid line is the original Apollo image, dashed — convolved inter-
ferometric data, dotted the deconvolved one, MEM, left and ML, right. All data is normalized
in the way that absolute value of Apollo data’s maximum yields always 1.

2.3. Image content processing and extraction of information
2.3.1. Standard entropy

The information content of any signal or image is traditionally measured by its entropy,
a term coming from
thermodynamics and communication theory Shanon (1948). It is expressed as

X) =" pilog(ps) (2.1)
k=1

where py is the probability of occurence of pixel k among all N pixels of image X and
typically taken from histogram.

The information obtained by investigation of entropy may have different interpretation
and usually depend on the image content. In astronomy, the flat image has usually very
low Shannon entropy and very noisy image has high entropy. We usually look for the
level of entropy that combines the high image information content.

or desired information, with the lowest possible level of noise and disturbance coming
from point spread function (PSF) of the instrument that served to provide the image.
Havin the entropy as common measure of image ordering we use it as a tool to estimate
the information flow through the interferometer and reconstruction process. To have
another measure of this process we also adapt Burg entropy that has slightly different
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Figure 7. Mean entropy E; vector for R component for all scales in the case of noise free simu-
lation. Solid line is the original Apollo image, dashed — convolved data, dotted the deconvolved
one, MEM, left and ML, right.
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Figure 8. Multiscale entropy H(X) for noise affected data reconstruction compared with the
multiscale entropy of initial data. Solid line is the original Apollo image, dashed — convolved
data, dotted the deconvolved one, MEM, left and ML, right. All data is normalized in the way
that absolute value of Apollo data’s maximum yields always 1.
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Figure 9. Mean entropy E; vector for R component for all scales in the case of noise affected
simulation. Solid line is the original Apollo image, dashed — convolved data, dotted the decon-
volved one, MEM, left and ML, right.

definition

Hp(X) ==Y In(X(k,1)). (2.2)
k l

Another definitions of entropy are also widely used but we found them less useful for
the purpose of our study.

2.3.2. Multiscale entropy

Since the introduction of wavelets into contemporary science a powerful tool of signal
and image analysis has become accessible. The power of this approach comes from the
orthogonality of the wavelet base functions and extremally wide range of their diversity,
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Figure 10. Normalized standard Shannon entropy of noise free case. Solid line is the original
Apollo image, dashed — convolved data, dotted the deconvolved one, MEM, left and ML, right.
All data is normalized in the way that absolute value of Apollo data’s maximum yields always 1.

Figure 11. Normalized standard Shannon entropy Hgs of noise affected case. Solid line is the
original Apollo image, dashed — convolved data, dotted the deconvolved one, MEM, left and
ML, right. All data is normalized in the way that absolute value of Apollo data’s maximum
yields always 1.
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Figure 12. Normalized Burg’s entropy Hp of noise affected case. Solid line is the original Apollo
image, dashed — convolved data, dotted the deconvolved one, MEM, left and ML, right. All data
is normalized in the way that absolute value of Apollo data’s maximum yields always 1.

in opposition to Fourier basis. The strength of wavelets comes also from their ability to
express the signal or image both in space and frequency domain at the same moment.
A very helpful feature of wavelet based image decomposition is the ability to measure
an image multiscale entropy. Such measure provides not only the estimate of image
information content but also a very practical estimation of this observable on different
scales. As the important information in the image has always multiscale character the
mutual dependences between scales are very useful in image restoration, reconstruction
and analysis both in classical or Bayesian case. Hence, we also estimate the multiscale flow
of information through the ideal interferometer. The formulation of multiscale entropy
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Figure 13. Normalized Burg’s entropy Hp of noise affected case. Solid line is the original Apollo
image, dashed — convolved data, dotted the deconvolved one, MEM, left and ML, right. All data
is normalized in the way that absolute value of Apollo data’s maximum yields always 1.

express the formulae:

[
HX) =303 hwi) 23)

where h(w; = In(p(w;(k)))). In order to study the behavior of information at a given
scale we use mean entropy vector defined as:

1 N
=¥ > h(w;r) (2.4)
k=1

It should be stressed that in all cases we are not normalizing the above vector by corre-
sponding noise models. All simulation results were deconvolved with PSF by Maximum
Likelihood (ML) and independently by Maximum Entropy (MEM) algorithms.

3. Results
3.1. Noise free case

The simulation of a perfect observing run with nonrotating interferometer yields the
image shown on Fig. 4, left. There is no noise added on each level of simulation. For once
established setup we have performed three observations with changing light wavelenght A.
Due to low resolution coming from poor ((u,v)) coverage the details of planet surface are
hardly resolved. The information flow during noise free imaging is shown on Fig. 6. This
picture illustrates multiscale entropy derived after application of ML or MEM algorithm
compared to original image. The behavior of mean entropy at different scales is shown
on Fig. 7.

3.2. Realistic noisy imaging

The noisy case is shown on Fig. 4, right. During simulation we have added noise according
to given signal-to-noise ration (SNR) in the same way as Boker & Allen (1999). SNR was
set to 10. Then the data was processed by inverse FFT what yielded the simulated
observation output, Fig. 4. The image in each particular band was then deconvolved by
MEM or ML. The results for both technics are shown on Fig. 5. Then we compared
multiscale entropies obtained from MEM and ML as seen on Fig. 8 and their mean
vectors Fig. 9.
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4. Discussion
4.1. Classical imaging

The term “classical imaging” of exoplanet describes well what we really do through this
work. It means the observation and “real” data reconstruction from individual “observed”
images on particular wavelengths. Even if we apply the Bayesian inference by means of
MEM, ML or CLEAN, usually used in interferometric data reconstruction, the entire
process should be classified as classical due to no prior knowledge on an observed object.
Our results suggest that in general the interferometer lowers Hg (or increase Hp). It
can be noticed that MEM (Figs. 10 and 11) is recovering the data to the original data’s
entropy level introducing some variation between components while ML reconstruction is
oscillating around the level of interferometric data entropy. We see on multiscale entropy
plots, Figs. 8 and 6 the little difference of H after processing data by an array although
it rises up significantly after reconstruction. After reconstruction mean entropy vector
E; reveals significant loss of entropy on higher scales, responsible for details.

However, we have to keep in mind the significant simplifications coming from “naive”
design of ideal interferometer and the assumed face-on position of planet that never takes
place in real observation where the terminator must be seen.

The information processing in the procedure of interferometric imaging is crucial to
understand where the information is being dissipated. Then an effective algorithm of its
recovering may be constructed, knowing the precise reasons and the rate of the informa-
tion leakage, like the importance of noise influence, PSF variations, disturbing signals like
zodiacal light or star leakage, unknown error budget, etc. Thus not only the high-level
interferometer’s model is necessary, but also the model of information processing through
the instrument as well as its precise definition. Such model would help in optimization
procedure of final instrument design and would lead to support data recovering algo-
rithms. Usually, the initial data is able to be reconstructed from very ill-posed final data
taking advantage of some known or predicted structures and knowledge coming from
other sources or modalities. In the case of interferometric imaging the other modalities
are different wavelength observations. As they all combine the real image being similar
in information content on all scales they may serve as a basis for novel Bayesian strategy
recovering the data due to the high correlation between different modalities.

4.2. Bayesian imaging

The possible Bayesian inference applied to exoplanet imaging can be based on the esti-
mated level of compression of the obtained multichannel data. It is usually the multiscale
measure of information content of the image data. Some prior knowledge coming from
distant wavelength observation that are going to be done in advance to optical imaging,
i.e. those in FIR or NIR, are also going to provide some spectroscopic information that
corresponds to some surface features like green or blue spots, clouds, etc. The high level
of correlation between multichannel (optical) data and that comig from other modalities
may serve as a basement for required methods (Molina, R. & Mateos, J. (1997)). The
optimization of all accesible data and the careful analysis of its information content may
lead to the Bayesian, most probable model based on the set of the most probable values
of parameters. Due to rather poor present understanding of space borned and placed
real interferometer, the proper design of its performance as a noisy channel that pro-
cesses, transmitts and looses the information is not known yet but should be important.
The first, poorly resolved real observations of exoplanet, will also provide the basis or
avaraged data for optimisation of such future Bayesian algorithms.
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5. Conclusions

We have discussed the basic concepts of information transfer through the interferom-
eter. There is a leakage of information on higher scales of wavelet decomposed data.
More advaced study are necessary to understand the ways of further improvements of
information restoration process, both in classical and Bayesian way. The latter seems to
be the proper and promising way for future interferometric imaging of exoplanets.
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