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Abstract

In this paper we are concerned with modelling the reliability of a system subject to
external shocks. In a run shock model, the system fails when a sequence of shocks above
a threshold arrive in succession. Nevertheless, using a single threshold to measure the
severity of a shock is too critical in real practice. To this end, we develop a generalized
run shock model with two thresholds. We employ a phase-type distribution to model the
damage size and the inter-arrival time of shocks, which is highly versatile and may be
used to model many quantitative features of random phenomenon. Furthermore, we use
the Markovian property to construct a multi-state system which degrades with the arrival
of shocks. We also provide a numerical example to illustrate our results.
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1. Introduction

Reliability modelling is an important issue in probability theory and industrial engineering,
aiming at predicting the lifetime behaviour of a system. The main factors that may affect the
lifetime behaviour of a system usually consist of internal degradation and other external factors,
such as random shocks or even intentional attacks [10], [14], [18]. A variety of shock models
have been developed to study how external shocks act on a system. Generally speaking, shock
models can be classified into five groups: cumulative shock model, extreme shock model, run
shock model, δ-shock model, and mixed shock model. For example, in a cumulative shock
model, the system fails as soon as the cumulative magnitude of shocks exceeds a given level [7],
while in a run shock model, the system is considered failed when there is a series of shocks
whose magnitude is greater than a threshold. Besides, the mixed shock model is a combination
of at least two types of different model. For example, Cha et al. [1] extended the results in an
extreme shock model by combining it with a cumulative shock model. Some other examples
can be found in [8] and [11].
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The run shock model has been widely applied to handle real-life problems. Usually,
the system under a run shock model breaks down if there is a sequence of shocks above
a predetermined threshold. However, in some practical problems, a single threshold is not
enough to distinguish the severity of damage caused by the shocks. Goonewardene et al. [6]
studied an applied problem in the healthcare management area, where prostate-specific antigen
levels in the treatment of patients was divided into three levels with two thresholds. The choice
of therapy was determined by the type of situation. This example reveals the significance of
using more than one threshold to arrive at a precise classification of the shock magnitude. With
this area as our motivation, we develop a generalized run shock model with two thresholds and
study the reliability of systems under the proposed model.

If the number of consecutive shocks above a given threshold is considered as a random
variable, then its movement can be treated as a discrete-time Markov process. According to
the definition of the run shock model, this Markov chain will have finite transient states and
one absorbing state. Similarly, in the generalized run shock model, consider a binary variable
which counts the number of consecutive shocks above two thresholds. The state of this Markov
chain will change when a shock occurs, and the system breaks down whenever one of the two
variables exceeds its upper limit, regardless of the value of the other one. Thus, the movement
of this binary variable also follows a discrete-time Markov process, which has finite transient
states and several absorbing states. A feasible way to simplify the model is to merge all the
absorbing states into a one-dimensional state. A phase-type distribution represents the time
until absorption in a finite-state Markov chain with several transient states and one absorbing
state. As an immediate consequence, the total number of shocks until system failure will follow
a discrete phase-type distribution. We refer the reader to Eryilmaz [2], [5] for further examples
where a phase-type distribution is applied to a discrete-time risk model.

Except for the number of shocks until failure, the lifetime of system is also determined by the
inter-arrival time between shocks, in other words, the residual time in each state of the Markov
process. Usually, they are assumed to follow a normal distribution, exponential distribution,
or other typical distribution. However, the remarkable properties of these precise assumptions
can lead to poor applicability. As an example, the memoryless property of an exponential
distribution means that the system behaves as if it had just started up at any time point and its
mean residual lifetime is not affected by how long the system has been in the working state,
which is sometimes unreasonable [13].

The time until absorption in a continuous-time Markov chain follows a continuous phase-type
distribution. It is an extension of an exponential distribution, using matrix form parameters as a
substitute for numerical parameters, so it keeps the convenience of an exponential distribution
in computation. Besides, any nonnegative distribution can be approximated arbitrarily closely
by a phase-type distribution [12]. To sum up, a phase-type distribution has strong versatility
to satisfy the requirements of modelling general phenomena. Eryilmaz [3], [4] introduced in
detail the properties of a continuous phase-type distribution and its application. Following his
approach, we assume that the inter-arrival time between shocks follows a continuous phase-type
distribution. Configuration of the distribution parameters will be discussed later.

The paper is organized as follows. Section 2 involves the statistical preliminaries and
description of our problem. A detailed analysis of the reliability properties of the system,
including the total number of shocks until failure, mean time to failure, and mean residual
lifetime will be conducted in Section 3. Considering that the occurrence frequency of shocks
may increase along with the deterioration of the system state, we propose an extension to our
model, so that different distributions can be used for modelling the inter-arrival time between
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shocks under different system states. We present the extended model in Section 4, together with
a numerical example for illustrative purpose. In Section 5 we conclude the paper and discuss
potential future research topics.

2. Description of the system

Assume that a system is subject to random shocks over time. Define two critical levels
c1 < c2. For given positive integers k1 and k2, the system is assumed to fail if at least k1
consecutive shocks with magnitude above c1 or k2 consecutive shocks with magnitude above c2
occur. It is obvious that k1 > k2. Let Xi denote the magnitude of the ith shock, and Yi denote
the inter-arrival time between the (i − 1)th and ith shock. Assume that Xi are independent
and identically distributed (i.i.d.), and fall into the three intervals divided by the two thresholds
with probabilities p1 = P(Xi ≤ c1), p2 = P(c1< Xi ≤ c2), and p3 = P(Xi > c2).

As we have mentioned before, the system can be regarded as a discrete-time Markov chain
with finite transient states and one absorption state. That is, the state of the system after a
shock is determined by the state of the system before this shock, and is independent of previous
shocks. Let (s, t) represent one of the transient states when there are s consecutive shocks with
magnitude above c1 and t consecutive shocks with magnitude above c2. Again, we always have
s ≥ t . We now provide an example for illustration.

Example 1. Consider the case when k1 = 2 and k2 = 1. The state space consists of five
states: {(0, 0), (1, 0), (2, 0), (1, 1), (2, 1)}, denoted by state{1, 2, 3, 4, 5}. This is an absorbing
Markov chain with two transient and three absorbing states. Its transition probability matrix is

P =

⎡
⎢⎢⎢⎢⎣

p1 p2 0 p3 0
p1 0 p2 0 p3
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

If we regard the set of state{3, 4, 5} as a one-dimensional absorption state of state{1} and
state{2}, then the new transition probability matrix can be represented as

P ′ =
⎡
⎣p1 p2 p3

p1 0 p2 + p3
0 0 1

⎤
⎦ .

The distribution of a discrete random variable N is said to be phase-type if it is the distribution
of the time until absorption in an discrete-time absorbing Markov chain. Consider a discrete-
time Markov chain with t transient states and one absorbing state. It has a transition probability
matrix of dimension t + 1 and of the form

P =
[
A A0

0 1

]
,

where A0 = (I − A)e� with e a row vector with all elements equal to 1 and I the identity
matrix. The initial probability vector is denoted by (α, αt+1). Then the pair (α, A) is called
a representation for the derivative phase-type distribution and the time until absorption in this
Markov chain follows PHd(α, A).
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In the example, the number of shocks until system failure follows a discrete phase-type
distribution with representation

(
(1, 0),

[
p1 p2
p1 0

])
,

and probability mass function

f (x) = αAx−1A0 = [
1 0

] [
p1 p2
p1 0

]x−1 [
p3

p2 + p3

]
.

To summarize, the total number of shocks until system failure in such a generalized run shock
model will always follow a discrete phase-type distribution. If the inter-arrival time between
shocks Yi is also assumed to follow a continuous phase-type distribution, then the lifetime
of the system can be represented by the summation of several phase-type random variables,
which is also phase-type according to its closure property under addition [9]. A representation
for the summation of the Yi is possible if they are i.i.d. However, in the current article, we
consider the approach of adapting a discrete-time Markov chain into a continuous chain to
model a continuous variable, so that the system lifetime can be obtained directly, instead of
computing the summation of several variables. This constitutes a significant difference between
the methodology in this article and previous works.

3. Analytical properties of the system

In this section we study the total number of shocks until system failure, and then explain the
major reliability characteristics and their computation methods.

3.1. Total number of shocks until system failure

Following the approach in Section 2, let a binary random variable (s, t) represent the status
when there are s consecutive shocks with magnitude above c1 and t consecutive shocks with
magnitude above c2. Since the state of (s, t) after a shock is determined by its state before the
shock, and is independent of previous shocks, then the movement of (s, t) is a Markov chain.
It is not difficult to find that the value of s and t will either increase by one unit, or reset to
zero. Besides, whenever the value of t increases, the value of s will increase simultaneously.
To sum up, it will make the transition into state (0, 0) with probability p1, into state (s + 1, t)

with probability p2, and into state (s + 1, t + 1) with probability p3. Furthermore, whenever
the value of s reaches k1 or t reaches k2, it turns into an absorbing state, and will no longer
make the transition to other states. In Figure 1 we present a representation of the transition rule
of this chain.

We can conclude from Figure 1 that the Markov chain has n = 1
2k2(2k1 − k2 + 1) transient

states and k1 + 1 absorption states. For the convenience of notation, the absorbing states are
treated as an indivisible whole, while positive integers are allocated to the transient states in
ascending order and by row. For example, state (0, 0) is denoted by state{1}, state (1, 0) is
denoted by state{2}, and so on. Finally, the state (k1−1, k2−1) is denoted by state{n}. Then the
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transition probability matrix between these transient states can be formulated as

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1 p2 0 · · · 0 p3 0 · · · 0 0 · · · 0 · · · 0
p1 0 p2 · · · 0 0 p3 · · · 0 0 · · · 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

...
. . .

...
. . .

...

p1 0 0 · · · p2 0 0 · · · p3 0 · · · 0 · · · 0
p1 0 0 · · · 0 0 0 · · · 0 0 · · · 0 · · · 0
p1 0 p2 · · · 0 p3 · · · 0 · · · 0
...

...
...

. . .
...

...
. . .

...
. . .

...

p1 0 0 · · · p2 0 · · · p3 · · · 0
p1 0 0 · · · 0 0 · · · 0 · · · 0
...

. . .
...

. . .
...

p1 p2 0
...

. . .
...

p1 p2
p1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If we define three matrix types each with typical form

Ei =

⎡
⎢⎢⎢⎣

p1 0 · · · 0
p1 0 · · · 0
...

...
. . .

...

p1 0 · · · 0

⎤
⎥⎥⎥⎦

i×k1

, Si =

⎡
⎢⎢⎢⎢⎣

0 p2 · · · 0

0
...

. . . 0
... 0 · · · p2
0 0 · · · 0

⎤
⎥⎥⎥⎥⎦

i×i

,

Ti =

⎡
⎢⎢⎢⎣

p3 · · · 0
...

. . . 0
0 · · · p3
0 · · · 0

⎤
⎥⎥⎥⎦

i×i−1

,

Absorption states:
k1 consecutive shocks with
magnitude above c1 occur.

Transient states

Absorption states:
k2 consecutive shocks with magnitude above c2 occur.

(0,0) (1,0)

(1,1)

(2,0)

(2,1) (3,1)

(3,0)

(k1,1)

(k1,k2)(k2+1,k2)(k2,k2)

(k1,0)

Figure 1: Transition rule.
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then the transition probability matrix P can be blocked into⎡
⎢⎣

P1,1 · · · P1,k2
...

. . .
...

Pk2,1 · · · Pk2,k2

⎤
⎥⎦ ,

where Pi,i+1 = Tk1−i+1 for any i = 1, . . . , k2 − 1, Pj,1 = Ek1−j+1, Pj,j = Sk1−i+1 for any
j = 2, . . . , k2, and Pi,j = 0 otherwise. In particular, for the first block P1,1 = Ek1 + Sk1 . To
summarize, P can be represented as

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ek1 + Sk1 Tk1

Ek1−1 Sk1−1 Tk1−1

Ek1−2 Sk1−2
. . .

...
. . . Tk1−k2+2

Ek1−k2+1 Sk1−k2+1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (1)

According to the definition, the total number of shocks until system failure is the time
until absorption in the above discrete-time Markov chain, which follows a discrete phase-type
distribution PHd(p, P ), where p is the initial vector of the Markov chain and P is the transition
probability matrix. When the system is unrepairable, it will always start working at the perfect
working state. Thus, the initial vector is p = (1, 0, . . . , 0).

3.2. Reliability characteristics of the system

The lifetime of the system is determined jointly by the total number of shocks before system
failure and the inter-arrival time between shocks, while the latter one should be a continuous
random variable. Considering the versatility, we assume that the inter-arrival time between
shocks follows a continuous phase-type distribution.

The distribution of a continuous random variable X is said to be phase-type if it is the
distribution of the time until absorption in a finite-state continuous-time Markov chain with m

transient states and one absorbing state. Assume the initial probability vector is (α, αt+1),
where αt+1 = 1 − αe�, and the transition rate matrix is[

A −Ae�
0 0

]
,

then the random variable X will have representation PHc(α, A). Here, e is a row vector with
all elements equal to 1, and its dimension depends on the left-multiplication matrix.

Assume that the inter-arrival time between shocks Yi are i.i.d., following a continuous phase-
type distribution PHc(α, A), and there are N shocks before system failure. Then the system
lifetime can be calculated as T = ∑N

i=1Yi . He [9] proved a computational proposition for this
type of summation.

Proposition 1. Assume that Y1, Y2, . . . are independent with Yi ∼ PHc(α, A), and, indepen-
dently, N ∼ PHd(p, P ). If α and p are stochastic vectors, that is, αe� = 1, pe� = 1, then

N∑
i=1

Yi ∼ PHc(α⊗p, A⊗I + (A0α)⊗P ), (2)

where A0 = −Ae� and ⊗ is the Kronecker product.
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It is obvious that if we denote β = α ⊗ p and Q = A ⊗ I + (A0α) ⊗ P , then the
system lifetime will follow the PH distribution PHc(β, Q). According to the well-known
properties of the phase-type distribution, the distribution function of the system lifetime T can
be represented by

F(t) = 1 − β exp{Qt}e� = 1 − β

( ∞∑
n=0

xn

n! Q
n

)
e�. (3)

The system mean time to failure (applied to an unrepairable system) or mean time between
failures (for a repairable system) can be computed from

E[T ] = −βQ−1e�. (4)

Besides, another important reliability characteristic is the mean residual lifetime function at
a given time [3]. The reliability significance of this function is the average residual time until
failure when the system is still working at time t . When compared with the average lifetime,
this statistic is more flexible since it can be monitored throughout the working state. As He [9]
pointed out, for any continuous PH random variable X ∼ PH(α, A),

{X − t | X > t} ∼ PH

(
α exp{At}

α exp{At}e� , A

)
.

Thus, given that the system is still performing at any time point t , the mean residual lifetime
of the system is

E[T − t | T > t] = − β exp{Qt}
β exp{Qt}e� Q−1e�. (5)

4. A Markovian approach for reliability assessment

In Section 3 we proposed a reliability model for multi-state systems. However, the model
is restricted to the assumption that the inter-arrival times between shocks are i.i.d. When
dealing with real-world problems, many researchers have studied a type of system whose
properties change along with system degradation; see [13], [15]–[17]. Inspired by their work,
the underlying model can be adapted to the situation that the inter-arrival time between shocks
follows a different distribution under a different system state. Since the system state makes a
transition whenever a shock occurs, the inter-arrival time between shocks can also be interpreted
as the residence time in the corresponding state.

Usually, a system is more likely to be affected by external factors when it is partially broken.
In other words, the parameters should be configured to make the expected residence time in the
partially working states be shorter than the perfect working state. In this section we provide a
general method of constructing a continuous Markov chain to model the system lifetime.

4.1. Phase-type representation of the system lifetime

As mentioned before, the inter-arrival time of shocks can be regarded as the residence time.
We follow the configuration in Section 3 that the system is modelled by a discrete Markov
chain with n different working states, and assume that the residence time in state{i} follows
the distribution PH(αi , Ai ), where the dimension of matrix Ai is di . In other words, when the
system remains in state{i}, the inter-arrival time between shocks will follow PH(αi , Ai ).

From the definition, PH(αi , Ai ) is the distribution of absorption time in a continuous Markov
chain with di transition states. Thus, the system state{i} can be further divided into di substates.
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As a result, the system lifetime can be modelled by a continuous Markov chain with
∑n

i=1di

transient states in total, each of these states is a substate of one of the system states. The transition
rule in this chain can be summarized as follows.

Rule 1. When the system stays in state{i}, the system must stay in one of its di substates.

Rule 2. During the residence in state{i}, transition among its di substates may happen according
to the transition rate matrix Ai .

Rule 3. When the system leaves state{i} and transfers into state{j}, the current substate will
transfer into one of the dj substates. The rate of leaving the current substate is equal
to the corresponding element in A0

i = −Aie
�, and the probability of transiting into

each of the dj substates is equal to the corresponding element in the initial probability
vector αj .

In order to obtain the phase-type representation of the system lifetime, we have to compute
the transition rate matrix between the substates. Whenever a substate a transfers to substate b,
the transition will be classified as one of three situations, according to the adscription of both
substates.

Situation 1. When substate a belongs to state{1}, and substate b also belongs to state{1}, there
exist two possibilities:

• the transition occurs among the d1 substates according to rule 2;

• the system leaves state{1} but transfers into state{1} again according to rule 3. The
transition probability from state{1} to state{1} is p1. In Figure 2 we present an illustration
of the transition process.

From the figure, the transition rate under the first case is A1, while the transition rate under
the second case is p1A

0
1α1. As a result, the complete transition rate matrix is A1 + p1A

0
1α1.

Situation 2. When substate a belongs to state{i} (with i 
= 1), and substate b also belongs to
state{i}, there exists only one possibility, because when i 
= 1, the system state will never remain
in place after a shock occurs. Thus, the transition occurs among the di substates according to
rule 2. In Figure 3 we present an illustration of the transition process. From the figure, the
transition rate is Ai .

Transition rate: (a,b)th entry in A1

Transition rate:
ath entry in A1

0
Reinitiate:

bth entry in α1

Substate a Substate b

Transition
probability p1

Figure 2: Transition from state{1} to state{1}.

Transition rate: (a,b)th entry in AiSubstate a Substate b

Figure 3: Transition from state{i} to state{i} (with i 
= 1).
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Transition rate:
ath entry in Ai

0
Reinitiate:

bth entry in αj
Substate a Substate b

Transition
probability pij

Figure 4: Transition from state{i} to state{j} (with i 
= j ).

Situation 3. When substate a belongs to state{i}, and substate b belongs to state{j} (with
i 
= j ), the system leaves system state{i}, and transfers into system state{j} according to rule 3.
The transition probability from state{i} to state{j} is pij . In Figure 4 we present an illustration
of the transition process. From the figure, the transition rate has the form pijA

0
i αj .

To summarize, the system’s transition rate matrix between all the transient states is

Q =

⎡
⎢⎢⎢⎣

A1 + p1A
0
1α1 p12A

0
1α2 · · · p1nA

0
1αn

p21A
0
2α1 A2 · · · p2nA

0
2αn

...
...

. . .
...

pn1A
0
nα1 pn2A

0
nα2 · · · An

⎤
⎥⎥⎥⎦ , (6)

where pij is the element on the ith row and j th column of the transition probability matrix P ,
which can be computed from (1).

To sum up, the lifetime of the system follows a continuous phase-type distribution with
PH-generator Q, while the substochastic vector can be generated from the initial probability
vector. When the system is unrepairable, the chain will always start at the perfect working
state, so its initial vector is β = (α1/α1e

�, 0). Once β and Q are determined, the reliability
characteristics of the system can be computed from (3)–(5).

4.2. Numerical example

In this subsection we conduct a real-data analysis in order to illustrate our results. We con-
tinue with the example in Section 2, and assume that the two thresholds are determined so
that the occurrence probability of a shock with magnitude greater than c1 is 0.5, while the
probability of a shock greater than c2 is 0.2. In other words, we have p1 = 0.5 and p2 = 0.3
in the example. We can easily compute that the number of shocks until system failure follows
a discrete phase-type distribution

PHd

(
(1, 0),

[
0.5 0.3
0.5 0

])
.

Besides, we consider the case that the inter-arrival time between shocks under a perfect working
state follows a continuous phase-type distribution

PHc

(
(0.5, 0.5),

[−2 2
0 −2

])
,

and its expectation is 0.75 units of time. We check the performance of our model by comparing
three types of system.

Type 1 system. The system properties are never affected by external shocks. In other words,
the distribution of inter-arrival times between shocks is the same after the system degrades.

Type 2 system. The system properties are affected after degradation caused by external
shocks. The distribution of inter-arrival times between shocks under state{2} (state (1, 0))
changes to another continuous PH distribution

PHc

(
(0.7, 0.3),

[−1.667 0
0.625 −1.25

])
,

but this distribution has the same expectation as the previous one.
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Type 3 system. The system properties are affected after degradation caused by external
shocks. The distribution of inter-arrival times between shocks under state{2} (state(1, 0)) is
changed to another continuous PH distribution

PHc

(
(0.8, 0.2),

[−8 4
12 −16

])
,

and the expectation of this distribution is decreased to 0.25 units of time. In other words,
the system becomes more vulnerable after a degradation, with the occurrence of a new shock
tending to arrive earlier than before.

It is easy to see that the lifetime of a type 1 system is a summation of i.i.d. continuous phase-
type variables, which can be computed from (2), while the lifetimes of type 2 and type 3 systems
can be calculated from (6). However, the computation in (2) is complicated as it includes a
high-dimensional matrix product, and the assumption that all the variables in the summation
must be i.i.d. will restrict its application. The type 2 and type 3 systems are more practical.

The analytical solutions can be expressed as follows:

a type 1 system lifetime follows

PHc

⎛
⎜⎜⎝(0.5, 0, 0.5, 0),

⎡
⎢⎢⎣

−2 0 2 0
0 −2 0 2

0.5 0.3 −1.5 0.3
0.5 0 0.5 −2

⎤
⎥⎥⎦

⎞
⎟⎟⎠ ;

a type 2 system lifetime follows

PHc

⎛
⎜⎜⎝ (0.5, 0.5, 0, 0),

⎡
⎢⎢⎣

−2 2 0 0
0.5 −1.5 0.42 0.18

0.42 0.42 −1.67 0
0.16 0.16 0.63 −1.25

⎤
⎥⎥⎦

⎞
⎟⎟⎠ ;

a type 3 system lifetime follows

PHc

⎛
⎜⎜⎝(0.5, 0.5, 0, 0),

⎡
⎢⎢⎣

−2 2 0 0
0.5 −1.5 0.48 0.12
1 1 −8 4
1 1 12 −16

⎤
⎥⎥⎦

⎞
⎟⎟⎠ .

In Figure 5 we present the reliability functions of the three types of system.
We can directly conclude from the graph that although the phase-type representation of

type 1 and type 2 system lifetimes is different, there is no difference between them in nature.
It reveals the feasibility of calculating the system lifetime through the properties of a continuous
Markov chain, which is equivalent to the summation of several random variables, but much
easier in computational terms. Besides, the reliability of a vulnerable system is lower than a
stable one, which also coincides with what we expected.

5. Conclusions and discussion

In this paper we introduced a generalized run shock model. The main motivation of this
work is to broaden the application field of shock models in real-world problems. A two-
threshold criteria for shock magnitude was considered. The properties of Markov chains
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Figure 5: Reliability functions for the three types of system.

and their derivative probability distributions allowed a highly versatile model construction.
Computation formulas for several important system reliability characteristics were presented.
Our numerical example illustrated the research value of our work by revealing favourably
computational convenience.

When applying the model to repairable systems, we choose the initial probability vector
according to the maintenance policy. For example, assume that the system is restored to
working state i with probability πi(i = 1, . . . , n) after repairing, then the initial vector is

β =
(

π1
α1

α1e� , . . . , πn

αn

αne�

)
.

The maintenance policy is beyond the scope of our research, so we are concerned only with
unrepairable systems in this paper, as is common practice.

For a potential extension of this work, we can consider a further generalized run shock model
with more than one failure state, as modern systems with several failure states can start recovery
before a complete failure. Besides, there is a pressing need for a clear configuration method
for the phase-type parameters for the residence time distribution. Furthermore, different types
of maintenance policy, such as replacement, minimal repair, or imperfect maintenance may
warrant investigation. Finally, other types of shock model should be considered, so that special
mixed models can be designed for typical problems. We leave these as future research topics.
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