
SPECTRAL THEORY FOR A CLASS OF NON-
NORMAL OPERATORS II 

HARRY GONSHOR 

1. Introduction. In a previous paper (2) we have developed a spectral 
theory and a unitary equivalence theory for a certain class of non-normal 
operators. We dealt primarily with operators which were called J2 operators. 
At present we are interested in studying the uniformly closed rings generated 
by such operators. 

The notation will be the same as in (2). 

2. Classification of J2 operators. In view of the uniqueness of the pro­
jection valued measure on Z \J Q for a given operator B, operators may be 
classified by the nature of the collection of null sets in the measure. 

(2.1) A pure J 2 operator is a 72 operator whose associated projection valued 
measure satisfied E(Z) — 0. This is the same as saying that the normal kernel 
isO. 

(2.2) A boundedly pure J2 operator is a pure J2 operator which has the 
additional property that there exists an a > 0 such that the measure on Q is 
concentrated on the set (X, /*, a) where a > a. 

(2.3) A separated 72 operator is a / 2 operator whose associated projection 
valued measure restricted to Q is concentrated on the set (X, /x, a) where 
a > a for a given positive a. (Note that there is no restriction on the measure 
restricted to Z.) 

Even though the concept of a separated operator might seem artificial, it 
will be seen that it comes up naturally in the study of uniformly closed rings. 
The separated case turns out to be simple whereas strange difficulties appear 
in the non-separated case. It will be convenient to annex the points (X, /x, 0) 
with X > n to Q to obtain the space Çœ in dealing with non-separated 
operators. 

3. The abstract spectrum. We are given that B = j\dE(\) where R 
is a projection valued measure on Z\J Q. The abstract spectrum of A will 
consist of points i n Z U Qœ. 

(3.1) p is in the discrete spectrum <-> E(p) > 0. 
(3.2) p is in the spectrum <-> every open set containing p has positive 

measure. (Open sets in Z U Qœ are defined in the natural manner, that is, 
unions of open sets in Z and open sets in Qœ regarded as a subspace of 

z e z e z.) 
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(3.3) p is in the continuous spectrum <-> p is in the spectrum but not in the 
discrete spectrum. 

It is easily seen that for normal operators the definitions are equivalent to 
the usual definitions. 

LEMMA 3.1. 

(a) B is a pure J2 operator <-> spectrum of B C (?a>-
(b) B is a separated J2 operator <-» spectrum of B C Q^J Z. 
(c) B is a boundedly pure J\ operator <-> spectrum of B C Q> 

The proofs are trivial. Note that the measure is concentrated on a compact 
set (in fact the set {X} \J {X, /*, a} where |X|, |/x|, a < ||-4||). 

LEMMA 3.2. p is in the spectrum <-> every set of a complete base of neighbour­
hoods of p has positive measure. 

LEMMA 3.3. The spectrum is compact. 

Proof. Clearly the spectrum is bounded. Suppose p $ K where K is the spec­
trum. Then there exists an open set U containing p of zero measure. By 
definition U C\ K is empty. This shows that the spectrum is closed. 

LEMMA 3.4. The complement of the spectrum has measure zero. 

Proof. It suffices to remark that Z U Qœ has a countable base for open sets. 

LEMMA 3.5. The spectrum K is the unique minimal closed set the complement 
of which has measure zero. 

Proof. Suppose C is a closed set with the above property. Then Kf \J C is 
an open set of measure zero. Hence Kf \J C C K'. Thus K C C and this 
proves the minimality of K. 

COROLLARY 1. All non-empty open subsets of K in the relative topology 
induced by K have positive measure. 

COROLLARY 2. If L is a null set in K, K — L = K. 

For completion we state two further lemmas the proofs of which are rela­
tively simple. 

LEMMA 3.6. A compact set K is the spectrum of some operator if and only if 
KTYQ = KHQœ. 

LEMMA 3.7. Xo is in the ordinary spectrum of B if and only if the abstract 
spectrum of B contains either X0, a point of the form (X0, X, a) or a point of the 
form (X, Xo, a). 

4. Uniformly closed rings. The spectrum will play an important part in 
the study of the uniformly closed ring C(A, A*) generated by A and A*. It 
will be convenient to break up the study of these rings into cases. 
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Case 1. A is boundedly pure. It can be seen from (2) that the weakly closed 
ring R{A, A*) generated by A and A* corresponds to the set of all Lœ second 
order matrix functions on Q. By Lemma 3.4 the spectrum of A may be used as 
the domain space. The task ahead of us is to see what happens to C(A, A*) in 
this correspondence. 

Suppose B Ç C(A, A*). Then B can be uniformly approximated by poly­
nomials in A and ^4*. Let Bn be a sequence of polynomials approaching B 
uniformly. Then Bn{t) approaches Bit) uniformly except on a null set, hence 
by Corollary 2 to Lemma 3.5, Bn(t) approaches B(t) uniformly on a dense 
subset of K. Since Bn{t) is continuous for all n, B(t) may be redefined on the 
null set if necessary so as to become a continuous function on K. The new 
B(t) still corresponds to B. 

Strictly speaking B corresponds to an equivalence class of matrix functions 
on K. However, by Corollary 1 to Lemma 3.5, there is at most one continuous 
function in any equivalence class. Thus we have a well-defined mapping from 
operators in C(A,A*) into the set of continuous second order matrix functions 
onK. It is easily verified that this mapping is norm-preserving and an algebraic 
isomorphism into. Note that some caution is required in the proof since the 
map on C(A,A*) is not just the restriction of the map on R(A,A*). For 
example, to verify that 

the continuity of B(t) must be used as well as the fact that on K, open sets 
have positive measure. Since K is compact it follows from (3) that the mapping 
is onto. Thus we have proved 

THEOREM 1. The uniformly closed * ring generated by a boundedly pure J% 
operator A is algebraically isomorphic and isometric to the algebra of all continuous 
second order matrix valued functions on the spectrum of A. 

By * ring is meant a ring which is closed under the adjoint operation. 
This technique gives an alternative way of proving the corresponding well-

known theorem for normal operators. 

Case 2. A is separated. It is easy to generalize Theorem 1 to this case. 
K is the union of a compact set in Q with a compact set in Z. Every B £ C 
(A j A*) can be decomposed in such a way that B(t) is a continuous second 
order matrix valued function on t restricted to Q, and a continuous complex 
valued function on t restricted to Z. Again using (3) we obtain 

THEOREM 2. The uniformly closed * ring generated by a separated operator A 
is algebraically isomorphic and isometric to the algebra of all functions on the 
spectrum of A which are continuous second order matrix valued on K C\ Q and 
continuous complex valued on K C\ Z. 

Case Z. A is not separated. This case is more difficult than the separated 
case because not all continuous functions on the spectrum are obtained. For 
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example, if X, /x, and (X, /x, 0) are in the spectrum, and if / is a uniform limit 
of polynomials, then 

n^-(^ /J. 
Thus the continuous functions that correspond to operators in C(A ,A*) satisfy 
certain conditions. 

At any rate, the previous technique remains valid up to the use of (3). 
Thus we have a one-one norm-preserving mapping of C(A, A*) into the set of 
all continuous functions on the spectrum. (It is understood that the values are 
matrices of order two on Qœ and complex numbers on Z.) It is clear that all 
functions g in the image have the following property when restricted to 
(Çoo ~~ (?) ^ % '• There exists a continuous function h on the complex numbers 
z such that g(X) = h (X) for all X in the spectrum and 

for all (X, /x, 0) in the spectrum. It will be shown that this condition is also 
sufficient for a continuous function to be in the image. 

Let g{t) be any continuous function satisfying the above condition. Choose 
a polynomial function fit) which satisfies \g(t) — f{t)\ < | e for all t which 
either are in the part of the spectrum which is in z or have the property that 
(X, /, 0) or (t, X, 0) is in the spectrum for some X. It follows immediately that 

\\g(t)-Kt)\\<h,ta{Qm-Q)\JZ. 

By uniform continuity we can even guarantee that \\g{i) — f(t)\\ < Je for 
all t in the spectrum except possibly those of the form (X, /x, a) for a > a 
for some positive a. Now consider the set of all (X, /x, a) in the spectrum 
which satisfy a > \a. There exists a polynomial h{t) which satisfied 
\\g(t) — h(t)\\ < \t for all such a. By the same technique as in (3) it may be 
shown that there exists a positive definite self-ad joint matrix valued function 
e{t) satisfying ||e(J)|| < 1 for all t which is a uniform limit of a sequence of 
polynomial functions, and satisfying e{t) — 1 for all (X, /x, a) such that a > a 
and e(t) = 0 for all / G Z and all (X, /x, a) such that a < \a. Note that even 
though separation of points fails to hold in the spectrum, the proof goes 
through since separation fails only among points in Qœ — Q and Z. Consider 
eh + (1 — e)f. It is easily verified that 

| | g _ [eh+ (l-e)f}\\ < e 

for all /. This completes the proof. 

THEOREM 3. The uniformly closed ring generated by a J2 operator is alge­
braically isomorphic and isometric to the algebra of all functions g on the spectrum 
K of A which are continuous complex valued on K C\ Z and continuous second 
order matrix valued on K C\ Qœ, and which have the additional property that there 
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exists a continuous complex valued function f such that g(t) — /(/) for all t in 
K C\Z and 

^ • ° > = ( / ( o % : , ) 
or all (X, M, 0) in K C\ Qm. 

This theorem which generalizes the previous theorems illustrates the funda­
mental distinction between separated and non-separated operators. 

We conclude this section with certain remarks concerning the equality of 
C(A,A*) and R(A,A*). Further details are found in (1). The equality 
R(A,A*) = C(A,A*) is equivalent to the statement: Every open set in 
spectrum A differs from a closed open set by a null set if A is separated. 
Otherwise, R(A, A*) is never equal to C(A, A*). 

5. A counter-example. This section is independent of the rest of the 
paper. 

It is known that all operators A satisfying A2 = 0 are J2 operators. (A proof 
may be found in (1).) However, the corresponding statement for operators A 
satisfying An = 0 is not valid. In fact, we give an example of an operator A 
satisfying A3 = 0 on a space of Ko dimensions which is irreducible. 

Let ai, bi, b2 . . . bn . . . Ci, c2... cn . . . be a basis of the Hilbert space H. Let 

Aa\ = bi, Ab\ — c\, Abi+\ = ct + ci+i i > 1, Act = 0. 

Clearly A is bounded and Az =. 0. Suppose H = E © F where E and F reduce 
A. We show that either E or F must be H. 

LEMMA 5.1. If X&i + L M ^ Z + HVJCJ £ E and Wai + Eju'^i + X>'x/ 6 F 
then either Xi or \ \ = 0. 

Proof. Let A2 operate on each. Then Xî i 6 E and XVi 6 F. Hence Xi or 
X'i = 0, otherwise E and F would not be orthogonal. 

It follows that E or F is orthogonal to a\. Thus a\ Ç E or F. Suppose without 
loss of generality that a\ £ E. Then b\ = Aa\ 6 E and c\ = Ab\ Ç E. 

LEMMA 5.2. ô2 G E. 

Proof. Suppose 

X2&2 + X) ^J>i + X M ẑ € F. 
i>2 

Then 

4̂ \2b2 + X X^ + £ M^. g F. 
L z>2 J 

In the latter expression the coefficient of d is X2. Since c\ Ç £ , X2 = 0. Since 
this is true for all points in F, b2 is orthogonal to F and is hence in E. 
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Now C2 = Ab2 — Ci (z E. By induction all the J's and c's are in E thus 
showing that E = H. 
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