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Abstract
This paper proposes an options pricing model that incorporates stochastic volatility, stochastic interest rates, and
stochastic jump intensity. Market shocks are modeled using a jump process, with each jump governed by an
asymmetric double-exponential distribution. The model also integrates a Markov regime-switching framework for
volatility and the risk-free rate, allowing the market to alternate between a finite number of distinct economic states.
A closed-form solution for European option pricing is derived. To demonstrate the significance of the proposed
model, a comparison with various other models is performed, and the sensitivity of the various model parameters
is illustrated.

1. Introduction

A derivative contract is a financial instrument whose value is determined by the performance of an
underlying asset. Options are a specific type of derivative that grants the holder the right, but not the
obligation, to purchase or sell a fixed quantity of the underlying asset. The underlying asset may be
bought (a call option) or sold (a put option) at a strike price and within a specified time (expiry time).

While the strike price and expiry time are predetermined in vanilla options, exotic options may be
based on multiple underlying assets, the strike price may depend on several market factors, and numer-
ous exercise dates may be possible. The two most prominent options are European and American, each
with distinct exercise time conditions. There are many more options, including Asian and Bermudan
options.

European options can only be exercised when the options contract expires, which is predetermined
when the contract is issued. On the other hand, American options can be exercised on any trading day
before the options contract expires. Options pricing has been a significant topic of theoretical exploration
and practical implementation.

Fischer Black, Myron Scholes, and Robert Merton made a significant contribution to this field. Black
and Scholes [1] proposed a model to price the European options with the assumption that the underlying
asset follows the geometric Brownian motion. The analytical formula is derived for European option
prices under this model. Despite its widespread use, the simplified assumptions made for analytical
simplicity and tractability may not fully capture real-world complexities, potentially leading to some
degree of mispricing.

Numerous empirical studies have shown that volatility clustering is a distinctive feature of the equity
return rates [8]. The distribution of equity return rates exhibits high peaks and fat tails [2]. A nega-
tive correlation exists between share prices and volatility [6]. Lastly, mean reversion in return rates is
observed [7]. The Black–Scholes model does not account for these additional characteristics.
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Two types of nonconstant volatility models are widely studied in the literature to relax the assump-
tion of constant volatility: local volatility and stochastic volatility. In the local volatility model, volatility
is considered a deterministic function of the underlying asset price and time. In the stochastic volatility
models, volatility is considered a different stochastic process, allowing for dynamic changes. Numerous
authors have addressed the options pricing problem under stochastic volatility models. However, finding
a closed-form pricing formula for European options becomes complicated after introducing an addi-
tional stochastic process, and often numerical methods are implemented for existing models, such as
Hull and White [23].

Heston [22] proposed a stochastic volatility model where the volatility process follows a square
root mean-reverting process, ensuring non-negativity. The Heston model accurately captures the asset
dynamics, assuming a constant interest rate and the absence of sudden market shocks. It demonstrates
the implied volatility smile effect, a well-known inconsistency in the Black–Scholesmodel. Recently, He
and Chen [15] introduced a novel stochastic volatility model by incorporating a stochastic process in the
long-termmean of volatility within theHeston framework. Lin andHe [26] proposed an additional factor
in the stochastic volatility process, which follows regime-switching. Pasricha and Goel [34] considered
the Heston model for pricing exchange options. He and Lin [18] considered the long-term mean of the
volatility process to follow a regime-switching stochastic process.

The assumption of a constant interest rate is not realistic, as the real market experiences fluctuations
in interest rates. Therefore, the stochastic behavior of interest rates is important in modeling asset prices.
To address this, various short-rate models have been introduced in the literature to accurately capture the
term structure of interest rates. Vasicek [37], Cox et al. [3], and Hull andWhite [24] are some examples.

Hamilton [13] played a pivotal role in advancing the regime-switchingmodels by proposing a class of
discrete-time, Markov regime-switching, and autoregressive time-series models. Empirically, Markov
regime-switching models can describe various essential characteristics of economic and financial time
series, such as the asymmetry and heavy-tailedness of asset returns, time-varying conditional volatility,
volatility clustering, regime-switching, nonlinearity, and other complex features.

Markov regime-switching models offer a framework for identifying variations in economic condi-
tions. Elliott and Nishide [4] derived a closed-form expression for bond prices by considering that the
short rate follows the Cox–Ingersoll–Ross (CIR) model with a Markov regime-switching. Elliott et al.
[5] extended their work by incorporating regime-switching into the Heston stochastic volatility model
and derived the price of European options. Shen and Siu [36] derived bond options price under the
Markov regime-switching Hull–White model.

To account for the fluctuations caused by external factors, Merton [32] introduced the jumps in the
diffusion model, and the options price is derived. Additionally, Kou [25] studied the jump-diffusion
model, particularly when the jump size follows an asymmetric double exponential distribution. For
further applications of the jump process in modeling stock price process, refer, Wang et al. [38], Han
[14], Guo and Bai [12], and Lin et al. [29].

Grzelak et al. [10] considered a hybrid stochastic volatility and stochastic interest rate model
for pricing European options. Guo [11] investigated the pricing of the European options using the
Heston–Vasicek model. The hybrid stochastic rate and stochastic volatility model are considered to
price various financial instruments (see, e.g., Grzelak and Oosterlee [9], Wu et al. [39]). lyu et al. [30]
evaluated option prices within the Markov regime-switching double Heston stochastic volatility model.
The model included a stochastic interest rate and Poisson jumps. Shan et al. [35] determined options
price when the Markov-modulated Merton jump-diffusion process describes the discrete dividends.
Ma et al. [31] priced the European options by incorporating the Heston volatility within a Markov
regime-switching framework. The model considered the jump process to follow a Poisson process with
stochastic intensity. The CIR model is used to model the interest rate, and the size of the jumps follows
a double exponential distribution.

Lin and He [27] considered the CIR volatility process having stochastic equilibrium levels with
regime-switching. He and Lin [17] extended the stochastic volatility model [15] by considering regime-
switching stochastic volatility. He et al. [21] considered the regime-switching volatility and stochastic
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market liquidity risk for pricing European options. Lin andHe [28] considered the CIR stochastic volatil-
ity with market liquidity risks for pricing variance and volatility swaps. He and Lin [20] priced the
European options considering Heston stochastic volatility and market liquidity risks. He and Lin [19]
proposed a stochastic interest rate model with long-run mean as another stochastic process. He and Lin
[16] considered the correlation between asset price and risk-free rate using two-factor hybrid Heston
Hull–White model and derived the European options price.

While the CIR model ensures positive interest rates, it does not align well with the negative interest
rates seen during the 2007 financial crisis and subsequent quantitative easing policies. For more details
on the significance of negative interest rates and drawbacks of the CIR model during low interest rates,
refer Orlando and Bufalo [33]. Therefore, the market requires a model that can deal with negative inter-
est rates. Vasicek model is one such model, and the Hull–White model generalizes it, giving a more
general framework for interest rate dynamics. Hence, instead of the CIR model, the Hull–White model
is considered.

In this article, the pricing of European options within the framework of a Heston stochastic volatil-
ity integrated with a Hull–White stochastic interest rate model is discussed. The long-run mean of the
volatility process, the mean reversion level, and the volatility of the risk-free rate alternate between
a finite number of regimes. These regimes correspond to the finite state space of a continuous-time
Markov chain. The jump occurs based on a Poisson process with stochastic intensity, and the jump sizes
follow an asymmetric double exponential distribution. To demonstrate the accuracy of the derived for-
mula, the prices are computed numerically and compared with Monte Carlo simulation (MCS) results.
The comparison of this model to the previous models and the sensitivity of price to various parameters
are also demonstrated.

The paper is structured as follows: Section 2 explains the proposed model. Section 3 presents the
derivation of the characteristic function of this model without considering regime-switching and then
considering regime-switching. Further, the derivation of the pricing formula for the European options
is presented. Section 4 consists of numerical illustrations. The final section makes concluding remarks
with possible extensions of the model.

2. Model description

Consider a filtered probability space (Ω,F ,Ft∈[0,T ] ,P) which models the uncertainty in the economy.
In the absence of arbitrage, an equivalent martingale or risk-neutral measure Q exists. In this model, at
time t, St represents the price of the underlying asset, at is the volatility of the price, rt is the risk-free rate,
Nt is the number of jumps up to and including time t, and Ji is the size of the ith jump. Let ^ denotes the
speed of mean reversion of volatility. The long-run mean of volatility is denoted by \t, and the volatility
of the volatility is represented by [a . Assume that U represents the rate of mean reversion,ft symbolizes
the volatility, and Vt denotes the long-run mean of rt . The jump arrival process {Nt , t ∈ [0,T]} is a
Poisson process with intensity process {_t , t ∈ [0,T]}. Then, under the risk-neutral measure Q, the
asset price, the volatility, the risk-free rate, and the intensity processes are governed by the following
stochastic differential equation:

dSt = (rt − _tm) Stdt + √
atStdB1,t +

(
eJ − 1

)
St−dNt , (1)

dat = ^ (\t − at) dt + [a
√
atdB2,t , (2)

drt = U (Vt − rt) dt + ftdB3,t , (3)

d_t = ^_ (\_ − _t) dt + [_
√
_tdB4,t , (4)

where ^_ represents the rate of mean reversion, \_ is the long-run mean, and [_ is the volatility of
the intensity. Here {B1,t , t ∈ [0,T]}, {B2,t , t ∈ [0,T]}, {B3,t , t ∈ [0,T]}, and {B4,t , t ∈ [0,T]} are
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standard Weiner processes. Furthermore, dB1,tdB2,t = ddt and all other processes are independent. The
probability density function of the jump size process, J = {Ji, i = 1, 2, . . . ,Nt} is defined as:

g(x) = pe
−x
[1

[1
1{x≥0} +

qe
x
[2

[2
1{x<0} , (5)

where 0 < [1 < 1, [2 > 0 and p + q = 1. Let m = EQ [eJ1 − 1] then

m =
p

1 − [1
+ q

1 + [2
− 1.

Let \t, Vt, and ft take values {\1, \2, . . . , \n}, {V1, V2, . . . , Vn}, and {f1,f2, . . . ,fn}, respectively,
according to a continuous time Markov chain y = {yt : t ≥ 0} with n states whose unique station-
ary distribution exists. The states of y can be interpreted as different states of the economy or different
phases of a business cycle. The business cycle alternates between phases of relatively fast growth in
economic activity and phases of decrease in output. Without loss of generality, following [36], assume
that the state space of y is identified with a set of unit vectors {e1, e2, . . . , en} where ei is a unit vector in
Rn with jth component as Kronecker delta Xij. Let 〈·, ·〉 be the inner product on Rn where 〈a, b〉 = aTb.
For \̂ = (\1, \2, . . . , \n)T , V̂ = (V1, V2, . . . , Vn)T , and f̂ = (f1,f2, . . . ,fn)T , then

\t = 〈\̂, yt〉, Vt = 〈V̂, yt〉, and ft = 〈f̂, yt〉.

Let Q = [qij] be the transition rate matrix of Markov chain y where qij is the transitional intensity of
the chain from regime i to regime j or from state ei to ej. Then,

dy = QTydt + dM, (6)

where M is a vector martingale process. Let yt be independent of B1,t ,B2,t ,B3,t ,B4,t , and Nt. Assume
the initial values S0 > 0, a0 > 0, r0 > 0, and _0 > 0 are given.

Under the risk-neutral measure, the price of the European options is given by:

C(0) := EQ
[
e−

∫ T
0 r (s)ds (ST − K)+

����F0

]
.

To solve this expression, a new measure is introduced. Define the forward measure Q̃ by

dQ̃
dQ

=
e−

∫ T
0 rudu

EQ

[
e−

∫ T
0 rudu

] . (7)

Let B(t,T) be the price of a bond at time t maturing at time T. Then, B(t,T) = EQ

[
e−

∫ T
t rudu

����Ft

]
.

According to Section 3 of [36], the value B(0,T) is given by

B(0,T) = R(T , y0)e−P(T )r0 , (8)

where P(T) and R(T , y0) are given by

P(T) = 1
U
[1 − e−UT ], (9)

https://doi.org/10.1017/S0269964824000202 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964824000202


Probability in the Engineering and Informational Sciences 247

R(T , y0) = EQ
[
exp

{∫ T

0

(
UVsP(s) −

1
2
f2

s P2(s)
)

ds
}����y0] . (10)

Let R̃(t) = exp
{∫ t

0 〈UV̂P(u) − 1
2 f̂

2P2P(u), yu〉du
}
and R̃(t) = R̃(t)yt . Then,

dR̃(t) = R̃(t)dyt + dR̃(t)yt ,

= R̃(t)
(
QTytdt + dMt

)
+
(
〈UV̂P(t) − 1

2
f̂2P2(t), yt〉

)
R̃(t)ytdt,

=

(
QT + 〈UV̂P(t) − 1

2
f̂2P2(t), yt〉

)
R̃(t)ytdt + R̃(t)dMt ,

=

(
QT + diag

[
UV̂P(t) − 1

2
f̂2P2(t)

] )
R̃(t)ytdt + R̃(t)dMt .

Let R̂(t) = EQ [R̃(t) |y0] then R̂(t) will satisfy,

dR̂(t)
dt

=

(
QT + diag

[
UV̂P(s) − 1

2
f̂2P2(s)

] )
R̂(t). (11)

Following the similar method mentioned in [4] gives

EQ [R̃(t) |y0] = 〈R̂(t), 1n〉 = 〈eU y0, 1n〉,

where 1n = {1, 1, . . . , 1}T and

U =

∫ t

0

[
QT + diag

(
UV̂P(s) − 1

2
f̂2P2(s)

)]
ds. (12)

The price of the call options under the forward measure Q̃ will be

C(0) = B(0,T)
(
EQ̃

[
(ST − K)+

����F0

] )
. (13)

The dynamics of Xt , at, and _t remain same under the forward measure Q̃ as in the risk neutral measure
Q whereas the dynamics of rt under Q̃ will be given by

drt =
(
U(Vt − rt) − f2

t P(t,T)
)

dt + ftdB̃3,t ,

dB̃3,t = dB3,t + ftP(t,T)dt,

where dB̃3,t is Brownian motion under measure Q̃. Additionally, assume that the rate matrix of y under
measure Q̃ is given by Q̃ = [q̃ij] then

q̃ij =


qij

exp(R(0,T ,ej ) )
exp(R(0,T ,ei ) ) i ≠ j

−∑
k≠i qki

exp(R(0,T ,ek ) )
exp(R(0,T ,ei ) ) i = j

.
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3. Options pricing

This section develops a pricing formula for the European options within the framework outlined
in Section 2. Proposition 3.1 provides the characteristic function of the log process of asset price without
considering the regime-switching of the volatility process. Let Xt = log St , then

dXt =

(
rt − _tm − 1

2
at

)
dt + √

atdB1,t + d
Nt∑

k=1
Jk . (14)

Proposition 3.1. The conditional characteristic function i(X, g, x, a, r,_) of XT under the forward
measure Q̃ is given by

i (X, g, x, a, r,_) = exp {A(X, g) + B(X, g)a + C(X, g)_ + D(X, g)r + iXx} , (15)

where

D(X, g) = iX
U
(1 − e−Ug),

B(X, g) = 2
[2a

[
b(X) + d(X)

(
d(X) sinh(d(X)g) − b(X) cosh(d(X)g)
d(X) cosh(d(X)g) − b(X) sinh(d(X)g)

)]
,

C(X, g) = 2
[2
_

[
−^_ + d′ (X)

(
d′ (X) sinh(d′ (X)g) − ^_ cosh(d′ (X)g)
d′ (X) cosh(d′ (X)g) − ^_ sinh(d′ (X)g)

)]
,

A(X, g) =
∫ g

0
VuD(X, u)du + ^

∫ g

0
\uB(X, u)du −

∫ g

0
f2

u P(X, u)D(X, u)du

+ 1
2

∫ g

0
f2

u D2(X, u)du + 2^_\_
[2
_

[−^_g + ln (d′ (X) cosh(d′ (X)g) − ^_ sinh(d′ (X)g))] ,

and

b(X) = (id[aX − ^)
2

, d(X) =
√

b(X)2 + [2aX(i + X)
2

, d′ (X) =

√
^2
_
+ 2[2

_
(miX − Λ(X))
2

.

Proof. Let g = T − t. The conditional characteristic function of XT by definition is i(X, g, x, a, r,_) =
EQ̃ [eiXXT

��at = a, rt = r,Xt = x,_t = _, yT ]. Using Feynman–Kac theorem, i(X, g, x, a, r,_) will satisfy
the following partial differential equation (PDE),

mi

mg
=

(
r − 1

2
a − _m

)
mi

mx
+ 1

2
at
m2i

mx2
+
(
U(V − r) − f2P(t,T)

) mi
mr

+ 1
2
f2 m

2i

mr2
+ ^ (\t − a) mi

ma
+ 1

2
[2aa

m2i

ma2
+ d[aa

m2i

mXma
+ ^_ (\_ − _) mi

m_

+ 1
2
[2__

m2i

m_2 + _

∫ +∞

−∞
[i (X, g, x + j, a, r,_) − i (X, g, x, a, r,_)] g(j)dj.

Let Λ(X) = p
1−iX[1

+ q
1+iX[2

− 1, then

_

∫ ∞

−∞
[i (X, g, x + j, a, r,_) − i (X, g, x, a, r,_)] g(j)dj = Λ(X)i (X; g, x, a, r,_) . (16)
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Assume that the characteristic function i(X, g, x, a, r,_) has the following affine form:

i (X, g, x, a, r,_) = eA(X,g )+B(X,g )a+C (X,g )_+D(X,g )r+iXx . (17)

Substituting i(·) in the above PDE, the following set of ordinary differential equations is obtained with
the boundary conditions A(X, 0) = B(X, 0) = C(X, 0) = D(X, 0) = 0

dB
dg

=
1
2
[2aB2 + (id[aX − ^) B − i

2
X − 1

2
X2,

dC
dg

=
1
2
[2_C2 − ^_C − miX + Λ(X),

dD
dg

= −UD + iX,

dA
dg

= VUD − f2PD + 1
2
f2D2 + ^\B + ^_\_C.

Solving the above ordinary differential equations (ODEs) will give the required values of A(X, g),
B(X, g), C(X, g), and D(X, g). �

Now, to calculate the characteristic function of XT with the regime-switching of the long-run mean
of the volatility, mean reversion level of risk-free rate and volatility of risk-free rate, a method similar
to solve Eq. (10) is employed.

Let k(X, u) = (k1(X, u),k2(X, u), . . . ,kn(X, u))T with

kk (X, u) =
(
^\kB(X, u) + VkUD(X, u) − f2

k P(u,T)D(X, u) + 1
2
f2

k D2(X, u)
)
.

The characteristic function of XT considering regime-switching is

EQ̃
[
eiXXT

��Ft
]
= EQ̃

[
EQ̃

[
eiXXT

��at = a, rt = r,Xt = x,_t = _, yT
] ����yt

]
= exp{A1(X, g) + B(X, g)a + C(X, g)_ + D(X, g)r + iXx}

× EQ̃
[
exp{

∫ g

0
〈k(X, u), yu〉du}

����yt

]
,

where A(X, g) = A1(X, g) +
∫ g

0 〈k(X, u), yu〉du. Then,

EQ̃

[
exp

{∫ g

0
〈k(X, u), yu〉du

} ����yt

]
= 〈Ψ(X, 0, g)yt , 1n〉,

where 1n = {1, 1, . . . , 1}T and Ψ is a n× n matrix that satisfies the following differential equation

dΨ(X, u, g)
dg

=

(
Q̃T + diag(k(X, g))

)
Ψ(X, u, g),

with Ψ(X, u, u) = I for g ≥ u3. Hence, the characteristic function of XT considering regime-
switching is

i(X, g) = exp{A1(X, g) + B(X, g)a + C(X, g)_ + D(X, g)r + iXx}〈Ψ(X, t, g)yt , 1n〉. (18)
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Table 1. The value of parameters.
Parameters Values Parameters Values Parameters Values

S0 100 r0 0.02 a0 0.02
d −0.5 U 0.1 ^ 5
_0 0.3 f1 0.04 [a 0.1
^_ 6.5 f2 0.06 \1 0.015
\_ 0.9 V1 0.025 \2 0.07
[_ 0.65 V2 0.005 p 0.5
[1 0.012 q01 0.5 q 0.5
[2 0.1 q10 0.45

The price of the call options will be

C(0) = B(0,T)
(
EQ̃

[
(ST − K)+

����F0

] )
= B(0,T)

(
EQ̃

[
ST1{XT ≥k}

]
− ekEQ̃

[
1{XT ≥k}

] )
= B(0,T)

(
EQ̃

[
ST1{XT ≥k}

]
− ekP̃ (XT ≥ k)

)
.

Let f (·) be probability density function of XT under measure Q̃, then

P̃(XT ≥ k) =
∫ ∞

k
f (y)dy =

∫ ∞

k

(∫ ∞

−∞

1
2c

e−iXyi(X, g)dX
)

dy

=
1
2
+ 1

2c

∫ ∞

−∞

e−iXki(X, g)
iX

dX

=
1
2
+ 1
c

∫ ∞

0
Re

(
e−iXki(X, g)

iX

)
dX,

where i =
√
−1. Consider another function f1 (y) defined by f1 (y) =

eyf (y)
i (−i,g ) , where i(−i, g) =∫ ∞

−∞ eyf (y)dy. It can be verified that it is a probability density function for some random variable.
The characteristic function corresponding to this random variable will be i1(u, g) =

i (u−i,g )
i (−i,g ) . Now

consider,

EQ̃
[
ST1{XT ≥k}

]
=

∫ ∞

k
eyf (y)dy = i(−i, g)

(∫ ∞

k
f1(y)dy

)
= i(−i, g)

(
1
2
+ 1
c

∫ ∞

0
Re

(
e−iXki1(X, g)

iX

)
dX

)
= i(−i, g)

(
1
2
+ 1
c

∫ ∞

0
Re

(
e−iXki(X − i, g)

iXi(−i, g)

)
dX

)
=

i(−i, g)
2

+
(
1
c

∫ ∞

0
Re

(
e−iXki(X − i, g)

iX

)
dX

)
.
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Table 2. European call options price calculated through proposed model and Monte Carlo simulation.
K MCS MP RE (%) K MCS MP RE (%)

85 19.6387 19.7158 0.391 101 10.0636 10.0843 0.206
86 18.9224 18.9952 0.383 102 9.6030 9.6212 0.189
87 18.2207 18.2894 0.376 103 9.1586 9.1743 0.17
88 17.5334 17.5987 0.371 104 8.7303 8.7433 0.148
89 16.8614 16.9235 0.367 105 8.3174 8.3280 0.127
90 16.2055 16.2639 0.359 106 7.9196 7.9282 0.108
91 15.5660 15.6202 0.347 107 7.5372 7.5437 0.086
92 14.9423 14.9926 0.335 108 7.1700 7.1742 0.058
93 14.3346 14.3812 0.324 109 6.8177 6.8193 0.023
94 13.7434 13.7862 0.311 110 6.4794 6.4789 0.009
95 13.1684 13.2077 0.298 111 6.1548 6.1524 0.039
96 12.6097 12.6458 0.285 112 5.8435 5.8398 0.064
97 12.0675 12.1004 0.272 113 5.5453 5.5404 0.088
98 11.5419 11.5716 0.257 114 5.2598 5.2541 0.108
99 11.0329 11.0594 0.24 115 4.9868 4.9804 0.128
100 10.5402 10.5637 0.222

Abbreviations: MCS, Monte Carlo simulation; MP, model price; RE, relative error.

4. Numerical and sensitivity analysis

This section compares the price of options obtained using the derived formula with those gener-
ated through MCSs. Additionally, to highlight the importance of incorporating regime-switching and
stochastic intensity in options pricing, a comparison is presented. The sensitivity of various parameters
to options price is also exhibited. Unless otherwise specified, the values of the selected parameters are
provided in Table 1. It is assumed that there are two regimes: one representing the state of economic
boom (Regime 1) and the other economic crisis (Regime 2). In times of economic growth, the finan-
cial markets are driven by high interest rates and low volatility. Conversely, economic recessions are
marked by low interest rates and high volatility. This section is divided into three subsections: Subsection
4.1 presents the numerical calculations, Subsection 4.2 provides the comparisons with other models,
and Subsection 4.3 examines the sensitivity of option prices to various parameters across different strike
prices.

4.1. Numerical calculation

To validate the accuracy of the derived formula, a comparison with MCSs is presented in Table 2
for option prices at various strike prices K, assuming that the economy is initially in regime 2.
To calculate the options price from the MCS, 100, 000 sample paths are generated, each consist-
ing of 500 time steps. It can be observed that the prices obtained from the derived formula (MP)
are point-wise close to the corresponding prices from the MCS. The relative error between the two
prices is less than 0.4% which verifies the accuracy of the formula. Figure 1 illustrates the option
price when the economy is in regime 1 (economic growth) and regime 2 (economic recession). It
is observed that the price of the call options increases as the strike price decreases. Additionally,
Figure 1 shows that option prices are higher during an economic recession than during economic
growth. This can be explained by the fact that option prices tend to increase when the underlying
asset’s volatility rises and the asset’s returns are more volatile during a recession than economic
growth.
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Figure 1. Comparison of option prices against strike prices in regime 1 and regime 2.

4.2. Model comparison

In this section, a comparative analysis of the proposed models with several models is conducted. The
primary objective of this comparison is to demonstrate the significance of the proposed model.

4.2.1. Comparison with the Heston-CIR model with stochastic intensity

Figure 2 illustrates the comparison between the options price derived from the proposed model and
those derived from the model proposed by [31]. It is assumed that initially the economy is in regime 1.
The graphical comparison demonstrates the differences and similarities in the options price for a range
of strike prices K. Both models exhibit a decrease in options price as the strike price increases; however,
the option prices in the model proposed in this article are higher.

4.2.2. Comparison with hybrid Heston–Hull–White model with stochastic intensity

The comparison of the European call options price from the proposed model against those derived
from the hybrid Heston–Hull–White model with stochastic intensity and without regime-switching is
illustrated in Figure 3. If the economy is in regime 1, the markets are driven by high interest rates and
low volatility, which results in lower risk, and hence option prices are less. In regime 2, the option prices
are higher as compared to regime 1 as in regime 2 market has lower interest rates and higher volatility.
Figure 3 illustrates that for regime 1, the option prices calculated by the regime-switching model are
higher compared to the model without regime-switching, whereas for regime 2, the option prices are
lower for the regime-switching model than without regime-switching model. This is because, in the
regime-switching model, there is a positive probability that the economy will shift into another regime
leading to difference in prices.
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Figure 2. Comparison of option prices between the proposed model and the CIR model.

Figure 3. Comparison of option prices against strike prices for the proposed model and the hybrid
Heston–Hull–White model with stochastic intensity while considering the initial regime as Regime 1
(on the left) and Regime 2 (on the right).

4.2.3. Comparison with regime-switching hybrid Heston–Hull–White model without stochastic
intensity

To illustrate the impact of stochastic intensity, the comparison of the proposed model with the regime-
switching hybrid Heston–Hull–White model having constant intensity is depicted in Figure 4. It is
observed that, regardless of the initial state of the economy, the options price is higher in stochastic
intensity than in constant intensity.

4.3. Sensitivity analysis

This subsection depicts the impact of the sensitivity of various parameters of the risk-free rate, volatility,
and intensity processes on option prices for different strike prices. For all of these figures, it is assumed
that initially, the market is in regime 2.

Initial volatility (a0): Figure 5 exhibits a plot of the option prices and strike prices for various val-
ues of initial volatility. It is observed that as volatility increases, the options price at all strike prices
tends to rise. However, at lower strike prices, the difference in options price becomes less significant.
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Figure 4. Comparison of option prices against strike prices for the proposed model and the regime-
switching hybrid Heston-Hull-White model without stochastic intensity while considering the initial
regime as Regime 1 (on the left) and Regime 2 (on the right).

Figure 5. Option prices against strike prices for different initial volatility levels.

One possible explanation is that the option price depends on the intrinsic values of the option. The
option’s intrinsic value is higher at a lower strike price. Hence, the effect of volatility is not very
significant.

Initial risk-free rate (r0): Figure 6 presents how varying the values of r0 affect the option prices by
plotting option prices for different r0 values against various strike prices K. The risk-free rate affects
option price in two different ways. First, it impacts the underlying asset’s price. Second, it is used as a
discounting factor to determine the present value of the options price. The options price increases with
the increase in value of r0. The impact becomes less significant as the strike prices increase.

Mean reversion level of risk-free rate (Vt): To examine the impact of mean reversion level, it is
assumed that V1 = V2 + 0.02. Option prices at various strike prices K corresponding to different values
of the Vt are depicted in Figure 7. As the value of Vt increases, the options price also increases across
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Figure 6. Option prices against strike prices for different initial risk-free rates.

Figure 7. Option prices against strike prices for different values of Vt.

all strike prices. This is because the higher value of Vt, which is the long-run mean of the risk-free rate,
implies an expectation of increasing risk-free rates.
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Figure 8. Option prices against strike prices for different values of U.

Mean reversion speed of risk-free rate (U): The effect of varying U on option prices is investigated
in Figure 8. This figure analyzes the option prices at various strike prices corresponding to different
values of mean reversion speed (U). The figure shows that the higher value of U leads to an increased
options price for every strike price.

Volatility of risk-free rate (ft): Figure 9 displays the options price against the parameter ft at
various strike prices K. To plot this figure, it is assumed that f2 = f1 + 0.02. It is observed that option
prices are positively correlated with the volatility of risk-free rate. A higher ft increases option prices
at every strike price.

Long-run mean of intensity process (\_): Figure 10 illustrates the options price at different val-
ues of long-run mean of intensity process. From the figure, it can be observed that as the value of \_
increases, there is a corresponding increase in options price for all strike prices. This is because as the
value of \_ increases, the expectation of jump intensity increases.

5. Conclusions and future work

This study proposes a pricing formula for European options using the regime-switching framework
with stochastic intensity. The closed-form formula for options price is derived using the Feynman–Kac
theorem with asset volatility and risk-free rate controlled by the economic environment. The results
highlight the importance of incorporating stochastic intensity in option pricing and its significant
impact. Furthermore, a comparison is made with models without regime-switching framework to depict
the difference in option prices. This divergence occurs because the regime-switching model adjusts
for fluctuating market conditions and volatility patterns over time, resulting in more accurate pricing
that reflects economic movements. As a result, including regime-switching can result in more accurate
pricing, better reflecting the complexity of real-world financial markets.

An interesting extension may involve studying the valuation of American options within this frame-
work, considering their flexibility to be exercised at any time before or on the maturity date. Considering
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Figure 9. Option prices against strike prices for different values of ft.

Figure 10. Option prices against strike price for different values of \_.

the relationship between the intensity process and the jump arrival process allows for a more realistic
scenario. Hence, a more general jump arrival process like the Hawkes process may be considered for
asset price modeling.
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