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Abstract

In the category W of archimedean /-groups with distinguished weak order unit, with unit-
preserving /-homomorphisms, let 3$ be the class of ^-objects of the form D(X), with X basically
disconnected, or, what is the same thing (we show), the 3^-objects of the form M/N, where M
is a vector lattice of measurable functions and TV is an abstract ideal of null functions. In
earlier work, we have characterized the epimorphisms in 3T, and shown that an object G is
epicomplete (that is, has no proper epic extension) if and only if G € 3§. This describes the
epicompletions of a given G (that is, epicomplete objects epically containing G). First, we note
that an epicompletion of G is just a "^-completion", that is, a minimal extension of G by a
^"-object, that is, by a vector lattice of measurable functions modulo null functions. (C[0,1] has
2C non-equivalent such extensions.) Then (we show) the ^"-completions, or epicompletions, of
G are exactly the quotients of the /-group B{Y(G)) of real-valued Baire functions on the Yosida
space Y(G) of G, by ff-ideals / for which G embeds naturally in B(Y(G))/I. There is a smallest
/, called N(G), and over the embedding G < B(Y(G))/N(G) lifts any homomorphism from G to
a .^-object. (The existence, though not the nature, of such a "reflective" epicompletion was first
shown by Madden and Vermeer, using locales, then verified by us using properties of the class
3S.) There is a unique maximal (not maximum) such / , called M(Y(G)), and B(Y(G))/M{Y{G))
is the unique essential ^"-completion. There is an intermediate a-ideal, called Z(Y(G)), and
the embedding G < B(Y(G))/Z(Y(G)) is a CT-embedding, and functorial for cr-homomorphisms.
The situation stands in strong analogy to the theory in Boolean algebras of free tr-algebras and
ff-extensions, though there are crucial differences.
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26 Richard N. Ball and Anthony W. Hager [2]

1. Epicompletion and ^-completion

This section explains how, in W these two ideas are the same. After doing
that, we proceed in the rest of the paper to a careful study of ^"-completion,
will hardly mention epimorphisms again, and the sequel can be read inde-
pendently of [1], [2], and [19]. Our remarks now are quite "formal", and the
few definitions in the abstract should suffice.

We write "<7 < Hn to mean G is an /-subgroup of H, and "G < H in W"
means also that G, H eW and the embedding preserves the units.

1.1 THEOREM [2]. In W

(a) ifHe&, G < H in W', and G has no epic extension within H, then
Ge&,

(b) G is epicomplete if and only ifG e 38.

The condition "G e ^ " ' will be amplified in Section 3. Statement 1.1 (a)
is an explicit part of the proofs in [2] of both 1.1 (b) and the fact that & is
monoreflective in W\ and, on general grounds [16], monoreflectivity implies
this. (We discuss monoreflectivity in Section 5 below.)

1.2 PROPOSITION. Let q>: G —> E be a W-morphism, with E epicomplete.
Then (p is epic if and only if(p{G) < E' < E inW with E' epicomplete implies
E' = W.

PROOF. Only if statement. A final factor of an epic is always epic, so, if
<p is epic, then E' < E is epic. Thus, if E' is epicomplete, then E' = E.

IF STATEMENT. Factor <p as G -^ E' < E with e epic and E' having no
epic extension within E. By 1.1, E' = E, whence (p = e is epic. (Such a
factorization is possible on categorical grounds [2], granted some knowledge
of the category W, or with bare hands: let E' be the /-subgroup ofE generated
by \J{H < E\(p{G) < H is epic} Then G -^ E' is the "range-restriction" of f.
One checks that (p{G) < E' is epic, whence e is epic.)

1.3 DEFINITION. Let (p: G —> E be a W-morphism, with E € 38.
(a) <p is called &-minimal (out ofG) ifq>{G) < E' < E with E' e & implies

E' = E.
(b) cp [or E, or the pair ((p,E)) will be called a 38-completion ofG if cp is

an embedding which is 38-minimal.
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[3] Archimedean /-groups and vector lattices 27

By 1.1 and 1.2, (a) says q> is epic and (b) says <p is an epicompletion of G.
The sequel will treat epicompletion as ^"-completion.

2. The Yosida functor

We review the Yosida representation of an archimedean /-group with a
distinguished weak unit. This is part of our effort to make this paper readable
independently of [1] and [2].

A central feature of this representation is that each ^"-morphism G -^ H
is "realized" by a continuous map Y(G) +- Y(H) of the Yosida spaces, as
<P(g) = g o T (as explained below). This is so like the situation for homo-
morphisms between C( I ) ' s and continuous maps of X's, as explained in [8]
(especially Chapter 10), and the situation for homomorphisms of Boolean
algebras and continuous maps of the Stone spaces (and indeed, the Yosida
functor includes each of these as a special case), that the reader familiar with
one of these theories, but largely ignorant of the special theory of /-groups,
should be able to follow this paper by taking 2.2 below as an operational defi-
nition of "archimedean /-group with distinguished weak unit". If one doesn't
want to do that, see [3].

The category W has as objects, archimedean /-groups G with a distin-
guished weak unit eo\ and as morphisms, /-homomorphisms G ^> H with
(p{ea) = en- (By definition, a weak unit e in an /-group has e > 0, and
e A \g\ = 0 implies g — 0.) We shall usually suppress explicit mention of
the weak unit, and write things like UG e W", "G -^ H is a ^"-morphism"
or even ' > e 2T", "G < H <= W" (meaning G is embedded in H and the
embedding is a ^"-morphism), etc.

Let X be a topological space, always completely regular Hausdorff and
usually compact; C(X) is the ^-object of real-valued continuous functions
on X (with pointwise addition and order), and unit the constant function 1;
D(X) is the set of continuous / : X —* [-oo,+oo] for which f~l(R) is dense
(R = (-oo,+oo)). For / € D{X),oo(f) = f~l{±oo}, z(f) = /-•{()} (the
zero-set), coz/ = X - Z(f) (the cozero set). In the pointwise order, D{X) is
a lattice, but usually fails to be a group. For f,g,he D(X) we say "f+g = h
in D{X)" iff(x) + g(x) = h{x) when x e f-i(R)ng-1(R)nh-1(R) (which
set is dense). It may well happen that, for particular / , g e D(X) there is
no h € D(X) with / + g = h in D(X). However, it may well happen that a
subset G C D(X) has the property that for all f,geG there exists h e G
with / + g = h in D(X); if also f,geG implies / V g, / A g, -f e G, then we
say UG is an /-group in D{X)". (For example, C(X) is an /-group in D(X).)
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If also the constant function 1 € G, then 1 is a weak unit, and we invariably
take 1 as the distinguished weak unit, making G €W.

Since this paper is all about "the class SB", we note that if X has the
property that each dense cozero set is C* -embedded [8], then X is called
quasi-F [5] and D(X) e W [15] (Proof: for f,g e D(X),f-l(R)ng~i(R) is
a dense cozero set C, ( / + g)\C: C —> (-oo, +oo) extends to h e D{X) and
/ + g — h in D{X).) We call X basically disconnected if each cozero set has
open closure, and each basically disconnected space is quasi-/-" (because each
b.d. space is F [8]). So we have

2.1 (a) PROPOSITION. If X is (compact and) basically disconnected, then
D(X) e W.

(b) DEFINITION. 31 is the subclass {or full subcategory) ofW, whose ob-
jects are W-isomorphic to one of the form D(X) for X compact and basically
disconnected.

We now describe the Yosida representation, and those of its features which
we shall need. The proofs can be found in [3] and [17].

2.2 THEOREM. Let G e W, with eG the unit.
(a) There is a compact space Y(G) (the Yosida space) and W-isomorphism

G3 g n g€Gc D(Y(G)) onto an l-group G in D(Y(G)) (with eG = 1), with
G separating the points ofY(G).

(b) Let X be compact, and GB g •-> g €G Q D(X) a W-isomorphism onto
an l-group G in D(X) (with eG = 1) with G separating the points of X. Then
there is a homeomorphism x: X —> Y(G) for which g — g o x for all g eG.

Statement 2.2(b) is used to recognize Yosida representations. For example,
for G eW, let G* = {g € G\ for some n € N, \g\ < neG}. This is the
principal ideal in G generated by eG, and in the Yosida representation of G,
consists of all the g which are bounded. Give G* the unit eG, so G* e W.

2.3 COROLLARY. For G e W, Y(G") = Y(G).

PROOF. In the Yosida representation for G, G* satisfies 2.2(b).
The following says that Y( ) is a functor from W to compact spaces.

2.4 THEOREM. Let G ^> H e W. There is unique continuous Y(G) £•
Y(H) which "realizes" q> in the sense that <p(g) ~ = g °x for all g e G. And
<p is one-to-one if and only ifx is onto, and iff is onto then x is one-to-one.
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CONVENTION. For the sequel, for G&W,G and G are identified.

3. Baire functions and the class 38

In this section, we give several characterizations of ^"-objects, one of which
is the surjectivity of a certain natural embedding G < flG of a 2T-object into
a ^"-object. This is a variation on old ideas of Loomis, Sikorsky and Stone,
about Boolean a-algebras and basically disconnected spaces; see the remarks
in 3.6 below.

It will develop in Section 5 that fiG is the functorial ^"-completion.
We begin with some preliminaries about measurable sets and functions.
Let Y be a set and srf a <r-field of subsets of Y (meaning A e sf implies

Y-A esf, and AX,A2, ...esf implies \Jn An e sf). A function / : Y -> R is
called J/-measurable if f~l(I) e stf for every interval / of R. Let F(sf), or
just F, be {/|/ is s/-measurable}. With pointwise addition and order, and
with designation of the constant function 1 as weak unit, we have F EW.

Let n be a tr-ideal in sf (meaning s/ B A C N eJ^ implies A e JV, and
Ni, N2, • • • € JV implies Un Nn e JV). We think of JV as an abstract ideal of
null sets, and define the corresponding /-group ideal in F of null functions
N{JV), or just N, as {/ e F | c o z / e Jr). Then, for the /-group quotient,
F/N e W, where the weak unit is 1 + N.

Notice that F and F/N can be made into vector lattices in the natural
way. Thus, if G eW is 3F-isomorphic to some F/N, then G can be made
into a vector lattice, and we say that the 3T-object G "is a vector lattice of
measurable functions modulo null functions".

An /-group, say archimedean, is called conditionally a-complete if each
countable family which is bounded above has a supremum, and laterally a-
complete if each countable pairwise disjoint family has a supremum.

An ideal / in an /-group G is called a ff-ideal if f\,fi,... e / with Vn /«
existing in G implies V« /« € / . It is easily seen that, then, the quotient
map G —> B/I is a tr-homomorphism, that is, preserves all existing countable
suprema and infima.

3.1 PROPOSITION. Let F($/) = F and N^) = N be as above.
(a) Let fuf2,...eF. Then, {/„ fn exists in F if and only if for all x e Y,

\ln fn(x) exists in R; and then these are the same functions.
(b) F is conditionally and laterally a-complete.
(c) N is a a-ideal in F.
(d) If I is a a-ideal in F, then coz/ = {coz / | / e /} is a Boolean a-ideal,

and I = {/| coz / e coz/} (= N(cozl)).
(e) F/N is conditionally and laterally a-complete.
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PROOF, (a), (b), (c) are standard calculations; see [17] for example.
(d) coz/ is a Boolean a-ideal: A c coz/ , f € I+ implies XA = Vn XAH/ e

/ , which implies A = COZXA € coz/ (where XA is the characteristic function).
And, \Jn coz/„ = coz(Vn \fn\ A 1) since the sup is pointwise by (a). Now we
show that / = N(cozl): C is clear. For D, let cozg = coz / with / , g > 0,
and / e /; then g = \/ngAnfeI.

(e) F/N is conditionally cr-complete because the quotient map is a a-
homomorphism. For the lateral ^-completeness, given pairwise disjoint (/, +
N), one defines f[ = f\, f{ to be 0 on cozf\ n coz/2 and fa elsewhere,
/j to be 0 on coz/t n coz/3, 0 on coz^ n coz/3) and fa elsewhere, etc.
Then, f'n + N = /„ + N for all n, (f^) is pairwise disjoint, Vn fn exists, and
Vn(fn + N) ~ Vn(f" + ̂ ) because the quotient map is a cr-homomorphism.

Now suppose Y is a topological space. The Bairefield £&(Y) is the er-field
on Y generated by {Z{f)\f € C(X)}, and the ^-object of Baire functions
is B{Y) = {/|/ is ̂ (y)-measurable}. We have C(Y) < B(Y) € W (and, in
fact, 38(Y) is the least tr-field with respect to which continuous functions are
measurable). One may see [14] and [17].

The features of the following relatively obvious construction form the core
of this paper.

3.2 CONSTRUCTION OF y?G. Let G e W, consider the Yosida space Y{G),
the Baire field &(Y(G)), and let Jf(G) = {A e &(Y{G))\A c \Jn oo(gn) for
some g\,gi,...G G}\ this is the cr-ideal in &(Y(G)) generated by {oo(g)\g e
G}. Then consider B(Y(G)) € W, let N(G) = {/ e B(Y(G))\ coz/ e^(G)}
be the /-group a-ideal of "null functions" associated with J^{G) (previously
called N{Jf{G))), and finally, let PG - B(Y(G))/N(G) eWbe the /-group
quotient.

Unlike C(Y) < B{Y), we do not have G < B{Y{G)) because elements of
G may take infinite values, while the Baire functions take only real values.
Of course, in constructing 0G, we factored out exactly that difficulty.

We define the ^-embedding /?G: G -> 0G as follows. Given g GG, define

g(x) ifx<£oo(g),
0 ifxeoo{g).

It is easily seen that g' e B(Y(G)). Now let 0G(g) = g' + N{G). It is
easily seen that 0Q is a 2T-homomorphism, and PG is one-to-one because
PG{S) - 0 means g' e ^(G), which means cozg' e JV{G), which in turn
means coz g - oo{g) e y^(G), which means coz# e ^{G), which finally
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means coz g — 0 (that is, g = 0), since ^"{G) consists of meagre sets, and
no nonempty open set is meagre in Y(G), by the Baire Category Theorem.

The notation "/?" can suggest "Baire", of course, perhaps also "best",
"biggest", and analogy with the Stone-Cech compactification functor in topol-
ogy, as shall be explained in Sections 5 and 6. For now, we focus on the
following theorem, especially condition (b). While the object fiG seems new,
the circle of ideas is hardly completely novel; see the proof and 3.6 below.

3.3 THEOREM. For G e W, the following are equivalent.
(a) G e J 1 , that is, Y{G) is basically disconnected and G = D(Y(G)).
(b) The W-embedding fiG: G -> 0G is onto.

(c) G "is" a vector lattice of measurable functions modulo null functions.
(d) G "is" a vector lattice which is conditionally and laterally a-complete.

PROOF. That (b) implies (c) is obvious, and that (c) implies (d) is 3.1(e).
3.4 For the other implications, we shall use the following standard notion:

G e W, which "is" a vector lattice, is called uniformly complete if each
sequence (gn) in G which is Cauchy (in the sense that for all e > 0 there
exists «o such that m,n > n0 implies \gm - gn\ < sec) converges in G (in
the sense that there exists g such that for all e > 0 there exists «o such that
n > «o implies \gn - g\ < eec). In the Yosida representation, this evidently
translates to "each sequence in G which is uniformly Cauchy as a sequence
of functions on Y(G), converges uniformly on Y(G) to an element of G."

Note that, if G is uniformly complete then so is G*, and then G* =
C{Y(G)) by Section 2 and the Stone-Weierstrass Theorem.

Note also that, if (gn) is Cauchy in G, then (gn) is also bounded in G
(by some \gno\ + eeg), and one can easily create (by standard methods of
elementary analysis) a new Cauchy sequence (g'n) in G with g'n < g'n+l for all
n, and such that if either sequence converges then so does the other, to the
same limit.

Note finally that, if G is conditionally cr-complete, then so is G*, and G is
also uniformly complete (for a Cauchy sequence (gn), take a (g'n) described
above, which will be bounded, so that Vn g'n exists in G, and g'n —> V« g'n
follows, whence gn —> \Jn g'n).

(d) implies (a). First, let G be a conditionally er-complete vector lattice.
Then by 3.4, so is G*, G* is uniformly complete, and G* = C(Y(G)). By the
Stone-Nakano Theorem (that C{Y) is conditionally (T-complete if and only if
Y is basically disconnected ([23], or see [8])), Y{G) is basically disconnected.
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Now suppose G is also laterally a-complete. First, let 0 < / e D(Y(G)).
For each n e N, let un € C(X) have 0 < un < 1 and satisfy

f 1
Un(X) \ 0 i f / ( * ) < « - l o r n + 2

Such «„ exists by 1.14 of [8] (or by Urysohn's Lemma). For each n, unf e
C(X) = G*. Then, for i = 0,1 and 2, let gt = V{«3«+i/l« G N}; these
sups exist in G because, for each i, {u^n+if} is pairwise disjoint. And, / =
So v gi V g2 € G. For arbitrary / e Z>(X), / = (/ V 0) - (- /) V 0, and / V 0,
( - / ) V 0 € G by the foregoing.

(a) implies (b). We are going to show that G e J implies the embedding
G < B(Y(G))/N(G) of 3.2 is onto. We twice reduce the problem.

First, if G = D(Y(G)), if G < H e 2T, and if G* = H*, then G = H
follows: for G* = H* implies y(<?*) = Y(H*), whence 7(G) = Y(H), and
then G = D(Y(G)) = D(Y(H)) D H.

Second, if G is uniformly complete, if G is 3F-embedded in any F/N, say
F = F{sf) and G < F/N, and if for all A e s/, XA + N e G (XA being
the characteristic function of A), then G* = (F/N)* follows: for, (F/N)* =
F*/N D F*, and given / e F*, one easily finds a sequence fn —> f, each fn

being a linear combination of " ^ ' s " . By the assumption each fn + N e G. It
is automatic that /„ + iV -> f + N. Thus f+NeG, because G is uniformly
complete.

So, it suffices to prove that, for every Baire set A e &(Y(G)), XA + N(G) e
G. This condition says that given A, there is a g e G such that g'-XA e N(G),
that is {y € Y(G)\g'(y) ± xA(y)} e J"(G). Such a # is xc for the clopen C
in statement (2) of

3.5. Let Y be compact basically disconnected, and let 2~(Y) be the er-ideal
in 3§{Y) generated by the nowhere dense zero-sets. Then

(2) for each A e 38(Y) there exists a clopen C with A - C and C - A e

PROOF. (1) For any space at all, the collection of nowhere dense zero-sets
coincides with {oo(/)|/ e D(Y)} via inversion of functions.

(2) Consider the a-ideal 2" in the power set algebra, generated by 2', that
is, T = {S C Y\ there exists Z e Z with S Q_Z}, and let s/ = {A C Y\
there exists a clopen C with A - C and C -A^2"}. Now J / is a a-field: for
complements, one sees easily that if C "works" for A, then Y - C "works"
for Y — A. For countable unions, if A\,Ai,... € sf then there are clopen
Ci,C2)... with An - Cn and Cn - An 6 J for all. Since Y is basically
disconnected, C = \JnCn is clopen, then, \JnAn - C C \JnAn - \Jn Cn c
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C-{jAn= \(c-lJCn)-UAn]u\\JCn-{jAn]
n L \ n / n J L n n }

c (C-|JCn J u ({J(Cn - An)\ e~Z

because C - \Jn Cn is a nowhere dense zero-set.
Clearly, J / contains the clopen sets, thus srf D£&(Y) since sf is a cr-field,

and that proves (b) because ~Z r\3§{Y)-Z.
That concludes the proof of 3.5, and hence of 3.3.

3.6. REMARKS. AS we said above, 3.3 is not completely novel. A version
of 3.3 for /-algebras is in [9] (and that was not completely novel then ei-
ther). There, the analogue of 3.3(b) has the ideal y(G) replaced by the ideal
Jf(Y(G)) of meagre Baire sets, and the proof was reduced, in a somewhat
similar way, to 3.5(2) with 2T(Y) replaced by Jf (Y). That last statement
("3.5(2), using JK(Y)n) is exactly the Loomis-Sikorsky-Stone device as pre-
sented in [13, page 102]. Stone's version of this [23, Theorems 9 and 15] is
that on a compact basically disconnected space, each bounded Baire function
differs from some continuous function only on a meagre set; this is closer to
our proof that (a) implies (b), and we have, of course, proved a bit more
than this above.

The equivalence of (a) and (d) in 3.3 is just a simple extension of the
Stone-Nakano Theorem quoted in our proof that (d) implies (c). Exactly
this was noted long ago by Vulikh (see [27]).

For our purposes, the ideal ~^(G) is crucial, as the sequel, especially Sec-
tions 5 and 6, shows. This is why we wrote out the proof that (a) implies
(b) in such detail. Still, the ideals 3?{Y{G)) and J?(Y(G)) have important
places in the theory, as we shall see in Sections 7, 8 and 9 below.

4. Preservation of certain countable suprema

The details of this section will be important to the sequel, and also the
consequence (which is known; see 4.7 below) that whenever G -£• H e W,
with G € 38, then <p is a o--homomorphism and y{G) € 31. Our treatment is
heavily dependent on the Yosida representation.

We emphasize here that any G e W is identified with its Yosida represen-
tation; \Q denotes the weak unit (the constantly 1 function Y(G)).
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4.1 LEMMA. Let G SLW .

(a) g e G, and {ga} c G. Then \/aga = g in G if and only if{x\ VQ &(*) =
g(x)} is dense in Y(G). And, if\Jaga — lc in G, then UQ

COZ&» *s dense in
Y(G).

(b) If U is a dense open set in Y{G), then there is {ga} c G+ with \Ja coz ga

= U and yaga = lc in G.IfU is a cozero set, then {ga} may be chosen to
be countable.

PROOF, (a) Let P = {x\ Va ga(x) = g(x)}.
IF STATEMENT. Suppose P is dense. Since ga < g on P, we have ga < g, by

density and continuity. If there were h < g with ga<h for all a, there would
be x0 € P with h(x0) < g(x0), which would contradict V ga(xo) = g(xo)-

ONLY IF STATEMENT. Suppose Va ga = g- Let Un = {x\ga(x) > g(x)-l/n
for some a}. We have f\nUn = P n g~l(R), and this set will be dense if and
only if P is dense. So it suffices that each Un be dense, by the Baire Category
Theorem.

Suppose Un is not dense. We then have nonvoid open V missing Un, and
we can suppose g is bounded by l/2n on V. It follows that

max{ga(jc)|x e F } < rmn{g{x)\x eV}- l/2n for all a,

and that

max{2nga(x)\x GV}< min{2ng(x)\x e V} - 1 for all a.

Now choose h e G with coz h c V and 0 < h < 1. We then have 2nga <
2ng - h for all a. But Va 2"&> = 2nS for any n (since VQ ga - g), and we
have a contradiction.

(b) For each p e U, find gp e G with 0 < gp < lg, with gp = 1 on some
neighborhood of p and gp = 0 off U. Clearly, ypeu gp — \G- In case U is a
cozero set, it is Fa in compact Y(G), and so has the Lindelof property. Then,
U is the union of countably many of the sets {x\gp(x) = 1}, which produces
gPi,gP2,---, clearly with \/n gPn = 1G-

4.2 PROPOSITION. Let G -^ / / e W, with Y(G) 4
map realizing <p (as per Section 2, as (p(g) - got). The following are

equivalent
(a) <p is a a-homomorphism;
(b) \J gn = \G in G+ implies \/n q>{gn) = \H in H;
(c) C a dense cozero set in Y(G) implies T ~ ' ( C ) is dense (cozero) in Y(H)

(or dually, with nowhere dense zero sets).

PROOF. That (a) implies (b) is obvious.
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(b) implies (a). It is well known that, in any /-group, for any h, the map
g H-> g+h is a lattice isomorphism. This implies that \/a(ga+h) — (VQ ga)+h
for any {&,}, in the sense that one exists if and only if the other does, and
then they are equal.

Thus, if \/ngn = g, then \/n(gn - g + 1G) = 1G- If (b) holds, then
\ln{<p{gn)-(p{g)+lH) = \ln<p(gn-g+la) = l//> and the previous paragraph
yields Vn <P(gn) = <p(g)-

(b) implies (c). Given C, choose g as in 4.1(b). By (b), \Jn q>(gn) = 1//,
so by 4.1(a), \J ncoz<p{gn) is dense. Since <p(gn) = gn°^-> we have x~l(C) =
T~ ' (U,c o z#n) =[JnT~l(COZgn) = Un ™

zgn ° T = |Jn COZ<p(gn).
(c) implies (b). Let Vn gk = 'G- We want \/kgk °* = 1//, and shall

use 4.1(a). By that proof, Un = {x\gk(x) > 1 - 1/n for some k} is dense.
This set equals ( J t M & t M > 1 ~ !/"}> which is the union of a sequence
of cozeroes, and is thus cozero. By (c), r~l(Un) is dense. Now, T~'(£/„) C
{y\gk(y)) > 1 - l /w for some k}, so the latter is dense. As in the proof of
4.1 (a), {y\\/k gk{*{y)) = 1} is dense, so by 4.1 \fkgk°T= 1//.

4.3 LEMMA. Let G -^ H e W, with Y(G) ^ Y(H) the continuous map
realizing cp (as per Section 2, as <p(g) = g o T). Then, for each g e G

(a) g~l(R) is a dense cozero set, and oo(g) is a nowhere dense zero set, in
Y(G), and

(b) x~lg~l(R) is a dense cozero set, and T~l(oo(g)) is a nowhere dense
zero set, in Y(H).

PROOF, (a) g~l(R) = coz(l/|*| v lG).

The above is noted at the risk of belabouring the obvious. At any rate,
from 4.3 and 4.2 we now have

4.4 COROLLARY. Let G e W. Then every W-morphism out of G is a
a-homomorphism if every dense cozero set in Y(G) is of the form g~l(R) for
some g eG (or dually, every nowhere dense zero set is an oo(g)).

As noted before, for any space Y, each dense cozero set is of the form
/- ' ( /? ) for some f e D(Y) (cozh = f~}(R), with f=l/\h\ extended to be
+00 on Z(h)), whether or not D(Y) is an /-group. When D(Y) is an /-group,
that is, Y is quasi-F, or in particular, if Y is compact basically disconnected,
then 4.4 applies:

4.5 COROLLARY. If G e £§, then every W-morphism of G is a a-
homomorphism.
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4.6 COROLLARY. LetG^HeW be surjective. IfGe38, then H^38.

PROOF. With G e 38, we have B(Y(G)) -^ B(Y(G))/N(G) = pG =
G - t H by 3.3. We have B(Y(G)) € ^ and G e 38, so g and p are er-
homomorphisms, by 4.5. Thus <pq is a cr-homomorphism, so ker^? is a CT-
ideal in B(7(G)). Thus, by 3.1(a), ker <pq = { /€ B(Y(G))\cozfeJ^}, for
some Boolean <r-ideal yf in the Baire field, and thus H = B (Y(G))/ker <pq e
38, by 3.3(c).

4.7 REMARK. Corollaries 4.5 and 4.6 are due to Tzeng and Veksler; see
[24] and Theorem 0 of [25]. They reappear in [7], now without units.

5. fiG is the functorial ^-completion

We now prove this theorem, in the exact sense of the following.
Let W be a category and 3t a subcategory, assumed full for simplicity. 31

is said to be reflective in W if for each object C e ? there is rc: C -> rC,
with rC € 31, with this universal mapping property: for each <p\ C —• R,
with i? € 31, there is a unique !p: rC —> R with ^rc = p. Then the pair
(rC,rc), or sometimes just the object rC, is called the reflection of C into
<5?, and rc is called the reflection morphism; it is easy to show that (rC, rc)
is essentially unique, and that we have a functor %? ^+ 3Z left-adjoint to the
inclusion ^ +-̂> 31 whose action on objects is C —• rC, and whose action on
morphisms is G ^* H •-» rG % rH, where r<p = (rn<p)- When every reflection
morphism rc is monic, we say \ha\3l is monoreflective, for that it suffices that
(31 be reflective and) each C e ? embed into some ^-object, (see [16].)

Madden and Vermeer [19] first showed that, in W the class of epicomplete
objects is monoreflective, using locales, without the explicit identification
of the epicomplete objects as the ^-objects, and without an identification
within W of the epicomplete monoreflection (what we have been calling,
somewhat inexactly, the functorial epicompletion). At that point, we knew
that "epicomplete = 3§" (that is, l.l(b), here), and shortly verified that 3S is
monoreflective using a well-known adjoint functor theorem; these results are
presented in [2].

We now give an explicit and independent proof that the construct (fie, PG)
of 3.2 is the reflection of G into &. This, with "epicomplete = 38" thus
reproves, in a concrete way, the monoreflectivity of epicompleteness.

This section takes place in W: all the /-groups are 3T-objects and all the
homomorphisms are 3^-homomorphisms.
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The following is the main result of the paper. (The terminology in (d)
comes from Section 1.)

5.1 THEOREM. For each G, pG: G -* PG has these properties:

and <p: G —> E is a homomorphism, then there is a homo-
morphism lp: PG -* E with ipPc = (p;

(c) PG is epic, thus the lp in (b) is unique,
(d) PG is 38'-minimal: thus PG'. G —• PG is a 38'-completion.

PROOF, (a) is part of 3.3.
(b) and (c). We proceed a bit more generally. Let (p: G —• H be a homo-

morphism, and consider the diagram
Qn

G>G* < B(Y(G*)) = B(Y(G)) — •• B(Y{G))/N{G) =

?
•B(Y(H))/N(H) =

in which G* = {g € G\g is bounded on Y(G)}. Clearly, <p{G*) C H*, and
<p* = <p\G*: G* - H*. We have Y(G*) - Y{G). (See Section 2.) There is
continuous T: Y{H) -* Y(G) for which <p{g) = g o T, for all g e G. Being
continuous, r is Baire, and we define a homomorphism B{<p*): B{Y{G*)) ->
B{Y{H*)) be B(Y(H*)) by B{<p*){f) = for. Since Y(G*) = Y(G), etc., we
may as well, and do, rename this as B(q>): B(Y(G)) —> B{Y{H)). Obviously,
if g e G*, then B(<p)(g) = <p{g).

We have now proved (a) in

5.3 LEMMA. Let tp: G —• H be a homomorphism.
(a) There is a homomorphism B(<p): B(Y(G)) -> B(Y(H))for which B(<p)\

G* = q>\
(b) G* < B(Y(G)) is epic, thus, the B(<p) in (a) is unique.
(c) pG is epic.
(d) There is a homomorphism q>: PG —* PH for which q>pG — PH<P-

Upon proving the rest of 5.3, we have 5.1(c) (=5.3(c)) and 5.1(b): if in
5.3(d), H e 3§, then by 3.3(b), PH is an isomorphism, and we put ^ = P^1^.
We turn to the rest of 5.3.

We first construct the q> in (d) (which appears in 5.2). In 5.2, note that qc
and qn are just the projections onto the indicated quotients. In order that
B{q>) "drop" to a homomorphism q> of the quotients, of necessity given by

https://doi.org/10.1017/S1446788700035175 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700035175


38 Richard N. Ball and Anthony W. Hager [14]

f(f + N(G)) = B{<p){F) + N(H), it is exactly required that B(<p)(N(G)) C
N(H), that is, if / e B(Y(G)) has coz/ C |Jnoo(gn) for some sequence
(gn) C G, then there is (hn) c H such that coz/o T C \Jnoo{hn). But
COZ/OT = T-'(COZ/) C T-l(VHOO(gn)) = UnT-'Mg,)) = U ^ f o o i ) ;
thus put hn = gno %. We have ftor = p(g«), so /«„ e # .

Thus we have q>: pG ^> PH, and we now verify that q>Po = PH<P- Recall
that, for g E G, fiG(g) — g' + N(G) where g' is g redefined as 0 on oo(g).
So, fiG(g) = g' + N(G) = qG{g') so ffiG(g) = vqG{g') = B{<p){g') + N(H) =
g' °x + N{H). On the other hand, for h e H, pH{h) = h! + N{H), so
0H<P(g) = <p{g)' + N{H) = (go x)' + N{H). However, g' o x = (g o x)' since
oo(g o T) = T- ' (OO(^)) . So ypG(g) = pH<p{g) for all g€G.

Now we prove that G* < B(Y{G)) epic implies PQ is epic: for, qG is a
surjection, hence epic, and thus the composition e: G* < B(Y(G)) ^ pG is

epic. But e is also the composition G* < G ™ PG. Thus Pa is a "final factor"
of an epic, and such a thing is always epic.

Finally, we show that G* < B(Y{G)) is epic: let fX, q>2: B{Y(G)) -> K be
homomorphisms with <p\\G* = <P2\G*. Let / e 5(F(G)). For fc 6 Z, « e Z+,
f~l([k/n,(k + \)/n)) is a Baire set; let #£ be its characteristic function,
which is Baire. Then / is the pointwise supremum, f =\Jn Vfc(^/w)/tn' a n d
this supremum is also the supremum in the /-group B(Y(G)). The tpi are a-
homomorphisms by 4.5, so that p,(/) = Vn Vfc(^/w)??<Un) (the suprema now
being in K). For <p\ (/) = ^ ( Z ) . it is enough now to show that <px (x) = 0>2(#)
for each characteristic function ^ = ̂  of a Baire set F.

We shall prove that by transfinite induction using the Baire classification
3§{Y) = \Ja<co, &<** i n which <̂ b is all cozero sets of Y, &a+x consists of
all countable intersections (respectively unions) when a is even (respectively
odd), and % = \Ja<^a for limit p. (See [17].) Here, for Y = Y(G), each
cozero set C of Y(G) is an open Fa, and hence Lindelof, and the coz g (g eG)
form a base for the topology (Section 2), and so a covering argument yields
C = \Jn coz gn for some gu g2,... € G*.

Now, if F G ^ b , then F = (J/,coz^n f° r ̂ «'s e ^*> ant* we can eas-
ily redefine the ^ ' s so that XF = Vngn- Then, <PI(XF) = V > i ( f t ) =
Vn 9*2 (^n) = ?>2(Zf )> again since the q>i are cr-homomorphisms (4.5) with
suprema in B{Y{G)) being pointwise (3.1 (a)), and since <P\\G* = (pi\G*. Sim-
ilarly, one shows that (P\{XF) = 9I{XF) for all F e 38$, for all p < a, implies
9\(XF) = <P2(XF) when F e £&a. Induction completes the proof of 5.3(c).

The proof of 5.3 is complete.

PROOF OF 5.1(d). (Note that (c) and 1.2 immediately yield (d). However,
we are eschewing Section 1 here, so make a separate argument.)
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We have shown that PG'- G —• PG is the ^-reflection morphism. It then
follows on general grounds that PG is ̂ "-minimal, by 2 of [11]. We indicate a

e f
version of the argument: suppose G < E < PG with E € 38 (e, f being labels
for the postulated inclusions, with fe = PG). By (b), there is e: PG —> E
with Spc = e. Let / denote the identity morphism on PG. We have iPc =
PG = fe = f{spG) = (fe)Po- Since pG is epic (by (c)), i = fe; so / is a
retraction. But / is also one-to-one, and thus onto. So E = PG.

The proof of 5.1 is complete.

6. Arbitrary ^-completions

We now show that the ^"-completions of G are exactly the quotients over
G of PG. This is readily at hand from the universal mapping property of
PG (5.1), and the fact that a ^-quotient of a ^"-object is in 38 (4.6). A bit
more generally, we have

6.1 PROPOSITION, (a) Iftp: G —» E is 38-minimal, then the lp with !J>PG =
(p (from 5.1) is a surjection. ,

(b) Ifs: PG -* E is a surjective homomorphism, then SPQ is 38-minimal.

PROOF, (a) We have <p{G) < f(PG) < E. By 4.6, f(PG) e 38, so if <p is
^-minimal, then p(PG) = E.

(b) By 4.6, Ee&. Suppose we have H e & with sPG{G) <H <E. Then
G<s~l(G)<pG. Let Si =s\s-l(H): s~x{H)^H. Let p'G: G->s~l(H)be
the range-restriction of PG. By 5.1, since H € 38, there is sx: PG -> H with

m

S\PQ = SiP'G. For clarity, attach the label H < E; so ms\P'G - SPG- Thus,
mS\Pa = ms\P'G = SPG, which implies mS\ = s, since PG is epic (8.2(c)).
Since s is a surjection, so is m, and this says H = E.

(Using Section 1, we also can argue like this: since E e 38, E is epicom-
plete, by 1.1; and SPG is epic, as the composition of two epics, and hence is
^-minimal by 1.2.)

6.2 THEOREM, (a) If <p: G —• E is a 38-completion ofG, then there is a
{unique) surjective homomorphism Ip: PG —> E with !/>PG — <p.

(b) Ifs: PG —• E is a surjective homomorphism with SPG one-to-one, then
SPG'. G -* E is a 38-completion ofG.

This is just the specialization of 6.1 to embeddings.
It is now clear that, for a given G, there is an association between 38-

completions, certain ideals in PG, certain ideals in B(Y{G)), and certain
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ideals in 3&{Y{G)). We postpone the formal discussion to Section 8, and
first examine a subclass of the ^-completions with another canonical 38-
completion of G.

7. ^"-completions in which G is a-embedded

A a-embedding is an embedding which is a a-homomorphism. A 38-
completion </>: G —* E for which <p is a a-embedding will be called a 38a-
completion. We now shall construct the ^-completion which is functorial
for (T-homomorphisms. The development relies heavily on Section 4.

7.1 CONSTRUCTION OF fiG. Let G € W, and let 2"(Y(G)) = {A e
3&{Y(G))\A C \JnZn, for some sequence Zi ,Z 2 ) . . . of nowhere dense zero-
sets of Y(G)}. This is the a-ideal in &(Y(G)) generated by the collection of
nowhere dense zero-sets; it depends only on the Yosida space Y(G). Then
let Z(Y(G)) = {fe B(Y(G))\cozf e 3T{Y{G))} be the associated /-group
a-ideal of "null functions", and let fiG = B(Y{G))/Z{Y(G)) 6 W be the
/-group quotient. It is clear that there is an embedding of G into fiG; it
can be described like this: since N(G) C Z(Y(G)), there is the quotient
p.: fiG -» fiG. Set HG = P-GPG- G -» fiG; then p.G is the extension of fiG
over fiG provided by 5.1. And fiG is one-to-one because 2~(Y(G)) consists of
meagre sets, just as in 3.2, fie was shown one-to-one because N(G) consists
of meagre sets.

By 6.2, fiG: G —» HG is a ^-completion of G.
From 3.3, G e 38 implies fiG is an isomorphism, and then that ftG is

an isomorphism, in particular, Z(Y(G)) = N(G) for G e 3B; note that we
explicitly proved that in 3.5.

7.2 THEOREM. For each G, /*G: G -• nG has these properties:
(a) it is a ^-completion ofG;
(b) ij' E e 38, and q>: G —• E is a a-homomorphism, then there is a (a-)

homomorphism <p°: fiG —> E with <p°fiG = <?\
(c) fiG is epic, thus the y° in (b) is unique.

REMARK. 7.2 describes a situation of monoreflectivity, analogous to that
of 5.1, exactly as follows. Let Wa denote the category with aT-objects, and
morphisms the 3F-morphisms which are (7-homomorphisms. Let 3Sa be the
full subcategory of ^"-objects; since every 3F-morphism from a ^-object is
a a-homomorphism (4.6), we really have 3Sa = 38.
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Then, 7.2 says that 3§a is monoreflective in Wa, with fiG: G -* jiG being
the reflection of G; that is, Wa A 3Sa is in fact a functor, which is left-adjoint
to the inclusion Wa <^> 3§a- (In (c), "/iG is epic" is meant in W; by 4.6, this
is the same as "fiG is 3^-epic".)

Since on general grounds, reflections are unique (noted in Section 5) it
follows that fiG: G —• nG is essentially unique for the properties listed in 7.2.

PROOF OF 7.2. (a) The construction of nG showed it is a ^-completion.
We show HG is a cr-homomorphism by verifying 4.2(b).

Let \Jgn = \G in G+. Let qG: B(Y(G)) -> B(Y(G))/N(G) = fiG be the
quotient. We have the gn's e G*, and G* < B(Y(G)), so we view each gn as
an element g'n € B(Y(G)), and we have fiG(gn) = qc(gn), whence fiG(g'n) =
Pcficign) = fioqcigi,)- Then Vn Hcign) = Vn ficQcign) = pGQa(\/n g'n), since
PG and qG are cr-homomorphisms by 4.5. But HG4G(\/'„ g'n) = ^nC- by 4.1(a)n
and its proof, P = {x\ yn gn{x) = 1} = f\k Uk is dense, and each Uk is cozero
(as noted in the proof of 4.2.) Thus Y(G)-P e 3T(Y(G)). Since (Vn g'n)(x) =
Vn g'ni,x) = 1 holds for x € P, we have lB{r{G)) ~V« ^n e z(y(G!))» as desired.

(c) Now /<G = /ic^c is the composition of two epics, and hence is epic.
(b) We shall prove the following

7.3 LEMMA. If<p:G-*Hisa a-homomorphism, then there is a unique
(a-) homomorphism q>°°: fiG —> fiH with <p°°nG = /iH<P-

This immediately implies 7.2(b): if, in 7.3, H € SB, then fiH is an isomor-
phism onto, and we put q>° = ̂ V 0 0 -

PROOF OF 7.3. Consider the diagram

B(Y(G))

B(<P)

+ B(Y(G))/Z(Y(G))=MG
I

+B(Y(H))/Z(Y(H)) =

where B(<p) is the construct in 5.2: B(<p)(f) = f ox, where T: Y(H) -»•
Y{G) is the continuous map for which q>{g) = g ox. In order that B{q>)
"drop" over the quotients to <p°° = B{<p) + Z(Y(H)) it is exactly required

C Z(Y(H)). In view of the definition of B{q>), this is the
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statement that x~lZ{Y{G)) c 2~(Y(H)), which is immediate from 4.2(c)
when <p is a tr-homomorphism.

The verification that <P°°HG = HH<P is similar to 5.3(d). Now ^°° is unique,
since we already know fig is epic. That completes the proof of 7.3, and thus
of 7.2.

For what it's worth, 7.3 and 7.2(b) have the following "converses."

7.4. Let <p: G —> H be a homomorphism.

(a) If there is a (a-)homomorphism y/: pG —> fiH for which y/fic = HH<P,

then (p was already a a-homomorphism.

(b) If there is a (a-)homomorphism y/: fiG —> H for which VUG = 9, then
q> was already a a-homomorphism.

PROOF, HG is a <r-homomorphism, by 7.2, and so is the composition t//fiG
in either (a) or (b). So in (b), <p is a <7-homomorphism. Likewise in (a) (for
if <p were not, then HH would not be).

Finally, fiG is to the class of 3§a-completions of G just as fiG is to the
class of ^-completions:

7.5 THEOREM, (a) If q>: G —> E is a ^-minimal a-homomorphism (in
particular, if it is a ^-completion), then the <p°: fiG —• E with (p°(iG = 9
(from 7.2) is a surjection.

(b) If s: fiG —> E is a surjective (a-)homomorphism then sfic is a 38-
minimal a-homomorphism, and ifsnc is also one-to-one, then sfic: G —> E is
a ^-completion.

PROOF. This follows from 6.1 and 7.2.

8. The partially ordered set of ^-completions

Throughout this section G e W is fixed.
Let 38 ^(G) denote the class of all ^"-completions <p: G -> E of G; we

shall write (<p,E) e 38 &(G), or even f i e J 1 &(B); such <p is epic (either by
Section 1 or since, as per 6.2, (p = Ipfe, the composition of epics).

If 9>i,p2 € 3&W(G), we write <p\ > (pi if there is h with h<p\ — (pi; such
an h is unique (since (p\ is epic) and a surjection (by 4.6 and ^"-minimality
of q>2). Then 38 W(G) is quasi-ordered by >, and /?G is a maximal element
(6.2).
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Now, (f>\ ~ q>i means (p\ > fi and cpi > q>\. Then q>2 = A^i = fc^2
we see that h = k~l is an isomorphism. Then ~ is an equivalence relation,
38 ^{G)l ~ is a partially ordered set, and now the equivalence class of fiG is
the maximum element. (The issue of minimal and minimum elements will
be taken up to Section 9.)

We translate the partial order into inclusion of /-group ideals in fiG —
B(Y(G))/N(G), and in B(Y(G)), and into inclusion of Boolean <r-ideals in
38(Y(G))/JV{G), and in ^(Y(G)). It will suffice to display the translation
procedure, fix some notation, and state the result. Consider

("Bool")

(8.1)

B(Y(G))

QG

fiG *
G ^ fiG = B/N

38{Y{G))

cozG

E ~ (B/N)/kerp

in which for the diagram in W, on the left, B = B(Y(G)), N = N(G), and
q> e &ff(G), etc; for the diagram on the right, in which & = &(Y{Gj),
JV = JV{G), etc; the vertical part is in Boolean a-algebras, cozG denotes
{cozg|g € G), which is at least a lattice, and the arrows out of cozG are
lattice embeddings. In (8.1)(Bool), 5?{<p) is the <r-ideal in 3§IJV which cor-
responds to ker^ in a manner which we now describe.

In (8.1)(2T), ker^ is a cx-ideal in B/N with fiG{G) n kerlp = (0). And, of
course, if / is a a-ideal in B/N with fiG(G) nJ = (0), then let Ipj: B/N -»
(B/N)/J be the quotient, let <pj = Vjfic and we have <pj &3§ W(G). In this
notation, if <p e 38&S(G), then <p ~ ^er^; and fiG

We thus have an order-reversing surjection,

(8.2)
<p i-* ker q> e "a-ideals of the form J"; and <P2

if and only if ker^, =

and the 7's correspond one-to-one and order-preserving with Boolean a-
ideals,/" in 3§/JV which h a v e ^ n c o z G = 0 . Then, in (8.1)(Bool),
,/ corresponds to ker^ = / .
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We prefer to focus on the correspondence induced between the associated
c-ideals in B and 38: first, we have (implicitly from Section 3) one-to-one
order-preserving mutually inverse mappings

coz

(8.3) tr-ideals in B ^± a -ideals in £!
n

defined by coz/ = {coz/|/ e /} and nJ = {/| coz/ e J2"} ("n" for "null").
The following is clear.

8.4 PROPOSITION. Let I be a a-ideal in B(Y(G)), and J = coz/ the
associated a-ideal in 38{Y{G)) {so nJ*' = / ) . The following are equivalent:

(a) there is <p ^38 ^(G) with I = ^ ' ( k e r ^ ) , namely <p = <pqa(iy,
(b) / D N(G) and qG{I) n fiG{G) = (0);
(c) <f 2 -^{G) and J n cozG = {0}; that is, for all g e G.oo(^) e J

and coz g£J* if g ^ 0.

To sum up, let BI(G) be the /-group a-ideals / satisfying 8.4, and let
£& y{G) be the Boolean tr-ideals J satisfying 8.4.

8.5 COROLLARY. 3&<8(<G)I ~ is in one-to-one order-reversing correspon-
dence with BI(G), and BI{G) is in one-to-one order-preserving correspondence

Finally, let 38 %,{G) be the class of ^-completions of G per Section 7, as
a sub-quasi-ordered-set of 38 ^{G), so ̂ f ^ ( G ) / ~ has maximum (tG. Let
BIa(G) = {/ e BI(G)\I 2 Z(Y(G))} and 38Ia(G) = {J G aS{G)\S 2
3 ) ) }

8.6 COROLLARY. 38^a{G)l ~ is in one-to-one order-reversing correspon-
dence with BIa(G), and BIa{G) is in one-to-one order preserving correspon-
dence with

9. The ^-completion in which G is essentially and completely embedded

A complete homomorphism is one which preserves all existing suprema
and infima, and a complete embedding is an embedding which is a complete
homomorphism. Let us call a ^-completion <p: G -» E for which <p is a
complete embedding, a 38^-completion. We now construct a .^-completion
XG over which every complete homomorphism to a ^-object lifts uniquely
to a complete homomorphism, and show that XG is the only 38^-completion.
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It is important to recognize at the outset that we are not dealing with an
automatic extension of Section 7 to higher cardinals: XG is not any more
complete than XG € 38 entails (that is, XG is conditionally and laterally
ff-complete, but generally no more; in particular, not generally conditionally
and laterally complete), nor do homomorphisms out of XG preserve any more
existing suprema than XG &3S entails (that is, countable sups are preserved,
but generally no more).

9.1 CONSTRUCTION OF XG. This proceeds just as with fiG: let G e 3F,
and let Jt{Y{G)) = {A e 3§{Y{G))\A is meagre}. This is a <x-ideal in the
a-field 3§{Y{G)\ and depends only on Y(G). Let

M(Y(G)) = {fe B{Y{G))\ cozfe ^(Y(G))}

be the associated /-group cr-ideal of "null functions", and let

XG s B{Y{G))/M{Y{G)) € W

be the /-group quotient. There is an embedding of G into XG which can be
described as follows. Since N(G) c M{Y{G)), there is the quotient Xc: fiG -»
XG. Set XG = X^GfiG '• G -* XG; then JG is the extension of Ac over fiG provided
by 5.1. And XG is one-to-one for the same reason that fio and fie were:
Jt{Y{G)) consists of meagre sets.

By 6.2, XG: G -> XG is a ^-completion of G. (Indeed, Z(Y(G)) c
M(Y(G)), so by 7.5, it is a ^-completion.)

From 3.3, Ge£8 implies fie is an isomorphism, and then XG is an isomor-
phism, and in particular, M{Y{G)) = N(G) for Ge&. We digress to note
that we have now recovered the classical situation mentioned in 3.6: let Y be
compact and basically disconnected; by 3.5 (2), each Baire set differs from
a clopen set by a meager set, which is the essence of the Loomis-Sikorski
Theorem (see [10]); also, C(Y) = D(Y)" = (XD(Y))* = B(Y)*/MnB\ that
is, each bounded Baire function differs from some continuous function only
on a meagre set, which is Stone's Theorem [25].

We now do some ground-clearing needed to establish the properties of
XG : G —• XG. In particular, the completeness of XQ is not particularly obvious,
and for that, and other reasons, it seems better to focus on "essentiality".

9.2 LEMMA. Let G -^ H eW be an embedding, with Y(G) J- Y{H) the
continuous map realizing q>. The following are equivalent {and define "<p is
essential"):

(a) whenever H -^ K, with K archimedean {or, with y/ € W) has y/<p
one-to-one, then y/ is one-to-one,

(b) whenever I is an ideal ofH with H/I archimedean has I n <p{G) = (0),
then I = (0);
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1

(c) whenever 0 < h e H, there are 0 < g eG and n, with q>(g) < nh\
(d) T is "irreducible"; that is, whenever U is open nonvoid in Y(H), there

is open nonvoid V in Y(G), with r ' ( F ) c U; ifU is dense, then V may be
chosen dense.

IfG is divisible (c) is equivalent to
(e) for all heY+, h = \/{<p(g)\<P(g) < h).

Most of this well known, and it's all easy. Concerning (a), (b), (c), see
[3] and [4], and also note that in (a), if the property holds for y/ e W, and
we have H A K with K € Arch and pq> is one-to-one, then y/\ H A K -»
K/pfeff)-1 € W has y/(p one-to-one, and hence y/ is one-to-one, whence tp is
one-to-one. For (d), see 4.1 of [12]. To prove the density statement, let U
be dense. For each nonvoid open W in Y(G), choose nonvoid open Vw in
Y(G) with r-i(Vw)CT-i(W)n U. Set V = \JW Vw.

The following is one of the essential features of XQ.

9.3 THEOREM. For any G e W, the embedding XG:G-+kGof9.\ is
essential.

PROOF. Let B = B{Y(G)) and M - M{Y{G)). To satisfy 9.2(c), we are
to show that for each / € B+ with / e M, there are g e G and n with
0 < g + M < nf + M or 0 < (nf - g) + M.

Given such an / , {/- ' [n, n+1 )\n e N} is a cover of Y(G) by Baire sets, and
by the Baire Category Theorem, at least one of them, say A = / ~ ' [n, n +1) is
not meagre. We have XA < nf. Now choose open U with (A - U) U (U - A)
meagre, by [13, page 58], and then choose g € G with 0 ^ coz# c U,
0 < g < 1. Then, coz g C A U (coz g - A), and coz g - AC U - A, which is
meagre. Such g works in the first paragraph.

We now turn to complete homomorphisms and embeddings.

9.4 LEMMA. Let G -^ H € W, with Y{G) ^ Y(G) the continuous map
realizing (p. Then <p is a complete homomorphism if and only ifU dense open
in Y(G) implies T~1(U) dense (open) in Y(H) (or, dually with nowhere dense
closed sets); and this implies T~1(J?(Y(G))) C Jt(Y(H)).

(For "if and only if, use 4.1 and copy the proof of 4.2, giving up count-
ability. If E G J?(Y(G)), then E C \Jn Fn with the Fn nowhere dense closed,
whence t " 1 ^ ) C \}nx~x{Fn). So r~l(E) eJ?(Y(G)).)

9.5 LEMMA. An essential embedding in W is complete.
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This follows from 9.4 and 9.2(d). It is well known in more generality; see
[3] and [4].

The following gives the other main features of XG.

9.6 THEOREM. For each G, XG: G ->• XG has these properties:
(a) XG is a complete embedding;
(b) ifE e 38, and q>: G —• E is a complete homomorphism, then there is a

complete homomorphism q>': XG —» E with ip'Xo — <p;
(c) XG is epic; thus, the q>' in (b) is unique.

PROOF, (a) This follows from 9.3 and 9.5.
(c) Now XG = 1-GPG is the composition of two epics, and hence is epic.
(b) As in the proof of 7.2, we shall prove

9.7 LEMMA. Ifq>: G —>• H is a complete homomorphism, there is a unique
complete homomorphism <p": XG —> XH with <p"Xc — XH(p.

Note that 9.7 implies 9.6(b), since H e 38 implies XH is an isomorphism
(9.1), and XH is complete by (a).

PROOF OF 9.7. As in 7.2 and 5.2, consider the diagram

B(Y(G))

H

B{q>)

B(Y(H)).

+ B(Y(G))/M(Y(G))=XG

+ B(Y(H))/M(Y(H)) =

in which <p complete implies x~\M{Y{G))) C M{Y(H)) (by 9.4) which then
implies that (p", as denned, makes sense.

The verification that q>"XG = XHV is similar to that of 5.3(d), and unique-
ness of <p" (even without knowing <p" is complete) follows, since XG is epic.
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We must show q>" is complete. The "commuting square" g>"Xa = Xu<p, is
realized by the commuting square of continuous maps

Y(G) ^— Y(XG)

Y(H) < Y(XG)
PH

By 9.4, we are to show that T"~1(U) is dense whenever U is dense open in
Y(XG). Since XG is essential, 9.2(a) provides dense open V in Y(G), with
Pal(v) ^ U- Since <p is complete, 9.4 shows t~l(V) is dense in Y(H),
and then / > # ' T ~ ' ( F ) is dense in Y(XH), by 9.4, since XH is complete. But
PH1*~1(V) = *"~1(PG1(V)) S *"-'(£/), so this last is dense.

This completes the proof of 9.6.

9.8 W WITH COMPLETE HOMOMORPHISMS. Let 2 ^ denote the category
whose objects are the 3F-objects and whose morphisms are the ST-morphisms
which are complete. Let ^oo be the full subcategory of W^, whose objects
are the .^-objects.

Statement 9.6 says that 38<x> is monoreflective in 3 ^ , , with XQ\ G —• XG
being the reflection of G (that is, the operator W^ -4 SH^ is, in fact, a functor,
which is left-adjoint to the inclusion W^ +-* 38<x>)-

Reflections are unique, as discussed in Section 5. This means that if
(p: G -* E is a ^oo-reflection of G, then there is a ̂ oo-isomorphism \//: XG -•
E with y/kG = <p\ and in particular, (<p,E) e 3B%{G) and {(p,E) ~ (AC,AG)
(Condition 9.10(d) below is a strengthening of this unicity.)

One is led to compare W^ <=• 3^ with W<,+±3&a (7.3). For the latter, the
fact that every 3T-homomorphism out of a ^"-object is a cr-homomorphism
(4.5) had the following consequences: 3§a = &', fiG = fiG if and only if each
3F-homomorphism out of G is a cr-homomorphism; and for G -£• H e Wa

with H€&, <p is 3T-epic if and only if p is 3^-epic.
However, not every 3T"-homomorphism out of a ^"-object is complete (see

(a) below): so 38<x, £ 38; fio = XG only if each 3T-homomorphism out of G
is complete, but not conversely ((a) below); for G -£• H e W^ with H e 3B,
(p aT-epic implies q> is 3^,-epic (of course), but not conversely, even with H
conditionally and laterally complete (see 9.12 below).

(a) Let X be an uncountable set, and let Y = X U {p}, with neighborhoods
of p having countable complement in X, and each x € X is isolated. Let
G = C(Y). Now Y is basically disconnected, and thus so is fiY = Y(G), and
G = D(fiY), soGe&. (These are proved in [1].) Thus 0G = XG.

https://doi.org/10.1017/S1446788700035175 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700035175


[25] Archimedean /-groups and vector lattices 49

Define G -£• R € W by 0>(g) = g{p). Then ^ is realized by the inclusion
Y(G) = 0Y 4^ {/?} = 7(R). Evidently, T " 1 ^ ) = 0 , whence <p is not
complete by 9.4. (This expresses the fact that \J{Xx\x EX} = lG, where Xx is
the characteristic function of {x}, while in R, \J{<p{Xx)\x € X) = V{0} = 0.)

(b) Let G = C(N),N the discrete natural numbers (that is, G = RN). Every
3F-homomorphism out of G is complete: give G -^ H e W, realized by
Y(G) = 0N £- Y{H), we have N = g'^R) for various g € G, whence
T " ' ( N ) = q>(g)~l(R) is dense. But, any open dense U contains N, whence
T~'(C/) is dense, whence (p is complete by 9.4.

Many interesting questions about W^ naturally occur to one. But this
doesn't seem to have to do with the real topic of this paper, epicompletions
in 3T, so, except for some remarks in 9.11 below, we leave the subject for
now.

We turn to the remarkable uniqueness properties of XG.

9.9 LEMMA. Let <p: G —• E be a £S-completion ofG. Then tp is essential
if and only if(<p, E) is minimal in 38 ^(G) (as per Section 8).

PROOF. Let <p be essential, and suppose {q>,E) > (d,D) is expressed by
E ^* D with S = i//q>. Then 6 is one-to-one, so y/ is one-to-one. Since y/ is a
surjection, [<p,E) ~ (S,D).

w v'
Suppose E •?* H eW has y/<p one-to-one. Let E -» y/{H) be the "range

restriction of y/.n Then {y/'<p,y/{H)) e £?ff(G) (as in Section 8), and
(p,E) > (y/'<p, y/{H)). \i{(p,E) is minimal, then {(p,E) ~ {y/'<p, y/(H)), which
says y/' is an isomorphism. Thus y is one-to-one.

9.10 COROLLARY. Let q>: G —> E be a £&-completion ofG. The following
are equivalent:

(a) {(p, E) is minimal in 38 &(G);
(b) (p is essential;
(c) q> is complete,
(d)(<p,E)~(AG,XG).

PROOF. From 9.9, (a) implies (b), and from 9.5, (b) implies (c).
(c) implies (d). (We did not show this in the discussion of 9.8.) If <p is

complete, there is <p'\ XG —* E with (p'Xa = fp, by 9.6(b). Since XQ is essential
(9.3), <p' is one-to-one. Since (p'{XG) e 38, and q> is ^"-minimal, <p' is onto
E. (d) implies (a). By 9.3, XQ is essential; now apply 9.9.

9.11 Is XG least? We just showed that (XQ, XG) is the essentially unique
minimal element of 38 ^(G), so we address .the obvious question of whether
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or not it is the least element. The rough answer is, sometimes (9.13 and 9.14,
below), but usually not.

By Section 8, the equivalence classes of elements of 38 W(G) correspond
one-to-one with cr-ideals <? in the Baire field 38{Y(G)) with JT(G) c J" and
coz G n J2" = {0}; and an element is not above XG if and only if its ideal J1'
is not contained in J!(Y{G)).

For simplicity, we specialize to G = C(Y) with Y compact, whence
J^(C(Y)) = {0}.

(a) XC(Y) is not least in 3S W(C(Y)) if there is a nonmeagre Baire set P
in Y which contains no nonvoid cozero set.

(b) Suppose Y contains a nonvoid cozero set U, U having a dense set E
which is countable and consists of non-isolated G# -points. Then P — U -E
has the properties in (a).

(c) In Y = [0,1], P being the set of irrational points shows AC[0,1] is not
least in

PROOF, (a) If ^ is the ideal associated with a ^-completion not above
XC{Y), then one chooses nonmeagre P e J2". Conversely, given P, JF =
{A\A c P} is a a-ideal associated with a ^-completion not above XC(Y).

(b) The points of E are nowhere dense zero-sets (see [8]), so U - E is
Baire, co-meagre in U, and hence not meagre. Any cozero set contained in
U hits E, so U - E contains no nonvoid cozero set.

(c) P = [0,1] - E, where E is the set of rational points.
A related question, not answered by the above construction, is whether

(Ac, kG) is always least in 38 %{G)1 We don't know the answer. The question
is the /-group version of an old question of Sikorski about "cr-extensions" of
Boolean algebras; see 10.5 and 10.6(e) below.

At this point we abandon our prohibition on speaking about epics and
epicompletions, and permit ourselves to use Section 1 and a few abstract
features of epics.

9.12 THE ESSENTIAL CLOSURE. In [4], Conrad has shown that the
archimedean /-groups G which admit no proper essential extension in Arch
(= essentially closed) are exactly of the form D(Y), Y compact and extremally
disconnected, and that to each G e Arch there is an essentially closed eG and
various essential embeddings <p: G —> eG such that whenever G -^ H is an
essential embedding in Arch, there is an essential embedding H A eG (so
G ^+ eG is one of the ^>'s).

When G e 2T, we may construe eG = D(Y) to be in W by choosing the
constant function 1 as weak unit. Then (as is clear from [4]) there is exactly
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one essential e^: G —> eG in W, and whenever G -^ H e W is essential,
there is / / A eG e W which is essential, with ay/ = ec-

We thus have G < kG < eG over G (suppressing some notation); this can
also be inferred immediately from 9.6, since eg is complete (by 9.5). We deal
briefly with several obvious questions.

(a) kG = eG if and only if eG is W-epic.
(b) If Y(G) is metrizable, or admits no uncountable family of pairwise

disjoint open sets, then (a) holds.
(c) Let G = C(Y), where Y is the one-point compactification of uncount-

able discrete X. Then kC(Y) is example 9.8(a), while eC(Y) = C(X) (= Rx).
So ec is not W-epic.

(Statement (a) is obvious. In one form or another, (b) is known; see [5],
for example; (c) is easy.)

(d) kG = C\{H\G <H<eG,H<= &}.
(e) kG is the maximum W-epic extension of G within eG (alluded to in

the proof of 1.2).
(We show statement (d) as follows. The intersection in W of ^-objects

is in £§, as a formal consequence of reflectivity of 32 in W; see [16]. So
the construction here is a ^-completion within eG, thus essential, and 9.9
applies. Statement (e) follows from 9.9 and 1.1.)

(f) EG'. G —> eG is 3^o-epic.
(g) Conjecture. G is ^o-epicomplete if and only if G = eG; and eg: G —>

eG is the functorial 3^-epicompletion of G.
(Let dG be the divisible closure of G in eG. then, for all h € eG+,h —

\/{g e dG\g < h) by 9.2(e), and (f) follows.)

9.13 COROLLARY. LetGeW. The following are equivalent:
(a) PG'- G —• fiG is essential (or complete);
(b) pG = kG, that is, N(G) = M(Y(G));
(c) There is exactly one &-completion, or epicompletion, ofG (up to equiv-

alence in 3§%'(G));
(d) Every epic embedding ofG is essential;
(e) Every epic embedding ofG is complete.

PROOF. That (a) implies (b) follows from 9.9.
(b) implies (c). A partially ordered set with a minimal maximum has one

element.
(c) implies (d). If G(p < H is epic, then so is kHq>: G —• kH. By (c),

"is" kG, and hence is essential, so <p is essential.
That (d) implies (e) follows from 9.5.
That (e) implies (a) is obvious.

https://doi.org/10.1017/S1446788700035175 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700035175


52 Richard N. Ball and Anthony W. Hager [28]

9.14 COROLLARY, (a) If 0G = eG, then G satisfies 9.13.
(b) IfY is a compact space with no nonvoid nowhere dense zero sets (Y is

"almost-Pn as per [5]) then C{Y) satisfies 9.13.
(c)Y = 0N-N satisfies (b).
(d) The converse of (a) fails, with the Y o/9.8(a).

PROOF, (a) fa is essential.
(b) Since Y is compact, N(C(Y)) = {0}. In general, every nonvoid Baire

set contains a nonvoid zero set (by an induction on the Baire classes), so Y
almost-/1 implies Jt(Y) = {0}. Thus fiC(X) = kC{Y).

(c) The fact is known for 0N-N [8], and clear for 9.8(a).
(d) See 9.8(a).

10. Miscellania

We present an assortment of observations. First, we give the best cardinal
bound on epic extensions (which improves the result in [1]).

10.1 THEOREM. Let GeW.

(a) IfG < H is W-epic, then \H\ < \G\*°.
(b) Any W-epicompletion ofG has cardinality |G|H°.

PROOF, (a) Each cozero set in Y{G) is a countable union of sets cozg
{g € G), as in the proof of 4.1, so | coz Y(g)\ < |G|H°. By transfinite induction
on the Baire classification (see the proof of 5.3), it follows that \&{Y{G))\ <
ICrl*0. Then, since each / € B{Y(G)) can be sequentially approximated by
rational-valued step functions, \B{Y{G))\ < |G|N° follows. Then $G is a
quotient of B(Y(G)), so \0G\ < |(/|K°.

If G < H is ar-epic, then, by Sections 1 and 6, 0H is a quotient of fIG,
so \H\ < \0H\ < \0G\ < \G\*°.

(b) For any X, \C(X)\«° = \C(X)\, by [18], and \D(X)\ = \C(X)\ so
|Z>(Ar)|**« = \D(X)\. If G < H is an epicompletion of G, it is a ^-completion
(Section 1), so H is of the form D{X) and \H\ = \H\**. Then, with (a), we
have \H\ < |C?|**« < \H\H" = \H\.

10.2 COROLLARY. LetG<H be Arch-epic. Then \H\ < \G\*°.

PROOF. If G < H is Arch-epic, then by [1], for all u € G+, G/u±H is W-
epic, and r\{u±H\u e G+} = (0). Thus, H embeds in Y[{H/u±H\u e G+},
each \H/ux"\ < \G/ux°\«° < |<7|*°, and so \H\ < \G\ • \G\*° = \G\*°.
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10.3 REMARK. While [1] and [2] treat Arch as well as W, 10.2 above is
our first and essentially last encounter with Arch in this paper. We hope to
return to Arch in later work, and to treat at least the analogue of the operator
B (which exists, by [2]). The difficulty with Arch is, briefly, the lack of a
canonical Yosida representation.

10.4 BASICALLY DISCONNECTED COVERS OF COMPACT A. Let X be com-

pact, and consider a ^-completion <p: C(X) -> E. Then <p is realized by a

continuous map X ^ Y{E), Y(E) is basically disconnected, and x{<p) has
some special properties. We call such a pair (r(p), Y(E)) a basically discon-
nected cover of X. The particular one (r(Xw), Y{XC{X))) is the topic of
[26].

We are trying to develop this subject as a piece of topology, and shall
report on it later.

10.5 W VERSUS BOOLEAN ALGEBRAS. Let sf be a Boolean algebra, S{sf)
the Stone space, and G{sf) the 3T-object in C{S{sf)) of functions of the
form £/=i r,XA, (n e N; A,- a clopen set in S{tf), that is, At e sf\ XA,, the
characteristic function; r, e R). Then Y{G{$/)) = S(s/), by Section 2.

We construct a Boolean a-algebra Bsf and a Boolean embedding fa: s/
-> fij/ defined by fist = clop Y(fiG(j/)) where clop Y is the algebra of
clopen subsets of Y), and fa is the Stone dual of the map S(s/) = Y{G{srf))
i- Y{fiG{s/)) which realizes Ba^y. G{sf) — fiG{sf).

This, it is not hard to see, is the free tr-algebra over Boolean algebras
generated by sf, first constructed in [20] and [29]. (This is not the free
er-algebra over sets treated in [22].)

In exactly the same way, using our n and X, we construct n&: sf —> fLSf
and Xj/: st -> Xsf which are, respectively, the maximal and minimal "cr-
extensions" treated in [21, Section 36].

Our method of discussing 0, n, X (topological "pseudo-duality") is much
akin to the treatments in [29] and [21]. See also the discussion of um-
extensions" in [22], which proceeds differently.

It may be possible to argue from the Boolean theory to a limited version
of the 2F-theory, but there is a touchy difference: for G € £8, every 7ST-
homomorphism out of G is a a-homomorphism (so sometimes 0H = nH)\
no infinite Boolean algebra has the analogous property, (so fij^ ^ us/ for
infinite $/). Further, this paper is about epicompletions.

10.6 PROBLEMS. We collect a list of issues encountered above which we
have passed over without understanding completely.
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(a) 7.4 (b) implies that 0G = jxG if and only if each 2F-homomorphism out
of G is a cr-homomorphism. What are these G's? Corollary 4.4 contributes
to that. Perhaps more interesting is the same question in Arch, where the
answer should look more like algebra.

(b) We have seen in Section 9 that if each ^"-homomorphism out of G
is complete, then fiG — XG, but not conversely. What are each of these
G's? The former class looks particularly interesting, and one asks about that
property in Arch.

(c) In W^ (see 9.8), what are the epics and the epicomplete objects? like-
wise, for "Archoo". This is, of course, related to (b). (The corresponding
questions for Wa have been answered in Section 7 above, and we feel that
complete understanding of "ArchCT" is not far off.)

(d) There are four operators in W involved in this paper: /?, fi, X, e.
Questions (a) and (b) above are two examples of 4!/2!2! = 6 questions. The
other four questions seem to be interesting as well. Several of these questions
seem to be non-trivial questions about the Baire fields of compact spaces. We
would not be surprised if some of the answers depend on the axioms of set
theory.

(e) Is XG always the smallest element of ^Wa(G)7 This the analogue for
W of an old question of Sikorski about Boolean algebras [21].

(f) Is there some sense in which B(X) is a "canonical" ^-completion of
C(X)1

(g) The cardinal number No is everywhere in the theory of ^"-completions.
In Section 9, we succumbed to the temptation to "replace No by oo". We
have not succumbed to the temptation to "replace No by m" (for various rea-
sons, not least of which is that this paper is long enough already). However,
the various questions in that vein undeniably exist and are probably interest-
ing. In considering these, one should compare the theory of ra-extensions of
Boolean algebras in [22] with the theory of cr-extensions in [21]. The former
is more complicated exactly because not every w-algebra is m-representable.
The analogue of that in W is that, upon simple-minded replacement of No
by m in 3.3, (a) does not imply (c).
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