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Abstract

Known results on the moments of the distribution generated by the two-locus Wright–
Fisher diffusion model, and the duality between the diffusion process and the ancestral
process with recombination are briefly summarized. A numerical method for computing
moments using a Markov chain Monte Carlo simulation and a method to compute closed-
form expressions of the moments are presented. By applying the duality argument, the
properties of the ancestral recombination graph are studied in terms of the moments.
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1. Introduction

In classical population genetics theory, the behavior of the frequency of a gene type (allele)
has been a central issue (see, for example, [2]). The fate of the allele frequency is modeled
by a diffusion process, where the population size is assumed to be sufficiently large. The
diffusion limit, which is called the Wright–Fisher diffusion model, is expected to illustrate the
actual evolution of the allele frequency in the population. Numerical methods for computing the
likelihood of a sample taken from the equilibrium distribution have attracted much interest (see,
for example, [22]). Explicit and closed-form expressions of the whole process are important
in their own right. Unfortunately, their availability has been limited. For the one-locus, two-
allele model without mutation and other evolutionary forces, closed-form expressions of the
probability density of the allele frequency at a fixed time have been obtained in terms of
orthogonal polynomials [10], [16]. In contrast, for two-locus models, known closed-form
expressions have been limited to several moments of the distribution generated by the diffusion
process [15], [20]. A comprehensive survey carried out in the early 1970s, which is still useful,
is presented in [15]. Recently, closed-form expressions of a class of moments were obtained in
terms of orthogonal polynomials [17].

The concept of duality has been a powerful tool in stochastic analysis of interacting particle
systems [14]. In population genetics theory the moment dual of the Wright–Fisher diffusion
model was introduced in [21]. The genealogical process of a sample taken from a population,
which is known as the coalescent [12], has been useful for population genetics data analyses.
The duality was applied to obtain branching-coalescent processes as models of natural selection
[13] and conversion bias [19]. The number of ancestral lineages in a section of the ancestral
graph is an ancestral process, analogously to coalescent genealogy. The dual of the one-locus,
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Diffusion and ancestral recombination graph 257

two-allele Wright–Fisher diffusion model with directional selection [11] is an ancestral process,
which traces the ancestral lineages in a section of the ancestral selection graph. The dual is a
birth-and-death process with linear birth and quadratic death rates. It was demonstrated that
the properties of the birth-and-death process can be studied by referring to the classical results
of the Wright–Fisher diffusion model [18]. For the multi-locus model, an analogue of the
coalescent genealogy, called the ancestral recombination graph (ARG), was introduced in [7].
The two-locus ARG integrates marginal genealogies at the two loci. The ancestral process,
which traces the ancestral lineages in a section of the ARG, is the dual of the two-locus, two-
allele Wright–Fisher diffusion model [5].

In Section 2 we briefly summarize the known results for the moments of the distribution
generated by the two-locus, two-alleleWright–Fisher diffusion model. In Section 3, the moment
duality between the diffusion process and the ancestral process, which traces the ancestral
lineages in a section of the ARG, is introduced. A numerical method for computing moments at
a fixed time by a Markov chain Monte Carlo simulation is introduced. In Section 4, a method
for computing closed-form expressions of the moments using ARG terminology is presented.
In Section 5, applying the duality argument, the properties of the ARG are studied in terms of
the moments.

2. Summary of known results for the moments

Consider a random mating monoecious diploid population consisting of N individuals. Two
linked loci, A and B, segregate, where the recombination fraction between the two loci is r .
Pairs of alleles A1, A2 and B1, B2 are in loci A and B, respectively. A diffusion limit measures
the time in units of 2N generations and 2N → ∞, while ρ = 4Nr is kept constant. Let
the frequencies of gametes A1B1, A1B2, A2B1, and A2B2 respectively be x1, x2, x3, and
1−x1 −x2 −x3. The frequencies of alleles A1 and A2 are denoted by x and 1−x, respectively,
and those of the alleles B1 and B2 are denoted by y and 1 − y, respectively. Then x = x1 + x2
and y = x1 + x3. Set z = x1(1 − x1 − x2 − x3) − x2x3, which is a measure of the association
between x and y, or the disequilibrium between the two loci. The limiting diffusion process
{x1(t), x2(t), x3(t); t ≥ 0} is defined in the simplex

K : 0 ≤ x1 ≤ x1 + x2 ≤ x1 + x2 + x3 ≤ 1.

Let H = �(K), where �(x1, x2, x3) = (x, y, z) is a C∞-diffeomorphism of K onto H . The
generator of the diffusion process {x(t), y(t), z(t); t ≥ 0} in H is [20]

L = x(1 − x)

2

∂2

∂x2 + y(1 − y)

2

∂2

∂y2 + z
∂2

∂x∂y
+ z(1 − 2x)

∂2

∂x∂z
+ z(1 − 2y)

∂2

∂y∂z

− z

(
1 + ρ

2

)
∂

∂z
+ 1

2
{xy(1 − x)(1 − y) + z(1 − 2x)(1 − 2y) − z2} ∂2

∂z2 . (2.1)

In the classical population genetics theory some problems of general interest concern events
of fixation. The probability of the eventual fixation of an allele and the probability density of
the time to fixation have been studied. Some of these properties can be studied in terms of the
moments of the distribution generated by the model by using the moment inversion formula.
The probability of the eventual fixation of a gamete in the two-locus, two-allele Wright–Fisher
diffusion model governed by generator (2.1) is obtained immediately from the moments. In
fact, since the stationary density is atomic, limt→∞ E[x(t)y(t)] gives the fixation probability
of the gamete AB. For an allele, two types of fixation can be defined: one type of fixation
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occurs when the first of the four alleles is lost and the second type of fixation occurs when an
allele at the other locus is lost (a gamete fix). These fixation times are

T1 = inf{t ≥ 0; x(t)(1 − x(t))y(t)(1 − y(t)) = 0},
T0 = inf{t ≥ 0; x(t)(1 − x(t)) + y(t)(1 − y(t)) = 0},

respectively. The probability densities are

P[T1 < t] = lim
n→∞ E[{1 − x(t)(1 − x(t))y(y)(1 − y(t))}n],

P[T0 < t] = lim
n→∞ E[{1 − x(t)(1 − x(t)) − y(y)(1 − y(t))}n],

respectively. It seems impossible to obtain explicit and closed-form expressions for these limits
(see Section 4). Nevertheless, some of the moments for which closed-form expressions are
available are useful for obtaining upper bounds and approximate formulae for these probabilities
[15]. For the same reason, a closed-form expression of the joint distribution of (x(t), y(t), z(t))

at a fixed time t is not available.
Let us introduce a classification of the moments of the distribution obtained from generator

(2.1).

Definition 2.1. The rank and class of a moment, which is an expectation of a monomialxlumxn
1 ,

l, m, n ∈ Z+, are l + m + 2n and n + min{l, m}, respectively. The rank is equal to or twice as
large as the class.

Remark 2.1. The class-zero moments have closed-form expressions and they are the moments
of the one-locus Wright–Fisher diffusion model [10]. The class-one moments have closed-form
expressions [17] (see below).

Other moments whose closed-form expressions have been obtained are expectations of types
of polynomials.

Lemma 2.1. (Lemma 3.6.1 of [15].) The manifold of polynomials spanned by the set of
polynomials {xl(1 − x)lym(1 − y)mzn(1 − 2x)a(1 − 2y)a}, where a = 0, 1 and l, m > 0
if n = 0, is closed under the operation of L.

Remark 2.2. The polynomials are zero on the boundary of the square x(1 − x)y(1 − y) = 0
and z = 0. Known closed-form expressions for the moments of polynomials of this type are
(l, m, n, a) = (1, 1, 0, 0), (0, 0, 2, 0), and (0, 0, 0, 1) (see [20]). Expressions for (2, 1, 0, 0),
(1, 2, 0, 0), (2, 0, 1, 1), (0, 2, 1, 1), (2, 0, 2, 0), (0, 2, 2, 0), (2, 2, 0, 0), (1, 1, 1, 1), (1, 1, 2, 0),
(0, 0, 3, 1), and (0, 0, 4, 0) are given in [15], and involve eigenvalues whose closed-form
expressions are not available.

In [17] a closed-form expression of E[x1(t) | x(t) ∈ (0, 1)] was obtained using a limit of a
closed-form expression of a class-one moment. This yielded an expression for the conditional
covariance between x and y given that alleles A1 and A2 are segregated in locus A. This
expression plays an important role in interpreting observable polymorphisms in population
genetics data analysis. Here, we summarize some results given in [17] that will be used in the
later sections. If the argument equals unity, the truncated hypergeometric series

yn(a, b; c; z) =
n∑

i=0

(a)i(b)i

(c)i i! zi
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is expressed by the generalized hypergeometric series [1]

yn(a, b, c; 1) = �(a + n + 1)�(b + n + 1)

n! �(a + b + n + 1)
3F2(a, b, c + n; c, a + b + n + 1; 1),

where 3F2(·) denotes the generalized hypergeometric series. A trivial but useful identity is the
following.

Lemma 2.2. ([17].) For m, n ∈ Z+ and a, b, c ∈ C,

n! �(a + b + n + 1)

�(a + n + 1)�(b + n + 1)
yn(a, b; a + b + m + 1; 1)

= m! �(a + b + m + 1)

�(a + m + 1)�(b + m + 1)
ym(a, b; a + b + n + 1; 1). (2.2)

Remark 2.3. If m = 0, (2.2) gives the identity

2F1(a, b; a + b + 1; 1) = 3F2(a, b, a + b + n + 1; a + b + 1, a + b + n + 1; 1)

= n! �(a + b + n + 1)

�(a + n + 1)�(b + n + 1)
yn(a, b, a + b + 1; 1)

= �(a + b + 1)

�(a + 1)�(b + 1)
,

which is a special case of the Gauss hypergeometric theorem [1].

An expression of a power of p in terms of the Gegenbauer polynomial follows by the
orthogonal and complete property [17]:

pn =
n+2∑
m=2

2(2m − 1)
[n + 1]m−1

(n + 1)m+1
(−1)mT 1

m−2(1 − 2p), n ∈ Z+. (2.3)

Here T 1
m(·) is the Gegenbauer polynomial, which is also denoted by C

(3/2)
1 (·), and [n]m and (n)m

are the falling and rising factorials, respectively. Using this expression, closed-form solutions
of systems of differential equations for class-one moments were obtained. Let µl,m,n(t) =
Epqd [x(t)ly(t)mz(t)n] for l, m, n ∈ Z+.

Proposition 2.1. ([17].) For n ∈ Z+,

µn,0,1(t) =
n+2∑
m=2

2(2m − 1)
[n + 1]m−1

(n + 1)m+1
(−1)mT 1

m−2(1 − 2p)de−(m(m−1)+ρ)t/2.

Proposition 2.2. ([17].) For n ∈ Z+,

µn,1,0(t) = pq + 2d

2 + ρ
+

n−1∑
m=1

E(m)
n e−m(m+1)t/2 +

n∑
m=1

F (m)
n e−(ρ+m(m+1))t/2

except for ρ = (k + m)(k − m − 1), k = m + 2, m + 3, . . . , n, m = 1, 2, . . . , n, where

E(m)
n = (−1)m

[n]m+1

(n)m+1

[
2(2m + 1)

m(m + 1)
p(1 − p)qT 1

m−1(1 − 2p)

+ 2

{
T 1

m(1 − 2p)

2(m + 1) + ρ
+ T 1

m−2(1 − 2p)

2m − ρ

}
d

]
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and

F (m)
n = 2(−1)m

[n]m
(n)m

{
1

2m + ρ
+ 1

2(m + 1) − ρ

(n − m)(n − m − 1)

(n + m)(n + m + 1)

}
T 1

m−1(1 − 2p)d,

(2.4)
with the conventions that the first sum is 0 if n = 1 and T 1−1(·) = 0.

Proof. A sketch of the proof was given in [17]. A system of differential equations for the
moments gives

E(m)
n = [n]m+1! (2m + 1)!

(n)m+1(m + 1)! m!E
(m)
m+1, n ∈ Z+, m = 1, 2, . . . , n − 1,

and

{(n + m)(n − m − 1) − ρ}F (m)
n = 4n(2m + 1)

[n − 1]m−1

(n + 1)m+1
(−1)m+1T 1

m−1(1 − 2p)d

+ n(n − 1)F
(m)
n−1, n ∈ Z+, m = 1, 2, . . . , n, (2.5)

with the initial condition

pnq = pq + 2d

2 + ρ
+

n−1∑
m=1

E(m)
n +

n∑
m=1

F (m)
n , n ∈ Z+.

Using (2.2) with m = 1, 2, it is straightforward to solve (2.5) for F
(m)
n , yielding the solution

given in (2.4), except for ρ = (k + m)(k − m − 1), k = m + 2, m + 3, . . . , n, m = 1, 2, . . . , n

(the exceptional values given in [17] are incorrect). By setting E
(m)
n = qE

(m)
n,1 (p) + dE

(m)
n,2 (p),

the initial condition gives

n−1∑
m=1

E
(m)
n,1 (p) = p(p − 1)

n−2∑
i=0

pi

= p(p − 1)

n−2∑
i=0

i+2∑
m=2

2(2m − 1)
[i + 1]m−1

(i + 1)m+1
(−1)mT 1

m−2(1 − 2p)

= p(p − 1)

n−1∑
m=1

2(−1)m+1 m! (m − 1)!
(2m)!

× yn−m−1(m + 1, m, 2m + 2; 1)T 1
m−1(1 − 2p)

= p(1 − p)

n−1∑
m=1

(−1)m
[n]m+1

(n)m+1

2(2m + 1)

m(m + 1)
T 1

m−1(1 − 2p)

for each n = 2, 3, . . ., where the second equality holds by (2.3) and the last equality holds by
(2.2) with m = 0. The expression for the summation of E

(m)
n,2 (p) follows by rearrangement of

the terms.

3. Duality and a numerical method for computing moments

The process that traces the number of lineages, including nonancestral lineages (see below),
in a section of a two-locus ARG is a birth-and-death process [7]. When there are i lineages,
the birth rate is iρ/2 and the death rate is i(i − 1)/2. The birth-and-death process is identical
to the number of ancestral lineages in a section of ancestral selection graph, and the moment
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dual of the birth-and-death process is the Wright–Fisher diffusion of the one-locus, two-allele
model with directional selection [18]. Note that an ARG involves gametes whose alleles are
not ancestral to any allele in a sample. We denote alleles that are not ancestral to any allele in
the sample with a minus sign (e.g. A−), since in principle the allelic state of the locus cannot
be specified by the sample. For example, a gamete AB could be a recombinant descendant of
A−, which in turn could be a recombinant descendant of −−. The gamete −− is involved in
the ARG, but its alleles are not ancestral to any allele in the sample. In this paper we discuss
the ancestral process that generates the number of ancestral lineages in a section of the ARG.
The ancestral lineages are a subset of lineages in the ARG. The stationary distribution of the
process with the infinitely-many-allele mutation model was studied in [6]. A whole graph G
includes marginal genealogies TA and TB at the loci A and B, respectively. We denote the
edges of a graph by E(·). The edges of G are partitioned into A = E(G) ∩ E(TA) ∩ E(TB)c,
B = E(G)∩E(TA)c∩E(TB), C = E(G)∩E(TA)∩E(TB), and D = E(G)∩E(TA)c∩E(TB)c.
We call A, B, and C ancestral lineages; D is not an ancestral lineage since it is not ancestral
to any allele in the sample. Let Et be the edges of a section of G taken at time t backwards. We
denote the number of ancestral lineages by a(t) = |Et ∩A|, b(t) = |Et ∩B|, and c(t) = |Et ∩C|.
The marginal transition rates of (a(t), b(t), c(t)) do not depend on |Et ∩ D | and the process is
Markovian [5], [7]. The rates are

(a, b, c) →

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(a + 1, b + 1, c − 1), cρ/2,

(a − 1, b − 1, c + 1), ab,

(a − 1, b, c), ac + a(a − 1)/2,

(a, b − 1, c), bc + b(b − 1)/2,

(a, b, c − 1), c(c − 1)/2,

(3.1)

with a + b + c > 1. The backward equation for the joint probability generating function
ξl,m,n(t) = El,m,n[pa(t)qb(t)gc(t)] of the Markov chain {a(t), b(t), c(t); t ≥ 0} on the integer
lattice Z

3+ \ 0 is

dξl,m,n

dt
= − (l + m + n)(l + m + n − 1) + nρ

2
ξl,m,n + nρ

2
ξl+1,m+1,n−1

+ l(l − 1 + 2n)

2
ξl−1,m,n + m(m − 1 + 2n)

2
ξl,m−1,n + n(n − 1)

2
ξl,m,n−1

+ lmξl−1,m−1,n+1 (3.2)

for (l, m, n) ∈ Z
3+ \ 0, where terms whose subscripts have negative integers are 0. It is

straightforward to see that the moments νl,m,n(t) = Ep,q,g[x(t)ly(t)mx1(t)
n] also satisfy the

system of differential equations (3.2). Therefore, a moment duality follows immediately [5].
We give a proof, since it is useful to introduce a numerical method for computing moments.

Lemma 3.1. The diffusion process {x(t), y(t), z(t); t ≥ 0} in H with (x(0), y(0), x1(0)) =
(p, q, g) and the Markov chain {a(t), b(t), c(t); t ≥ 0} in Z

3+ \ 0 whose transition rates are
(3.1) with (a(0), b(0), c(0)) = (l, m, n) are dual to each other:

Ep,q,g[x(t)ly(t)mx1(t)
n] = El,m,n[pa(t)qb(t)gc(t)].

Proof. The system of differential equations (3.2) is equivalent to an integro-recurrence
equation

ξl,m,n(t) =
∫ t

0
T ξl,m,n(s)e

−γl,m,n(t−s) ds, l, m, n ∈ Z+,
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where

T ξl,m,n = nρ

2
ξl+1,m+1,n−1 + l(l − 1 + 2n)

2
ξl−1,m,n + m(m − 1 + 2n)

2
ξl,m−1,n

+ n(n − 1)

2
ξl,m,n−1 + lmξl−1,m−1,n+1 (3.3)

and γl,m,n = ((l + m + n)(l + m + n − 1) + nρ)/2. The integro-recurrence equation is recast
as

ξl,m,n(t) =
∫ t

0

∑
l′,m′,n′

P[l′m′n′ | l, m, n]ξl′,m′,n′(t − s)γl,m,ne−γl,m,ns ds, (3.4)

where the transition probability is given by dividing the rates in (3.1) by γa,b,c. Meanwhile,

El,m,n[pa(t)qb(t)gc(t)] = El,m,n[E[pa(t)qb(t)gc(t) | (a(s), b(s), c(s)) = (l′, m′, n′)]]
= El,m,n[El′,m′,n′ [pa(t−s)qb(t−s)gc(t−s)]]
= El,m,n[ξl′,m′,n′(t − s)],

where the second equality follows by the strong Markov property. This expression is equivalent
to (3.4). Therefore, ξl,m,n(t) = El,m,n[pa(t)qb(t)gc(t)]. On the other hand, it is straightforward
to see by Itô’s formula that the moments νl,m,n(t) = Ep,q,g[x(t)ly(t)mx(t)n] satisfy the system
of differential equations (3.2).

The duality relation is useful for numerical computation of the moments νl,m,n(t) by
simulating independent copies of (a(t), b(t), c(t)) by the Markov chain Monte Carlo simulation
with transition probabilities (3.1). Consider the simulations stopped at time t . The average over
pa(t)qb(t)gc(t) of the copies is then an unbiased estimator of the moment νl,m,n(t). A similar
method was used for computing the likelihood of a sample in a varying environment [8]. The
simulation can be stopped before t . Consider the hitting time

τ = inf{s ≥ 0; (a(s), b(s), c(s)) ∈ S},
where S = {(0, 0, 1), (1, 1, 0)} is the closed set of states from which a chain cannot exit. If
τ < t ,

El,m,n[pa(t)qb(t)gc(t)] = El,m,n[E[pa(t)qb(t)gc(t) | (a(τ ), b(τ ), c(τ )) = (l′, m′, n′)]]
= El,m,n[El′,m′,n′ [pa(t−τ)qb(t−τ)gc(t−τ)]]
= Pl,m,n[(a(τ ), b(τ ), c(τ )) = (0, 0, 1)]ν0,0,1(t − τ)

+ Pl,m,n[(a(τ ), b(τ ), c(τ )) = (1, 1, 0)]ν1,1,0(t − τ),

where the second equality follows by the strong Markov property, and

ν0,0,1(t − τ) = g − ρ(g − pq)

2 + ρ
(1 − e−(2+ρ)(t−τ)/2)

and

ν1,1,0(t − τ) = pq + 2(g − pq)

2 + ρ
(1 − e−(2+ρ)(t−τ)/2).

From these observations we have the following numerical method for computing the moments.

Proposition 3.1. Set a Markov time σ = t ∧ τ , where x ∧ y = min{x, y}. An unbiased
estimator of νl,m,n(t) is the average of the following values obtained by independent copies of
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(a(σ ), b(σ ), c(σ )) simulated using the Markov chain Monte Carlo simulation with transition
probabilities (3.1). If σ = t , the value is pa(σ)qb(σ )gc(σ ). If σ = τ and (a(σ ), b(σ ), c(σ )) =
(0, 0, 1), the value is ν0,0,1(t − τ). If σ = τ and (a(σ ), b(σ ), c(σ )) = (1, 1, 0), the value is
ν1,1,0(t − τ).

4. Closed-form expressions for the moments

Since the system of differential equations for the moments of the distribution generated
by the two-locus, two-allele Wright–Fisher diffusion model (3.2) is the same as that for the
joint probability generating function of the distribution of the number of ancestral lineages in a
section of a two-locus ARG, the relationship among moments can be specified in terms of the
events on the ARG. In (3.3), the first event is a recombination, the second and third events are
marginal coalescences in TA and TB , respectively, and the forth event is a joint coalescence in
both TA and TB . We call the fifth event a null coalescence, because coalescence events occur
in neither TA nor TB . The following lemma is obvious.

Lemma 4.1. The manifold of moments spanned by the set of moments whose ranks and classes
are equal to or smaller than specified values is closed under the operation of T . Neither the
class nor the rank of a moment change under recombination and null coalescence operations.

It was shown in [15] that the moments µl,m,n(t) can be obtained recursively from the smaller
rank moments. We present a method to compute the closed-form expressions of the moments
νl,m,n(t) using ARG terminology, since it gives systematic insights into the computation. In our
approach the concept of a class of a moment is essential. Since closed-form expressions of all
moments whose classes are less than two are available (see Section 2), let us start with moments
whose classes and ranks are two and i(≥ 4), respectively: νi−4,0,2, νi−3,1,1, νi−2,2,0, ν0,i−4,2,
ν1,i−3,1, and ν2,i−2,0. The first three moments are closed by recombinations and the latter three
moments are closed by null coalescences. Expressions for the latter three moments are obtained
immediately by exchanging p and q in the expressions of the first three moments. The system
of three differential equations for the first three moments whose ranks are j (4 ≤ j ≤ i) is

d

dt

⎛
⎝νj−4,0,2

νj−3,1,1
νj−2,2,0

⎞
⎠ =

⎛
⎜⎜⎝

− (j−2)(j−3)+2ρ
2 ρ 0

j − 3 − (j−1)(j−2)+ρ
2

ρ
2

0 2(j − 2) − j (j−1)
2

⎞
⎟⎟⎠

⎛
⎝νj−4,0,2

νj−3,1,1
νj−2,2,0

⎞
⎠

+

⎛
⎜⎜⎝

(j−1)(j−4)
2 νj−5,0,2

(j−2)(j−3)
2 νj−4,1,1

(j−2)(j−3)
2 νj−3,2,0

⎞
⎟⎟⎠ +

⎛
⎝νj−4,0,1

νj−3,0,1
νj−2,1,0

⎞
⎠ , (4.1)

where ν−1 = 0 by convention. The solution involves eigenvalues of the matrix in (4.1), which
are roots of the cubic equation

λ3 + 3j2 − 9j + 8 + 3ρ

2
λ2 +

{
3(j − 1)2(j − 2)2

2
+ (3j2 − 11j + 15)ρ + ρ2

}
λ

+ j (j − 1)2(j − 2)2(j − 3)

8
+ (3j4 − 22j3 + 65j2 − 86j + 48)ρ + (j2 − 5j + 8)ρ2

4
= 0.
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If j = 4, the system of differential equations (4.1) involves ν0,0,2, ν1,1,1, ν2,2,0, and class-one
moments, and we can obtain closed-form expressions. In fact, the closed-form expressions of
the moments whose classes and ranks are two and four, respectively, were obtained in [20].
Solving (4.1) iteratively in j = 5, 6, . . . , i, we obtain the closed-form expressions of the
moments whose classes and ranks are two and i, respectively.

The moments whose classes and ranks are k(≥ 3) and i(≥ 2k), respectively, are computed
in the same way. To obtain closed-form expressions of these moments, a system of k + 1
differential equations must be solved. The solution involves eigenvalues of a tridiagonal matrix
Ak with

(Ak)s,s−1 = (s − 1)(j − 2k + s − 1),

(Ak)s,s = − (j − k + s − 1)(j − k + s − 2) + (k − s + 1)ρ

2
,

(Ak)s,s+1 = k − s + 1

2
ρ,

for 1 ≤ s ≤ k+1 and 2k ≤ j ≤ i. The eigenvalues are the roots of the (k+1)th-degree algebraic
equation. If k ≥ 4, we cannot expect explicit closed-form expressions of the eigenvalues. The
computation eventually involves moments whose classes and ranks are t and u, respectively,
where 1 ≤ t ≤ k and i − k + t ≤ u ≤ 2t .

5. Properties of the ARG

We have discussed how to compute the moments of the distribution generated by the two-
locus, two-allele Wright–Fisher diffusion model. These moments are useful for studying the
two-locus ARG, since the expression for the moments of the diffusion νl,m,n(t) is the same as
that for the joint probability generating function for the distribution of the number of ancestral
lineages in a section of an ARG with the initial condition (a(0), b(0), c(0)) = (l, m, n). We
define the rank and class of the number of ancestral lineages in a section of an ARG, (l, m, n),
by l + m + 2n and n + min{l, m}, respectively. An ARG of a class-zero sample is a marginal
genealogy, whose properties are well known. In the following we consider a sample whose
class is larger than 0. Since Lemma 3.1 gives

lim
t→∞ νl,m,n(t) = 2g

2 + ρ
+ ρpq

2 + ρ
, n + min{l, m} ≥ 1,

the stationary distribution of the number of ancestral lineages in a section of an ARG is

2

2 + ρ
δ(0,0,1) + ρ

2 + ρ
δ(1,1,0).

The distribution of the number of ancestral lineages in a section of an ARG with the initial
condition (0, 0, 2) can be obtained from the known closed-form expression of the moments of
the distribution generated by the two-locus, two-allele Wright–Fisher diffusion model [20]. It
seems that a general formula (applicable to all rank moments) for the distribution of a sample
whose class is larger than 1 is not available. In contrast, we have a general formula for the
distribution of class-one samples. The closed-form expression can be obtained by using closed-
form expressions of the moments with a finite-series expansion of the Gegenbauer polynomial
[3]:

T 1
m(1 − 2p) = 1

2

m∑
i=0

(−m)i(m + 1)i+2

i! (i + 1)! pi. (5.1)
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Let νk,1,0(t) = ∑
l,m,n fl,m,n(t)p

lqmgn, where

fl,m,n(t) = Pk,1,0[(a(t), b(t), c(t)) = (l, m, n)].
The distribution of sample (1, 1, 0) is

f1,1,0(t) = ρ

2 + ρ
+ 2

2 + ρ
e−(2+ρ)t/2, f0,0,1(t) = 2

2 + ρ
(1 − e−(2+ρ)t/2),

since

ν1,1,0 = pq + 2(g − pq)

2 + ρ
(1 − e−(2+ρ)t/2).

For samples (k, 1, 0), k ≥ 2, from Proposition 2.2 and (5.1), the closed-form expressions have
a general formula. For i ≥ 0, we have

fi,0,1(t) = 2

2 + ρ
δi,0 + gi,k(t)

+
k−1∑
m=i

(−1)m[k]m+1

(k)m+1i! (i + 1)!

×
[
(−m)i(m + 1)i+2

2(m + 1) + ρ
+ (2 − m)i(m − 1)i+2

2m − ρ

]
e−m(m+1)t/2,

and, for i ≥ 2, we have

fi,1,0(t) = −gi−1,k(t)

−
k−1∑

m=i−1

(−1)m[k]m+1

(k)m+1(i − 1)! i!

×
{
(2m + 1)(1 − m)i−2(m)i

+
[
(−m)i−1(m + 1)i+1

2(m + 1) + ρ
+ (2 − m)i−1(m − 1)i+1

2m − ρ

]}
e−m(m+1)t/2

and

f1,1,0(t) = ρ

2 + ρ
− g0,k(t)

+
k−1∑
m=1

(−1)m[k]m+1

(k)m+1

[
2m + 1 − (m + 1)(m + 2)

2(m + 1) + ρ
− (m − 1)m

2m − ρ

]
e−m(m+1)t/2,

where

gi,k(t) =
k−1∑

m=i+1

(−1)m[k]m
(k)m

[
1

2m + ρ
+ 1

2(m + 1) − ρ

(k − m)(k − m − 1)

(k + m)(k + m + 1)

]

× (1 − m)i(m)i+2

i! (i + 1)! e−(m(m+1)+ρ)t/2.

We can obtain closed-form expressions for the distribution of samples (k, 0, 1), k ≥ 1, in a
similar manner.
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Let the waiting times until common ancestors of TA and TB respectively be

WA = inf{s ≥ 0; a(s) + c(s) = 1}, WB = inf{s ≥ 0; b(s) + c(s) = 1}.
Proposition 5.1. The waiting time until a sample has a common ancestor at both of the two
loci is given by

Pl,m,n[WA ∨ WB ≤ t] = Pl,m,n[(a(t), b(t), c(t)) ∈ S],
where x ∨ y = max{x, y}. The waiting time until a sample has a common ancestor at one of
the two loci is given by

Pl,m,n[WA ∧ WB ≥ t] =
∑

n′+min{l′,m′}≥2

Pl,m,n[(a(t), b(t), c(t)) = (l′, m′, n′)].

Remark 5.1. A recursion of the expectation of WA ∨WB for the ARG with the initial condition
(0, 0, c) is given by Theorem 4 of [7]. Theorem 5 of [7] gives a closed-form expression for
the joint Laplace transform of WA ∨ WB and WA ∧ WB for the ARG with the initial condition
(0, 0, 2).

The idea of the number of recombination events in a sample was introduced in [9]. The
number of recombination events on the two-locus ARG, including nonancestral lineages, was
considered in [5] and [6], where a closed-form expression for the probability generating
function of the number of recombination events was given. Here, we consider the number
of recombination events on the ancestral lineages of an ARG. Let s(t) be the number of
recombination events occurring in C lineages of an ARG in a time interval (0, t). The
recombination events are a subset of the recombination events occurring in the whole lineages
of the ARG.

Lemma 5.1. The joint probability generating function of (a(t), b(t), c(t), s(t)) is

El,m,n,0[pa(t)qb(t)gc(t)vs(t)] = El,m,n,0

[
pav(t)qbv(t)gcv(t) exp

{
−ρ(1 − v)

2

∫ t

0
cv(u) du

}]
,

where {av(t), bv(t), cv(t); t ≥ 0} is a modified process of {a(t), b(t), c(t); t ≥ 0} in which the
recombination fraction is rv, 0 ≤ v ≤ 1.

Proof. Let ζl,m,n(t) = El,m,n,0[pa(t)qb(t)gc(t)vs(t)]. For (l, m, n) ∈ Z
3+ \ 0, we have

dζl,m,n

dt
= − (l + m + n)(l + m + n − 1) + nvρ

2
ζl,m,n + nvρ

2
ζl+1,m+1,n−1

+ l(l − 1 + 2n)

2
ζl−1,m,n + m(m − 1 + 2n)

2
ζl,m−1,n + n(n − 1)

2
ζl,m,n−1

+ lmζl−1,m−1,n+1 − n(1 − v)ρ

2
ζl,m,n

with the initial condition ξl,m,n(0) = plqmgn. This is uniquely solved by means of the
Feynman–Kac formula, giving the desired result.

Theorem 5.1. The conditional probability generating function of A lineages in a section of
an ARG with the initial condition (n, 0, 1) given that no recombination events occur in a time
interval (0, t) is

En,0,1,0[pa(t) | s(t) = 0] = ν̃n,0,1(t),

where ν̃n,0,1(t) is νn,0,1(t), setting q = g = 1 and ρ = 0.
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Proof. By (3.1) we see that b0(t) = 0 and c0(t) = 1 for all t , and the marginal process
{a0(t); t ≥ 0} is a death process with death rate i(i + 1)/2 when a0(t) = i. The joint
probability generating function of (a(t), b(t), c(t)) given that no recombination events occur
in a time interval (0, t) is

lim
v→0

En,0,1,0[pa(t)qb(t)gc(t)vs(t)] = En,0,1,0[pa(t)qb(t)gc(t), s(t) = 0]

= En,0,1,0

[
pa0(t)qb0(t)gc0(t) exp

{
−ρ

2

∫ t

0
c0(u) du

}]
= gEn,0,1,0[pa0(t)]e−ρt/2,

where the first equality follows by Lebesgue’s convergence theorem and the second equality
follows by Lemma 5.1. Setting p = q = g = 1, we have

Pn,0,1,0[s(t) = 0] = e−ρt/2,

while setting q = g = 1, we have

En,0,1,0[pa(t), s(t) = 0] = ν̃n,0,1(t)e
−ρt/2,

where ν̃n,0,1(t) = En,0,1,0[pa0(t)].
Remark 5.2. The explicit closed-form expression of ν̃n,0,1(t) is given in Section 2, since
νn,0,1(t) = µn+1,1,0(t) + µn,0,1(t). This expression follows immediately by considering the
ARG. Recombination might occur on the single C lineage. According to the Poisson nature
of recombination events, the probability that no recombination occurs on the single lineage is
e−ρt/2. The marginal process {a0(t); t ≥ 0} follows the death process independently.

Lemma 5.2. Let S be the absorbing states. The probability generating function of the number
of recombination events on the ancestral lineages of an ARG until a sample has a common
ancestor at both of the two loci is

El,m,n,0[vs(τ)] = El,m,n,0

[
exp

{
−ρ(1 − v)

2

∫ τv

0
cv(u) du

}]
,

where τv = inf{s ≥ 0; (av(s), bv(s), cv(s)) = S}.
Proof. Let ζl,m,n = El,m,n,0[pa(τ)qb(τ)gc(τ)vs(τ )]. For (l, m, n) ∈ Z

3+ \ 0, we have

0 = − (l + m + n)(l + m + n − 1) + nvρ

2
ζl,m,n + nvρ

2
ζl+1,m+1,n−1

+ l(l − 1 + 2n)

2
ζl−1,m,n + m(m − 1 + 2n)

2
ζl,m−1,n + n(n − 1)

2
ζl,m,n−1

+ lmζl−1,m−1,n+1 − n(1 − v)ρ

2
ζl,m,n

with the boundary conditions ξ0,0,1 = g and ξ1,1,0 = pq. This boundary-value problem is
uniquely solved by means of the Feynman–Kac formula. That is,

ζl,m,n = gEl,m,n,0

[
exp

{
−ρ(1 − v)

2

∫ τv

0
cv(u) du

}
, (av(τv), bv(τv), cv(τv)) = (0, 0, 1)

]

+ pqEl,m,n,0

[
exp

{
−ρ(1 − v)

2

∫ τv

0
cv(u) du

}
, (av(τv), bv(τv), cv(τv)) = (1, 1, 0)

]
.

https://doi.org/10.1239/jap/1363784437 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1363784437


268 S. MANO

On the other hand, we have

El,m,n,0[pa(τ)qb(τ)gc(τ)vs(τ )] = gEl,m,n,0[vs(τ), (a(τ ), b(τ ), c(τ )) = (0, 0, 1)]
+ pqEl,m,n,0[vs(τ), (a(τ ), b(τ ), c(τ )) = (1, 1, 0)].

Thus, the probability generating functions of the number of recombination events on the
ancestral lineages of an ARG until a sample has a common ancestor at both of the two loci,
with the given state in which the sample path is absorbed, are

El,m,n,0[vs(τ), (a(τ ), b(τ ), c(τ )) = (0, 0, 1)]
= El,m,n,0

[
exp

{
−ρ(1 − v)

2

∫ τv

0
cv(u) du

}
, (av(τv), bv(τv), cv(τv)) = (0, 0, 1)

]

and

El,m,n,0[vs(τ), (a(τ ), b(τ ), c(τ )) = (1, 1, 0)]
= El,m,n,0

[
exp

{
−ρ(1 − v)

2

∫ τv

0
cv(u) du

}
, (av(τv), bv(τv), cv(τv)) = (1, 1, 0)

]
.

The proof is complete upon summation of these two probability generating functions.

Corollary 5.1. The expected number of recombination events on ancestral lineages of an ARG
until a sample has a common ancestor at both of the two loci is

El,m,n,0[s(τ )] = ρ

2
El,m,n,0

[∫ τ

0
c(u) du

]

= ρ

2

∑
(l′,m′,n′)∈Z

3+\{0,S}

∫ ∞

0
kPl,m,n,0[(a(u), b(u), c(u)) = (l′, m′, n′)] du.

Proof. Let Tl′,m′,n′ be the sojourn time of a sample path of the process of the number of
ancestral lineages in a section of an ARG with the initial condition (l, m, n) that stays at state
(l′, m′, n′) /∈ S. Then

El,m,n,0

[∫ τ

0
c(u) du

]

=
∑

(l′,m′,n′)∈Z
3+\{0,S}

n′
El,m,n,0[Tl′,m′,n′ ]

=
∑

(l′,m′,n′)∈Z
3+\{0,S}

n′
El,m,n,0

[∫ ∞

0
I(l′,m′,n′)(a(t), b(t), c(t)) dt

]

=
∑

(l′,m′,n′)∈Z
3+\{0,S}

n′
∫ ∞

0
Pl,m,n,0[(a(u), b(u), c(u)) = (l′, m′, n′)] du,

where the last equality follows by Fubini’s theorem.

Remark 5.3. A recursion of El,m,n,0[s(τ )] is given in Theorem 6 of [7].
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Corollary 5.2. The probability that no recombination events occur on an ARG until a sample
has a common ancestor at both of the two loci is

Pl,m,n,0[s(τ ) = 0] = El,m,n,0

[
exp

{
−ρ

2

∫ τ0

0
c0(u) du

}]
.

Theorem 5.2. The probability that no recombination events occur on an ARG with the initial
condition (0, 0, n) until the sample has a common ancestor at both of the two loci is

(n − 1)!
(ρ + 1)n−1

.

Proof. By (3.1) we see that a0(t) = b0(t) = 0 for all t , and the marginal process {c0(t);
t ≥ 0} is a death process with death rate i(i − 1)/2 when c0(t) = i. Consider the hitting time
γ = inf{s ≥ 0; a(s) = n − 1}. By Corollary 5.2,

P0,0,n,0[s(τ ) = 0] = E0,0,n,0

[
exp

{
−ρ

2

∫ τ0

0
c0(u) du

}]

= E0,0,n,0

[
E

[
exp

{
−ρ

2

∫ τ0

0
c0(u) du

} ∣∣∣∣ γ

]]

= E0,0,n,0

[
E0,0,n−1,0

[
exp

{
−ρ

2

∫ τ0

0
c0(u) du

}]
e−nργ/2

]

= E0,0,n−1,0

[
exp

{
−ρ

2

∫ τ0

0
c0(u) du

}]
n − 1

n − 1 + ρ
,

where the third equality follows by the strong Markov property, with the boundary condition

E0,0,1,0

[
exp

{
−ρ

2

∫ τ0

0
c0(u) du

}]
= 1.

Solving this recursion completes the proof.

Theorem 5.3. The probability that no recombination events occur on an ARG with the initial
condition (n, 0, 1) until the sample has a common ancestor at both of the two loci is

n∏
i=0

i(i + 1)

i(i + 1) + ρ
.

Proof. By (3.1) we see that b0(t) = 0 and c0(t) = 1 for all t , and the marginal process
{a0(t); t ≥ 0} is a death process with death rate i(i + 1)/2 when a0(t) = i. By Corollary 5.2,
we have

Pn,0,1[s(τ ) = 0] = En[e−ρτ0/2].
The expression follows by an argument similar to that used in the proof of Theorem 5.2.

Finally, let us consider the limit ρ → ∞. We introduce two processes: a diffusion process
{x∞(t), y∞(t); t ≥ 0} in [0, 1]2 with generator

L∞ = x(1 − x)

2

∂2

∂x2 + y(1 − y)

2

∂2

∂y2
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and (x∞(0), y∞(0)) = (p, q), and a Markov chain {a∞(t), b∞(t); t ≥ 0} in Z
2+ \ 0 whose

transition rates are

(a, b) →
{

(a − 1, b), a(a − 1)/2,

(a, b − 1), b(b − 1)/2,

with (a∞(0), b∞(0)) = (l, m). Let τ∞ = {s ≥ 0; (a∞(s), b∞(s)) ∈ {(1, 0), (0, 1), (1, 1)}}.
Theorem 5.4. (Theorems 1 and 2 of [4].) If (x∞(0), y∞(0)) = (p, q) then {x(t), y(t); t ≥ 0}
converges weakly in C([0, ∞), [0, 1]2) to {x∞(t), y∞(t); t ≥ 0}, and {z(t) − de−ρt/2; t ≥ 0}
converges weakly in C([0, ∞), R) to the zero process in R as ρ → ∞. The two function spaces
are given the topology of uniform convergence on compact intervals.

Corollary 5.3. The probability generating function for the distribution of the number of
ancestral lineages in a section of an ARG with the initial condition (a(0), b(0), c(0)) = (l, m, n)

has the limit

El,m,n[pa(t)qb(t)gc(t)] → El+n[pa∞(t)]Em+n[qb∞(t)] as ρ → ∞.

Proof. From Lemma 3.1 we have

El,m,n[pa(t)qb(t)gc(t)] = Ep,q,g[x(t)l+ny(t)m+n]

+
n∑

i=1

n!
(n − i)! i!Ep,q,g[x(t)l+n−iy(t)m+n−iz(t)i].

It follows from Theorem 5.4 and Lebesgue’s convergence theorem that

Ep,q,g[x(t)l+n−iy(t)m+n−iz(t)i] ≤ Ep,q,g[z(t)i] → 0 as ρ → ∞
for t > 0 and i = 1, 2, . . . , n, while

Ep,q,g[x(t)l+ny(t)m+n] → Ep[x∞(t)l+n]Eq [y∞(t)m+n]
= El+n[pa∞(t)]Em+n[qb∞(t)] as ρ → ∞.

The last equality is a result of the duality between {x∞(t); t ≥ 0} and {a∞(t); t ≥ 0}, and
between {y∞(t); t ≥ 0} and {b∞(t); t ≥ 0}.

Corollary 5.3 shows that all AB gametes in a sample instantaneously split into an A− and
−B gametes pair in the limit ρ → ∞. Therefore, the length of C lineages in an ARG goes to
0 in this limit.

Theorem 5.5. The expected lengths of C lineages and whole lineages of an ARG with the initial
condition (l, m, n) until the sample has a common ancestor at both of the two loci are

El,m,n

[∫ τ

0
c(u) du

]
→ 2

ρ
El,m

[∫ τ∞

0
a∞(u)b∞(u) du

]
+ 2n

ρ
(5.2)

and

El,m,n

[∫ τ

0
(a(u) + b(u) + c(u)) du

]
→ El,m

[∫ τ∞

0
(a∞(u) + b∞(u)) du

]
, (5.3)

respectively.
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Proof. Let ηl,m,n = limρ→∞ El,m,n,0[s(τ ) = 0] and λl,m = ηl,m,0. For (l, m, n) ∈ Z
3+ \ 0,

we have ηl,m,n = n + λl+n,m+n for n ≥ 1 and

0 = lm − l(l − 1) + m(m − 1)

2
λl,m + l(l − 1)

2
λl−1,m + m(m − 1)

2
λl,m−1,

with the boundary condition λ1,0 = λ0,1 = λ1,1 = 0. This boundary-value problem is uniquely
solved by means of the Feynman–Kac formula. That is,

λl,m = El,m

[∫ τ∞

0
a∞(u)b∞(u) du

]
.

Equation (5.2) then follows from Corollary 5.1.
Let

η′
l,m,n = lim

ρ→∞ El,m,n,0

[∫ τ∞

0
(a(u) + b(u) + c(u)) du

]
and λ′

l,m = η′
l,m,0. For (l, m, n) ∈ Z

3+ \ 0, we have η′
l,m,n = λ′

l,m for n ≥ 1 and

0 = l + m − l(l − 1) + m(m − 1)

2
λ′

l,m + l(l − 1)

2
λ′

l−1,m + m(m − 1)

2
λ′

l,m−1,

with the boundary condition λ′
1,0 = λ′

0,1 = λ′
1,1 = 0. Solving this boundary problem leads

to (5.3).
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