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Abstract

We show that if a unital injective endomorphism of a C∗-algebra admits a transfer operator, then both of
them are compressions of mutually inverse automorphisms of a bigger algebra. More generally, every
interaction group – in the sense of Exel – extending an action of an Ore semigroup by injective unital
endomorphisms of a C∗-algebra, admits a dilation to an action of the corresponding enveloping group on
another unital C∗-algebra, of which the former is a C∗-subalgebra: the interaction group is obtained by
composing the action with a conditional expectation. The dilation is essentially unique if a certain natural
condition of minimality is imposed, and it is faithful if and only if the interaction group is also faithful.
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1. Introduction

The notions of interaction groups and their crossed products have been introduced and
studied by Exel in [9], with the aim of dealing with irreversible dynamical systems.
Exel’s paper emerges as the culmination of previous work in the subject appearing in
[6–8, 11]. Related work may be found as well in [3–5, 13, 14].

In [10], Exel and Renault studied a family of interaction groups that extend actions
of some semigroups on unital commutative C∗-algebras. Such semigroups are known
as Ore semigroups, and their definition can be found at the beginning of Section 3.
The class of Ore semigroups contains all cancellative abelian monoids, like Nk. On
the other hand, in [4] De Castro considered an interaction group defined by an iterated
function system associated to inverse branches of continuous functions. The original
motivation of the present work was to show that, in both cases, these interaction groups
can be seen as a kind of ‘compression’ of a classical dynamical system, in a sense we
briefly describe below.
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Suppose that X is a compact Hausdorff space and θ : X → X is a covering map,
that is, a surjective local homeomorphism. For A = C(X), let α : A→ A be the dual
map of θ, that is, α(a) = a ◦ θ, which is a unital injective endomorphism of A. If there
exists a transfer operator [6] for α, that is, a positive linear map L : A→ A such that
L(α(a)b) = aL(b), for all a, b ∈ A, then V : Z→ B(A) (here B(A) is the algebra of
bounded operators from A into itself) given by

Vn =

αn n ≥ 0,
L−n n < 0,

is called an interaction group (Definition 2.1). This interaction group is clearly an
extension of the action ᾱ : N × A→ A given by (n, a) 7→ αn(a). Conversely, it can
be shown that if W : Z→ B(A) is an interaction group that extends ᾱ, then W−1 is
a transfer operator for α, and W is retrieved from α and W−1 from the construction
above. That is, interaction groups that extend ᾱ are in a natural bijection with
transfer operators for α. In the same way, interaction groups that extend the action
of an Ore semigroup correspond to semigroups of transfer operators associated to the
endomorphisms of the action. In the case of actions on commutative algebras the work
in [10] shows that one can replace transfer operators by cocycles. We will show later
that an interaction group like the one above can be written as the composition of an
action β on a bigger algebra with a conditional expectation F: Vn = Fβn|A, for all n ∈ Z,
a decomposition that reflects the combination of the deterministic and probabilistic
elements included in the concept of interaction group. The main aim of this paper is
to show that a similar dilation exists for any interaction group that extends an action
of an Ore semigroup by injective unital endomorphisms.

On the other hand, it seems that interaction groups are closely related with partial
actions. Propositions 2.6 and 3.6 below are instances of this relation. Moreover, under
certain conditions one may construct interaction groups from actions of groups and
conditional expectations, in a way that resembles the construction of partial actions by
the restriction of global ones. In fact, suppose that A is a C∗-subalgebra of the unital
C∗-algebra B, F : B→ B is a conditional expectation with range A, and β : G × B→ B
is an action of a group G on B. Let Ft : B→ B be given by Ft := βtFβt−1 . Then
Ft is a conditional expectation onto βt(A), for all t ∈ G. It is not hard to prove
that if FFt = FtF, for all t ∈ G, then V : G → B(A) such that Vt(a) = F(βt(a)), for
all a ∈ A, t ∈ G, is an interaction group (provided F(βt(1A)) = 1A, for all t ∈ G, see
Proposition 2.3 below).

In the same spirit as the work done in [1], although with different methods, we
show in the present paper that any interaction group that extends an action of an
Ore semigroup by unital injective endomorphisms (for instance, those studied in
[10]) is of this form, that is, it can be obtained by composing an action with a
conditional expectation. The existence of the action is due to Laca’s theorem (see
[12] and Theorem 3.15 below) on the dilation of actions of Ore semigroups. The
conditional expectation is constructed as the limit of the directed system of transfer
operators corresponding to the endomorphisms of the Ore semigroup action. When the
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[3] Dilations of interaction groups that extend actions of Ore semigroups 147

interaction group is faithful and the dilation is minimal, it is possible to show that the
left ideal associated to the conditional expectation is in fact a two-sided ideal invariant
under the action (Corollary 3.9), and from this fact one can prove that the conditional
expectation must be faithful.

In particular our results apply, of course, to interaction groups defined by an
endomorphism and a transfer operator for it. If α is an injective unital endomorphism
of a C∗-algebra A and L is a unital transfer operator for α, that is, if we have the
necessary ingredients to perform Exel’s crossed product by an endomorphism [6], then
there exist a unital C∗-algebra B containing A as a unital subalgebra, an automorphism
β of B, and a conditional expectation F : B→ A, such that α = Fβ|A and L = Fβ−1|A,
and F is faithful if and only if L is faithful.

The main examples of interaction groups considered in the existing literature
usually occur on a commutative C∗-algebra. In the commutative case one is able to
do a deeper analysis by using Gelfand–Naimark duality. In particular, the dilations
of the Exel–Renault interaction groups can be described very precisely. However, in
order to keep the present work to a reasonable length, we will not consider the general
commutative case in the present paper, but we restrict ourselves to the consideration of
just one family of examples: the interaction groups associated to some iterated function
systems considered in [4], associated to inverse branches of a continuous function.

The structure of the present paper is as follows. In the next section we show a
general construction of interaction groups, which we hope will serve to describe any
interaction group, and we study some relations between interaction groups and partial
actions. Then in the third section we introduce the notion of dilation of an interaction
group, and we prove our main result, Theorem 3.18. In the final section we see how
this theorem applies to some Z-interaction groups considered by De Castro in [4],
related to iterated function systems.

2. Preliminaries

2.1. Interaction groups. We show here how to get interaction groups from suitable
pairs of actions and conditional expectations. Recall that a partial representation of a
group G on a Banach space A is a map V : G→ B(A), the Banach algebra of bounded
linear operators on A, such that

Ve = Id (e the unit of G),
Vs−1 VsVt = Vs−1 Vst ∀s, t ∈ G,
VsVtVt−1 = VstVt−1 ∀s, t ∈ G.

Definition 2.1 (cf. [9]). An interaction group is a triple (A,G,V) where A is a unital
C∗-algebra, G is a group, and V is a map from G into B(A), which satisfies:

(1) Vt is a positive unital map, for all t ∈ G;
(2) V is a partial representation;
(3) Vt(aa′) = Vt(a)Vt(a′) if either a or a′ belongs to Vt−1 (A).
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If the group G is understood we will put write (A,V) (or even V if A is understood

as well) instead of (A,G, V). A morphism (A,G, V)
ψ
→ (A′,G, V ′) is a unital

homomorphism of C∗-algebras ψ : A→ A′ that intertwines the interaction groups:
ψVt = V ′tψ, for all t ∈ G.

Let us introduce and fix some notation before proceeding. We will denote by TG
the set of triples T = (B, β, F), where β is an action of the group G on the unital C∗-
algebra B, and F : B→ B is a conditional expectation, that is, a norm-one idempotent
whose range is a C∗-subalgebra of B. Recall that a conditional expectation F is a
positive F(B)-bimodule map. Each such a triple T has associated the following objects
(here A = F(B)):

(1) Fr := βrFβr−1 , which is a conditional expectation with image βr(A);
(2) KT = span{βr(A) : r ∈ G}, the closed linear β-orbit of A. Note that KT is Fr

invariant, for every r ∈ G, and F̃r(KT) = βr(A).

In virtue of (2) above, we can define F̃r : KT → KT such that F̃r(k) = Fr(k). If r = e
we will write F̃ instead of F̃e. We also have the restricted action β̃ : G × KT→ KT such
that β̃r(k) = βr(k), for all r ∈ G, k ∈ KT. Then we have the following proposition.

Proposition 2.2.

(1) F̃2
r = F̃r, ‖F̃r‖ = 1 and F̃r ≥ 0, for all r ∈ G.

(2) Frβs = βsFs−1r, for all r, s ∈ G.
(3) FrFs = βsFs−1rFβs−1 , or equivalently FstFs = βsFtFβs−1 , for all r, s, t ∈ G.
(4) If t ∈ G, then FtF = FFt if and only if FstFs = FsFst, for all s ∈ G.
(5) [Fr, Fs] = βr[F, Fr−1 s]βr−1 , for all r, s ∈ G, where [S , T ] =: S T − TS is the

commutator of the operators S and T .
(6) The same relations hold for F̃r and β̃r instead of Fr and βr.

Proof. Since F̃r is a restriction of the conditional expectation Fr, it is clear that
F̃2

r = F̃r, ‖F̃r‖ ≤ 1 and F̃r ≥ 0. On the other hand, every nonzero idempotent element
of a normed algebra, like F̃r, has norm greater than or equal to 1. Therefore statement
(1) is proved. As for (2), we just make the necessary computations:

Frβs = βrFβr−1βs = βsβs−1rFβr−1 s = βsFs−1r.

Assertion (3) follows now from (2):

FrFs = (βrFβr−1 s)Fβs−1 = (βrβr−1 sFs−1r)Fβs−1 = (βsFs−1r)Fβs−1 .

Statements (4) and (5) follow at once from (3). Statement (6) is just a consequence of
(1)–(5) and the invariance of KT under every Fr and every βr. �

We show next that the formula Vt := Fβt |A (= F̃β̃t |A) defines an interaction group
V : G→ B(A) provided the following two conditions hold:

F̃β̃t(1A) = 1A, ∀t ∈ G; (2.1)
F̃rF̃s = F̃sF̃r, ∀r, s ∈ G. (2.2)
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Thus it will be convenient to consider the subsetDG of TG, whose elements are those
triples T = (B, β,F) that satisfy conditions (2.1) and (2.2). Note that (2.1) is equivalent
to FβtF(1B) = F(1B), for all t ∈ G.

Proposition 2.3. Let T = (B, β, F) ∈ TG, A := F(B), KT, F̃r and F̃ as above. Suppose
that F̃F̃t = F̃tF̃, for all t ∈ G. Then the following statements hold:

(1) F̃rF̃s = F̃sF̃r, for all r, s ∈ G, and F̃rF̃s is a norm-one idempotent with range
βr(A) ∩ βs(A).

(2) If Vt := Fβt |A, for all t ∈ G, then the map V : G → B(A) given by t 7→ Vt is a
partial representation and satisfies condition (3) of Definition 2.1. Moreover, the
range of Vt is A ∩ βt(A), for all t ∈ G.

(3) If V is the map defined in (2), then V is an interaction group if and only if T ∈ DG.

Proof. Since F̃ commutes with every F̃t, claim (1) follows directly from (4) and (6) of
Proposition 2.2.

As for (2), V is a partial representation: on the one hand, it is clear that Ve = Fβe|A =

F IdA = IdA; and on the other hand,

Vs−1 VsVt = F̃F̃s−1 F̃β̃t |A = F̃F̃s−1 β̃t |A = Vs−1 Vst,

VsVtVt−1 = F̃β̃stF̃t−1 F̃β̃t−1 |A = VstF̃F̃t−1 β̃t−1 |A = VstVt−1 F̃|A = VstVt−1 .

Now if x ∈ A, a = Vt−1 (x) and a′ ∈ A, then

Vt(aa′) = Vt(Vt−1 (x)a′) = F̃(F̃t(x)β̃t(a′)) = F̃(F̃tF̃(x)β̃t(a′))
= F̃(F̃F̃t(x)β̃t(a′)) = F̃F̃t(x)F̃(β̃t(a′)) = VtVt−1 (x)Vt(a′) = Vt(a)Vt(a′).

Since Vt(a′a) = Vt(a∗a′∗)∗, we have shown that V satisfies condition (3) of
Definition 2.1. On the other hand Vt(A) = F̃β̃t(A) = F̃F̃t(KT) = A ∩ β̃t(A), where the
latter equality is given by (1).

Now, in view of the preceding parts, V is an interaction group if and only if
F̃β̃t(1A) = 1A, for all t ∈ G, that is, if and only if T ∈ DG. �

Observe that, if FrF = FFr, for all r, s ∈G, one can follow the proof of (1) above to
show that also FrFs = FsFr for all r, s ∈ G, and then FrFs is a conditional expectation
with range βr(A) ∩ βs(A).

Definition 2.4. An interaction group V : G→ B(A) will be called faithful if every Vt

is a faithful positive map, that is, Vt(a∗a) = 0 if and only if a = 0.

We record the next obvious fact for future reference.

Proposition 2.5. Let T = (B, β, F) ∈ DG be such that F is faithful. If A := F(B) and
V : G→ B(A) is the interaction group defined in Proposition 2.3, that is, Vt = Fβt |A,
then V is a faithful interaction group.
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2.2. The partial action of an interaction group. We will see now that every
interaction group has naturally associated a partial action of the group on the same
algebra. Recall that a partial action of a discrete group G on a set X is a pair
({Xt}t∈G, {γt}t∈G) where, for every t ∈G, Xt is a subset of X, γt : Xt−1 → Xt is a bijection,
and γst extends γsγt, for all s, t ∈ G. It is also assumed that γe = idX . When X is a
C∗-algebra, it is usually supposed that Xt is an ideal and that γt is an isomorphism of
C∗-algebras. So we warn the reader that, for the partial actions we consider in this
paper, the sets Xt will be unital C∗-subalgebras rather than ideals.

Proposition 2.6. Suppose that V : G → B(A) is an interaction group. For t ∈ G, let
At := Vt(A), and let γt : At−1 → At be such that γt(a) = Vt(a). Then the following
statements hold:

(1) Every At is a unital C∗-subalgebra of A (with the same unit), and γt is an
isomorphism between At−1 and At, for all t ∈ G.

(2) The map Et : A→ A given by Et := VtVt−1 is a conditional expectation onto At,
for all t ∈ G, and ErEs = EsEr, for all r, s ∈ G. Moreover, the interaction group
is faithful if and only if every Et is faithful.

(3) The pair γ := ({At}t∈G, {γt}t∈G) is a partial action of G on A.

Proof. We already know by [9, 3.2] that At is a unital C∗-subalgebra of A with unit
Vt(1A) = 1A, and that γt is an isomorphism, for all t ∈ G. The first assertion of (2) also
follows from [9, 2.2 and 3.2]. The composition of faithful positive maps is again a
faithful positive map, so every Et is faithful if V is faithful. On the other hand, if Et

is faithful and Vt(a∗a) = 0, then Et(a∗a) = Vt−1 Vt(a∗a) = 0, so a = 0; then Vt is faithful.
To prove (3) note first that, since V is a partial representation, we have γe = Ve = Id.
Suppose now that c belongs to the domain of γsγt, that is, c ∈ At−1 is such that γt(c) ∈
As−1 . Then γsγt(c) ∈ As and γsγt(c) = VsVt(Vt−1 (γt(c))) = Vst(Vt−1 (γt(c))) = Vst(c) ∈ Ast.
Then γsγt(c) ∈ As ∩ Ast, and we may apply γt−1 s−1 to γsγt(c). Since V is a partial
representation we obtain

γt−1 s−1γsγt(c) = Vt−1 s−1 Vsγt(c) = Vt−1 Vs−1 Vsγt(c) = γt−1γs−1γsγt(c) = c,

whence γst(c) = γsγt(c). This shows that γst extends γsγt, for all s, t ∈G, and therefore
γ is a partial action. �

Observe that if V is an interaction group of the type considered in (3) of Proposition
2.3, then Er = FFr |A = Fr |A, and ErEs = FrFs|A (in the notation of Propositions 2.3
and 2.6).

As mentioned previously, the usual notion of partial actions of groups on C∗-
algebras requires that the domains of the partial automorphisms involved are ideals.
In the commutative case, partial actions on a C∗-algebra correspond exactly to
partial actions on the spectrum of the algebra, where the domains of the partial
homeomorphisms are open subsets of the spectrum [2, Proposition 1.5]. Instead,
partial actions on unital commutative C∗-algebras such as the ones considered in
Proposition 2.6 lead to a different notion of partial action on a topological space.
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In fact, let A = C(X) be a unital commutative C∗-algebra, and let γ = ({At}, {γt}) be
a partial action of G on A, where each At is a unital subalgebra of A, with the same
unit. Then the dual notion of the partial action γ should be expressed in terms of the
spectra of the subalgebras At and the maps induced by γ between them. Although we
will not give here the exact conditions that such a collection of spaces and maps must
satisfy, it is clear that the result is not a partial action in the usual sense, as the spectrum
of At is not a subspace but a quotient of X.

3. Dilations

3.1. Dilations of interaction groups. We introduce next the notion of dilation of an
interaction group V , and we study its relation with the partial action associated with V .

Definition 3.1. Let V : G → B(A) be an interaction group. A dilation of V is a pair
(i,T), where T = (B, β, F) ∈ TG and i : A→ B is a homomorphism of C∗-algebras such
that iVt = Fβti, for all t ∈ G. If B = C∗({βti(a) : a ∈ A, t ∈ G}), that is, B is the C∗-
algebra generated by {βti(a) : a ∈ A, t ∈ G}, we say that the dilation is minimal. The
dilation is called faithful if i is injective and F is faithful.

In view of the general construction made in the previous section, it seems
natural to single out the dilations which will produce interaction groups via (2) of
Proposition 2.3. More precisely, we give the following definition.

Definition 3.2. Let KT,i := span{β̃t(i(A)) : t ∈ G}, so KT,i is a closed β-invariant
subspace of B contained in KT. We say that the dilation is admissible if F̃rF̃s = F̃sF̃r

on KT,i, for all r, s ∈ G.

As in Proposition 2.3, it is easy to see that the dilation (i, (B, β,F)) of V is admissible
if and only if F̃rF̃ = F̃F̃r on KT,i, for all r ∈ G. A computation of each side of the
equality F̃rF̃βsi = F̃F̃rβsi then shows that the latter condition is equivalent to

iVrVr−1 s = βriVr−1 Vs, ∀r, s ∈ G. (3.1)

In particular, iVr = βriVr−1 Vr, for all r ∈ G.
Note that (i, T) is admissible whenever T ∈ DG, and if V is the interaction group

given by (2) of Proposition 2.3 and i is the natural inclusion, then (i,T) is admissible if
and only if T ∈ DG.

We are mainly interested in admissible dilations. It will follow from the following
result that this is always the case provided the conditional expectation F is faithful.

Proposition 3.3. Let V : G→ B(A) be an interaction group, and suppose that (i,T) is
a dilation of V, where T = (B, β, F). Then we have [F̃r, F̃s](KT,i) ⊆ IF , for all r, s, t ∈ G
(recall that IF := {b ∈ B : F(b∗b) = 0}).

Proof. By (5) and (6) of Proposition 2.2, we have [F̃r, F̃s] = β̃r[F̃, F̃r−1 s]β̃r−1 , for
all r, s ∈ G. So it is enough to show that [F̃, F̃s](β̃t(i(A))) ⊆ IF , for all s, t ∈ G.
More explicitly, we must prove that FβsFβs−1 (βti(a)) − βsFβs−1 F(βti(a)) ∈ IF ,
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that is, iVsVs−1t(a) − βsiVs−1 Vt(a) ∈ IF , for all s ∈ G, a ∈ A. Since F is an i(A)-
bimodule map which is the identity on i(A), and since Fβti = iVt, we have that
F((iVsVs−1t(a) − βsiVs−1 Vt(a))∗(iVsVs−1t(a) − βsiVs−1 Vt(a))) is equal to

i[VsVs−1t(a∗)(VsVs−1t(a) − VsVs−1 Vt(a))
−VsVs−1 Vt(a∗)VsVs−1t(a) + Vs(Vs−1 Vt(a∗)Vs−1 Vt(a))],

which is zero because V is a partial representation and Vs is multiplicative on
Vs−1 (A). �

Corollary 3.4. Any dilation of an interaction group is admissible if the conditional
expectation F is faithful.

Proposition 3.5. If (i, T ) is a faithful dilation of the interaction group V, then V is a
faithful interaction group.

Proof. Since the homomorphism i is injective, the interaction group V is isomorphic to
the restriction to i(A) of one of those interaction groups considered in Proposition 2.5
and, as such, it is faithful. �

Suppose that β is an action of G on the C∗-algebra B, and that A is a C∗-subalgebra
of B. The restriction of β to A is the partial action β|A := ({A′t}t∈G, {γ

′
t }t∈G), where

A′t := A ∩ βt(A) and γ′t (a) := βt(a), for all a ∈ A′t−1 , t ∈ G. If the C∗-algebra generated
by {βt(a) : a ∈ A, t ∈ G} is all of B, we say that β is a minimal globalization of γ′. In
particular, if (i, (B, β, F)) is a dilation of an interaction group V , we have two partial
actions related with V: the restriction of β to i(A) as above, and also that associated to
V in Proposition 2.6. We study next the relationship between them.

Proposition 3.6. Suppose that V : G → B(A) is an interaction group with dilation
(i, (B, β, F)), where A is a C∗-subalgebra of B and i : A→ B is the natural inclusion.
Let γ be the partial action of G on A given by Proposition 2.6, and let γ′ := β|A.
Then At ⊇ A′t := A ∩ βt(A) and γt(a) = γ′t (a), for all t ∈ G, a ∈ A′t−1 . If the dilation is
admissible then γ = β|A. In particular, if the dilation is faithful then γ is the restriction
of β to A.

Proof. If a ∈ A, then a ∈ A′t−1 ⇐⇒ βt(a) ∈ A ⇐⇒ βt(a) = Fβt(a) ⇐⇒ βt(a) = Vt(a).
Then if a ∈ A′t−1 we have γ′t (a) = βt(a) = Vt(a) ∈ At, which shows that A′t ⊆ At and
γ′t = Vt |A′

t−1
= γt |A′

t−1
. On the other hand, if F̃F̃t = F̃tF̃, by (1) of Proposition 2.3 we

have
At = Vt(A) = VtVt−1 (A) = F̃F̃t(A) ⊆ A ∩ βt(A) ⊆ A′t ,

whence At = A′t , and γt = γ′t . The last two assertions follow respectively from
Proposition 3.3 and Corollary 3.4. �

Corollary 3.7. Suppose that V : G → B(A) is an interaction group with admissible
dilation (i, (B, β, F)), where i : A→ B is an embedding (that is, i is injective). Then
the restriction of β to C := C∗({βti(a) : t ∈ G, a ∈ A}) is isomorphic to a minimal
globalization of the partial action γ of G on A given by Proposition 2.6. In particular,
if the dilation is minimal then β is isomorphic to a minimal globalization of γ.
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In the proof of our main result, Theorem 3.18, we will construct a minimal dilation
T = (B, β,F) of a given interaction group V that extends an action of an Ore semigroup.
This particular dilation is such that i is injective and

[F, Ft] = 0, ∀t. (3.2)

It turns out that, if in addition V is faithful, then there exists a faithful dilation of V .
Since the latter fact is just a consequence of (3.2) and the injectivity of i, and not of the
particular structure of the group or the nature of V , we will prove it in a more general
context than that of Theorem 3.18. This is precisely the aim of the remaining results
of the present subsection.

The key fact is that, in the above situation, the left ideal IF is actually a β-invariant
two-sided ideal of B. We begin by proving this fact.

Proposition 3.8. Let (i,T) be a dilation of the interaction group V : G→ B(A), where
T = (B, β, F).

(1) If V is faithful, i is injective and [F, Ft] = 0 for all t ∈ G, then IF is β-invariant.
(2) If IF is β-invariant and (i,T ) is minimal, then IF is a two-sided ideal of B.

Proof. Let b ∈ IF and suppose that F(b∗b) = 0. If [F, Ft−1 ] = 0, we have iFFt−1 (b∗b) =

iFt−1 F(b∗b) = 0, that is, Vt−1 F(βt(b)∗βt(b)) = 0. Thus, if V is faithful, we have
F(βt(b)∗βt(b)) = 0, which shows that IF is β-invariant. To prove the second part we
have to show only that IF is a right ideal, for it is well known that IF is always a
left ideal in B. To do so, it is enough to show that bβt(i(a)) ∈ IF , for all b ∈ IF ,
a ∈ A and t ∈ G, because of the minimality of the dilation. Since we are assuming
that IF is β-invariant, the above is equivalent to showing that βt−1 (bβt(i(a))) ∈ IF . But
F((βt−1 (b)i(a))∗(βt−1 (b)i(a))) = F(i(a)∗βt−1 (b)∗βt−1 (b)i(a)) and, since F is a conditional
expectation onto F(B) ⊇ i(A), the latter expression is equal to i(a)∗F(βt−1 (b∗b))i(a),
which is zero because IF is β invariant. �

So combining both parts of Proposition 3.8, we get the following corollary.

Corollary 3.9. Suppose that (i,T) is a minimal dilation of a faithful interaction group
V : G→ B(A), where T = (B, β, F). If i is injective and [F, Ft] = 0 for all t ∈ G, then
IF is a β-invariant two-sided ideal of B.

In particular, we have the following result.

Corollary 3.10. Let T = (B, β, F) ∈ DG be such that B = C∗({βt(F(B)) : t ∈ G}) and
[F, Ft] = 0 for all t ∈ G. If F is faithful, then IF is a β-invariant two-sided ideal of B.

Proof. Just apply Corollary 3.9 to the interaction group associated to T via (2) of
Proposition 2.3. �

Our next goal is to show that if a faithful interaction group has a dilation in which i
is injective and (3.2) holds, then the interaction group also has a faithful dilation. This
will be accomplished in Corollary 3.13.
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Let (i,T) be a dilation of the interaction group V : G→ B(A), where T = (B, β, F).
Suppose that IF is two-sided ideal of B, as happens to be the case when B is
commutative, or under the circumstances of the second part of Proposition 3.8. Let
q : B→ B/IF =: B̄F be the quotient map, and ī = qi. Since IF ⊆ ker F, there exists
a unique linear map F̄ : B̄F → B̄F such that F̄q = qF, and we have ‖F̄‖ = ‖F‖ = 1.
Moreover, F̄ is clearly positive, and it is idempotent: F̄2q = qF2 = qF = F̄q. Finally,
F̄(B̄F) = F̄q(B) = q(F(B)), which is a C∗-subalgebra of B̄F , so F̄ is a conditional
expectation. We have the following proposition.

Proposition 3.11. Suppose that IF is a β-invariant two-sided ideal of B, and let β̄ be
the action induced by β on B̄F , so β̄tq = qβt, for all t ∈ G. If T̄ := (B̄F , β̄, F̄), then (ī, T̄)
is a dilation of V, with F̄ faithful. If i is injective, then so is ī, and (ī, T̄) is a faithful
dilation of V.

Proof. If F̄(q(b)∗q(b)) = 0, then q(F(b∗b)) = 0, thus F(b∗b) ∈ IF ∩ i(A) = 0; hence
F(b∗b) = 0, that is, q(b) = 0. So F̄ is faithful. On the other hand,

īVt = qiVt = qFβti = F̄qβti = F̄β̄tqi = F̄β̄t ī.

Suppose that i is injective. Since IF ∩ i(A) = 0, then q|i(A) is injective. It follows that ī
is injective as well; hence (ī, T̄ ) is a faithful dilation of V . �

Corollary 3.12. If an interaction group has a dilation for which i is injective and IF

is β-invariant, then it also has a faithful dilation.

Corollary 3.13. If a faithful interaction group has a dilation in which i is injective
and [F, Ft] = 0 for all t ∈ G, then it also has a minimal faithful dilation with the same
poperties (in particular, it is admissible).

Proof. We may suppose the dilation is minimal, so by Corollary 3.9 we are in the
conditions of Proposition 3.11, which provides a faithful dilation (B̄F , β̄, F̄), which
is minimal by construction. Since F̄t = β̄tF̄β̄t−1 we have F̄tq = Ftq. Thus [F̄, F̄t]q =

q[F, Ft] = 0, whence [F̄, F̄t] = 0. �

3.2. A case of existence of dilation. We will prove next our main result:
any interaction group that extends an action of an Ore semigroup by injective
endomorphisms has an essentially unique minimal admissible dilation. We first review
some facts about Ore monoids and also Laca’s extension-dilation theorem about
actions of these semigroups.

A cancellative monoid P is called an Ore semigroup if Pr ∩ Ps , ∅, for all r, s ∈ P.
It follows by induction that P is an Ore semigroup if and only if Pt1 ∩ · · · ∩ Ptn , ∅,
for all t1, . . . , tn ∈ P. Then P is partially ordered by the relation r ≤ s ⇐⇒ s ∈ Pr
(equivalently, r ≤ s ⇐⇒ Pr ⊇ Ps), and it is even directed by that relation.

Any cancellative abelian monoid P is an Ore semigroup. In fact, such a monoid
embeds in its Grothendieck group G, and every element t ∈ G can be written as
t = v−1u, with u, v ∈ P. Therefore, if r, s ∈ P, writing rs−1 = u−1v, with u, v ∈ P, gives
t := ur = vs ∈ Pr ∩ Ps, so P is an Ore semigroup (and P 3 t ≥ r, s). More generally, we
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have the following theorem [12, Theorem 1.1.2], which shows that there is a functor
from the category of Ore semigroups into the category of groups.

Theorem 3.14 (Ore, Dubreil). A semigroup P can be embedded in a group G with
P−1P = G if and only if it is an Ore semigroup. In this case the group G is determined
up to canonical isomorphism and every semigroup homomorphism φ from P into a
group H extends uniquely to a group homomorphism ϕ : G→ H.

If P is an Ore semigroup we say that the group G in Theorem 3.14 is the enveloping
group of P.

A key ingredient in our process of dilating the interaction groups under
consideration is Laca’s theorem [12, 2.1.1]. For the convenience of the reader we
recall it next.

Theorem 3.15 (Laca, [12]). Assume that P is an Ore semigroup with enveloping
group G = P−1P and let α be an action of P by unital injective endomorphisms of
a unital C∗-algebra A. Then there exists a C∗-dynamical system (B,G, β), unique up to
isomorphism, consisting of an action β of G by automorphisms of a C∗-algebra B and
an embedding i : A→ B such that:

(1) β dilates α, that is, βti = iαt, for t in P; and
(2) (B,G, β) is minimal, that is,

⋃
t∈P β

−1
t (i(A)) is dense in B.

Note that i is unital:

βt−1 i(a)i(1A) = βt−1 (i(a)βt(i(1A))) = βt−1 (i(aαt(1A))) = βt−1 i(a), ∀t ∈ P,

so taking adjoints and recalling that {βt−1 (i(a)) : t ∈ P, a ∈ A} is dense in B, we see that
i(1A) = 1B.

From now on G will denote the enveloping group of the Ore semigroup P.
Suppose now that α is an action of the Ore semigroup P by unital injective

endomorphisms of the unital C∗-algebra A, and that V : G → B(A) is an interaction
group such that V |P = α. To prove our main result it will be useful to establish first
some easy relations between α, V and their possible dilations.

Lemma 3.16. In the conditions above, we have:

(1) Vr−1 Vr = idA, that is, Er−1 = idA, for all r ∈ P;
(2) Vr−1t = Vr−1 Vt, for all r ∈ P, t ∈ G;
(3) Vtr = VtVr, for all r ∈ P, t ∈ G.

Proof. To prove (1), note that αr = Vr = VrVr−1 Vr = αrVr−1αr; thus Vr−1αr = IdA,
because αr is injective. Since V is an interaction group, in particular a partial
representation, from (1) we obtain (2): Vr−1t = Vr−1 VrVr−1t = Vr−1 Vt. Similarly, we
obtains (3) by multiplying Vtr by Vr−1 Vr on the right. �

Lemma 3.17. If (i, (B, β, F)) is an admissible dilation of V, then:

(1) βri = iVr = iαr, for all r ∈ P;
(2) βtiVt−1 = iVtVt−1 , for all t ∈ G.
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Proof. By (3.1) we have iVr = βriVr−1 Vr, for all r ∈ G. Thus our first claim follows
from (1) of the previous lemma. The second assertion holds in general for admissible
dilations, for it is a particular case of (3.1). �

One can define morphisms between elements of the set TG, in such a way that
TG with these morphisms is a category. If T = (B, β, F), T ′ = (B′, β′, F′) ∈ TG, by a
morphism φ : T → T ′ we mean a unital homomorphism of C∗-algebras φ : B→ B′ that
intertwines the actions and the conditional expectations: φF = F′φ and φβt = β′tφ, for
all t ∈ G. Of courseDG with such morphisms is a full subcategory of TG.

Theorem 3.18. Let α be an action of the Ore semigroup P by unital injective
endomorphisms of the unital C∗-algebra A, and suppose that V : G → B(A) is an
interaction group such that V |P = α. Then V has a minimal admissible dilation (i,T),
where T = (B, β, F) and i : A→ B is a unital embedding, which has the following
universal property. If (i′, (B′, β′, F′)) is another admissible dilation of V, then there
exists a unique morphism φ : (B, β, F)→ (B′, β′, F′) such that φi = i′. Therefore the
dilation (i, T ) is unique up to isomorphism in the class of minimal and admissible
dilations. Moreover, the dilation is faithful if and only if V is a faithful interaction
group.

Proof. Let i : (A, α)→ (B, β) be the minimal dilation of (A, α) provided by Laca’s
theorem. We suppose, as we can do, that i is the natural inclusion, so A ⊆ B. We
proceed next to define a conditional expectation F : B→ A. To this end note first that
if r, s ∈ P, with r ≤ s, and ar,as ∈ A are such that βr−1 (ar) = βs−1 (as), then βsr−1 (ar) = as,
so αsr−1 (ar) = as by Theorem 3.15. Therefore

Vs−1 (as) = Vs−1αsr−1 (ar) = Vs−1 Vsr−1 (ar) = Vs−1αsVr−1 (ar) = Vr−1 (ar).

Thus we may define F0 :
⋃

t∈P βt−1 (A) → B such that F0(b) = Vt−1 (βt(b)), for all
b ∈ βt−1 (A). Since ‖F0(b)‖ = ‖Vt−1 (βt(b))‖ ≤ ‖b‖, F0 extends uniquely to a bounded
operator F : B→ A, which is easily seen to be positive and to satisfy F2 = F and
F(B) = A. Then F is a conditional expectation with range A. We claim that (B, β, F)
is a minimal admissible dilation of V . In fact, if t ∈G and r, s ∈ P are such that t = r−1s,
then

Fβt |A = Fβr−1βrt |A = Fβr−1αs = Vr−1αs = Vr−1 VrVr−1 s = Vr−1 s = Vt.

Since
⋃

t∈P βt−1 (A) is dense in B we have that (B, β, F) is minimal, and to see that it
is also admissible it is enough to check that FFtβr−1 |A = FtFβr−1 |A, for all t ∈ G, r ∈ P.
On the one hand, we have

FFtβr−1 |A = FβtFβt−1r−1 |A = VtFVt−1r−1 = EtVr−1 . (3.3)

On the other hand, if t ∈G, we have FtF = βtFβt−1 F = βtVt−1 F = VtVt−1 F = EtF, where
the third equality follows from (ii) of Lemma 3.17. Then

FtFβr−1 |A = EtFβr−1 |A = EtVr−1 . (3.4)
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From (3.3) and (3.4) we conclude that (B, β,F) is admissible. We see next that (B, β,F)
has the claimed universal property. Then suppose that (i′, (B′, β′, F′)) is another
admissible dilation of V . By (1) of Lemma 3.17 we have that β′ri

′ = i′αr, for all r ∈ P,
for all r ∈ P, and then by the universal property of the pair (B, β) there exists a unique
homomorphism φ : B→ B′ such that φi = i′ and β′tφ = φβt for all t ∈ G. In particular,
φβr−1 i = β′r−1φi = β′r−1 i′, for all r ∈ P. Thus

F′φβr−1 i = F′β′r−1 i′ = i′Vr−1 = φiVr−1 = φFβr−1 i, ∀r ∈ P.

The equality φF = F′φ follows now from the density of
⋃

r∈P βr−1 i(A) in B and the
continuity of the maps involved.

We consider next the question of the faithfulness of F. Suppose first that F is
faithful. Then the dilation is faithful, and therefore V is a faithful interaction group by
Proposition 3.5. Suppose conversely that V is faithful, and observe that the dilation
obtained satisfies KT = B, so Fr = F̃r, for all r ∈ G. Then V has an admissible
minimal faithful dilation (B′, β′, F′) by Corollary 3.13. By the universal property of
the dilation (i, (B, β, F)), there exists a unique morphism φ : (B, β, F)→ (B′, β′, F′)
such that φi = i′. But the map φ must be an isomorphism by Theorem 3.15. Therefore,
since F = φ−1F′φ, we conclude that F is faithful. �

Corollary 3.19. Let α be an action of the Ore semigroup P by unital injective
endomorphisms of the unital commutative C∗-algebra A. Then the following assertions
are equivalent:

(1) there exists a (faithful) interaction group V : G→ B(A) such that V |P = α;
(2) if β : G × B→ B is the minimal dilation of α (provided by Theorem 3.15), there

exists a (faithful) conditional expectation F : B→ B such that (B, β, F) ∈ DG.

Proof. Just apply Theorem 3.18 to see that (1)→(2), and Propositions 2.3 (3) and 2.5
for the converse implication. �

Remark 3.20. Suppose that V and V ′ are interaction groups that extend actions
by injective unital endomorphisms of the Ore semigroup P. Suppose as well that
ψ : (A, V)→ (A′, V ′) is a morphism of interaction groups, and let (i, T ) and (i′, T ′)
be the corresponding minimal admissible dilations of V and V ′. Then (i′ψ, T ′) is
an admissible dilation of V , so there exists a unique morphism φ : T → T ′ such that
φi = i′ψ. In this way we obtain a functor from the category of interaction groups that
extend actions by injective unital endomorphisms of the Ore semigroup P into the
categoryDG, where G is the enveloping group of P.

When an interaction group extends an action of an Ore semigroup it is possible to
determine if it is faithful by examining just the conditional expectations corresponding
to the elements of the semigroup.

Proposition 3.21. Let α : P→ B(A) be an action of the Ore semigroup P by injective
unital endomorphisms of the unital C∗-algebra A. If V : G→ B(A) is an interaction
group that extends the action α, then V is faithful if and only if Et is faithful, for every
t ∈ P.
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Proof. As shown in Proposition 2.6, V is faithful if and only if Et is faithful, for all
t ∈ G. Suppose now that Et is faithful, for all t ∈ P. If r ∈ P, then Vr = αr, which is
faithful because it is injective, and, since Er = VrVr−1 is faithful, so must Vr−1 also be
faithful. Finally, if t ∈ G is any element, write it as t = r−1s, with r, s ∈ P. Then, by
Lemma 3.16, Vt = Vr−1 s = Vr−1 Vs, which is faithful for is the composition of faithful
maps. �

Proposition 3.22. Under the assumptions of Proposition 3.21, and if r1, . . . , rn are
generators of P, then the following assertions are equivalent:

(1) V is faithful;
(2) Vr−1

i
is faithful, for all i = 1, . . . , n;

(3) Eri is faithful, for all i = 1, . . . , n.

Proof. It is easy to check the path of implications (1)→ (2)→ (3)→ (2). To see that
(2) → (1), note first that Vr = αr is faithful for all r ∈ P. If r = ri1 · · · rik , we have
Vr−1 = Vr−1

ik
· · ·Vr−1

i1
by (2) of Lemma 3.16, which shows that Vr−1 is faithful. Finally, if

t ∈ G is arbitrary, write it as t = r−1s. A new invocation of the second part of Lemma
3.16 shows that Vt is faithful. �

A particular relevant case is when the interaction group V : Z→ B(A) extends an
action of N by injective endomorphisms.

Corollary 3.23. Let α : A→ A be a unital injective endomorphism of the unital C∗-
algebra A, and suppose that L ∈ B(A) is a transfer operator for α. Consider the
interaction group V : Z→ B(A) such that Vn = αn if n ≥ 0, Vn = L−n otherwise. Then
the following are equivalent: (a) V is faithful; (b) L is faithful; (c) E := αL is faithful.

We end the section with a result concerning minimal globalizations.

Proposition 3.24. Let V be an interaction group as in Theorem 3.18, and let γ be the
partial action associated to V via Proposition 2.6. Then γ has a minimal globalization,
which is unique up to isomorphism.

Proof. It follows from Theorem 3.18 and Corollary 3.7 that the action β provided by
Theorem 3.18 is a minimal globalization of γ. Suppose now that β′ : G × B′ → B′ is
another minimal globalization of γ, where B′ is a C∗-algebra which contains A. To
show that β and β′ are isomorphic, it is enough to show that β′ satisfies properties
(1) and (2) of Theorem 3.15. By definition β′ satisfies the first property, so let us see
that it also satisfies the second. Note that if t = r−1s ∈ G, with r, s ∈ P, then β′t(A) =

β′r−1αs(A) ⊆ β′r−1 (A), which shows that
⋃

t∈G β
′
t(A) ⊆

⋃
r∈P β

′

r−1 (A). On the other hand,
suppose r, s ∈ P, with r ≤ s. Then, since sr−1 ∈ P, we have A ⊇ αsr−1 (A) = β′sβ

′

r−1 (A), so
β′s−1 (A) ⊇ β′r−1 (A). This shows that

⋃
r∈P β

′

r−1 (A) is a ∗-subalgebra of B′ which contains⋃
t∈G β

′
t(A). This implies that B′ is the closure of

⋃
r∈P β

′

r−1 (A), as we wanted to
prove. �
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4. Iterated function systems

We end the paper with an example originating in the so-called iterated function
systems associated to inverse branches of continuous functions (see [4]). More
precisely, suppose that γ : X → X is a continuous function on the compact Hausdorff
space X, for which there exist continuous functions γ1, . . . , γd on X such that γ ◦ γi =

idX and X =
⋃d

i=1 γi(X). Let A := C(X), and α, αi ∈ B(E) be the endomorphisms
induced by γ and γi respectively. Note that αiα = idA, so α is injective, each αi

is surjective, and αi is a transfer operator for α, for all i = 1, . . . , d. Since convex
combinations of transfer operators for α are transfer operators for α as well, it follows
that L := (1/d)

∑d
i=1 αi is also a transfer operator for α. Thus we can consider the

corresponding interaction group Vγ : Z→ B(A), which is an extension of the action
N × A→ A: (n, a) 7→ αn(a).

Proposition 4.1. The interaction group Vγ has a faithful dilation.

Proof. By Theorem 3.18 Vγ has a minimal admissible dilation, which is faithful if and
only if Vγ is faithful. Now, by Corollary 3.23, Vγ is faithful if and only if L is faithful.
So suppose that a ∈ A is such that L(a∗a) = 0. Then αi(a∗a) = 0 for all i = 1, . . . , d,
that is, a∗a ◦ γi = 0. Since X =

⋃d
i=1 γi(X), we conclude that a∗a = 0, so a = 0. Then

L is faithful. �

Since x = γ(γi(x)), for all x ∈ X, i = 1, . . . , d, we have γ−1(x) ⊇ {γ1(x), . . . , γd(x)},
for all x ∈ X. The converse inclusion follows from X =

⋃d
i=1 γi(X): if x = γ(y), there

exist z ∈ X and some i ∈ {1, . . . , d} such that y = γi(z), and therefore x = γ(γi(z)) = z,
that is, y = γi(x). Then γ−1(x) = {γ1(x), . . . , γd(x)} is a nonempty finite set of at most d
elements, for each x ∈ X. We have

L(b)(x) =

d∑
i=1

1
d

b(γi(x)) =
∑

y∈γ−1(x)

n(y, x)
d

b(y) =
∑
y∈X

n(y, x)
d

b(y),

where n(y, x) is the number of elements of the set { j : γ j(y) = x}.
A particular important case is when the iterated function system satisfies the strong

separation condition, that is, when X is the disjoint union of the γi(X), because then the
iterated function system is isomorphic to the one we define next (see [4]). We will also
describe very explicitly its dilation. Let Ω := {1, . . . , d}N, and let σ : Ω→ Ω be given
by σ(x)( j) = x( j + 1), for all x ∈ Ω, j ≥ 0. For every i ∈ {1, . . . , d}, let σi : Ω→ Ω be
such that

σi(x)( j) =

i if j = 0,
x( j − 1) if j ≥ 1.

Then we have σ ◦ σi = idΩ, for all i = 1, . . . , d, and Ω =
⊎d

i=1 σi(Ω) (disjoint union). It
is clear that σi(Ω) is open, and that σ is a local homeomorphism. Let A := C(Ω), and
α,αi : A→ A be the dual maps of σ and σi respectively. Finally, letL := (1/d)

∑d
i=1 αi,

which is a transfer operator for α, and call Vσ the corresponding interaction group.
We proceed now to describe its dilation. Let Ω̃ := {1, . . . , d}Z, and let σ̃ : Ω̃→ Ω̃
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be the Bernoulli shift, that is, σ̃(y)( j) = y( j + 1), for all y ∈ Ω̃, j ∈ Z. We have a
natural inclusion ι : A ↪→ B := C(Ω̃) given by the dual map of π : Ω̃→ Ω, defined
as π(y)( j) = y( j), for all y ∈ Ω̃, j ≥ 0. Note that π ◦ σ̃n = σn ◦ π, for all n ∈ N. Let
β : Z × B→ B be the action induced by σ̃. It is easy to see that (B, β) is the dilation of
(A, α) announced by Theorem 3.15. It remains to find the conditional expectation
F : B→ ι(A) such that (B, β, F) is the dilation of Vσ. For each i = 1, . . . , d, let
τi : Ω→ Ω̃ be given by

τi(y)( j) =

i if j < 0,
y( j) if j ≥ 0.

Then π ◦ τi = idΩ, so ρι = idA, where ρi is the dual map of τi. Define Fi : B→ ι(A)
as Fi = ιρi (the dual map of τi ◦ π). Then Fi is a homomorphism of C∗-algebras, and
also a conditional expectation onto ι(A). Moreover, Fi β−1ι(a) = ι(αi(a)), for all a ∈ A
and i = 1, . . . , d. So if we define F := (1/d)

∑d
i=1 Fi, we have that F is a conditional

expectation onto ι(A), and Fβ−1ι = ιL.
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