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Abstract

This paper is concerned with the numerical range and some related properties of the operator A|S:
T -> AT — TB {T e S), where A, B are (bounded linear) operators on the normed linear spaces X and
Y, respectively, and S is a linear subspace of the space £(Y, X) of all operators from Y to X. S is
assumed to contain all finite operators, to be invariant under A, and to be suitably normed (not
necessarily with the operator norm). Then the algebra numerical range of A | S is equal to the
difference of the algebra numerical ranges of A and B. When X = Y and S = £(X), A is Hermitian
(resp. normal) in £(£(X)) if and only if A — \ and B — A are Hermitian (resp. normal) in £(X) for
some scalar A; if X : = H is a Hilbert space and if S is a C*-algebra or a minimal norm ideal in £(H),
then any Hermitian (resp. normal) operator on S is of the form A|S for some Hermitian (resp.
normal) operators A and B. AT = TB implies A*T = TB*, provided that A and B* are hyponormal
operators on the Hilbert spaces H, and H 2, respectively, and T is a Hilbert-Schmidt operator from H 2

toH, .
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0. Introduction

Let X be a complex normed linear space and let £(X) be the algebra of all
(bounded linear) operators on X. The spatial numerical range of an operator A on
X is given by W(A; £(X)) := {f(Ax); (x, / ) e ir(X)}, where w(X) denotes the
set of all pairs (x, / ) G X X X' such that \\x\\ = | |/ | | = f(x) = 1. The algebra
numerical range of A in £(X) is given by V(A; £(X)) := {F(A); (I, F) e
77-(£(X))}, where / is the identity operator. It is known that V(A; £(X)) is compact
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[21 Numerical ranges of generalized derivations 135

and is the closed convex hull of W(A; £(X)). When X = H is a Hilbert space with
inner product ( , }, W(A; £(X)) reduces to the classical numerical range
W(A) : = {(Ax, x); x G H, \\x\\ = 1} (see [4] for details).

If B is an operator on another normed linear space Y, then the generalized
derivation A = AA B, defined by A(T) '•= AT — TB, is an operator on the space
£(Y, X) of all operators from Y to X. In this paper, we consider the numerical
ranges of restrictions of A to certain invariant subspaces S and some conse-
quences. First, the algebra numerical range of A | S is shown to be the difference
of V(A; £(X)) and V(B; £(Y)), provided that S contains all finite-rank operators
and is suitably normed. Then it is applied to determine when A or A | S is
Hermitian or normal, and to derive a Fuglede-Putnam theorem for hyponormal
operators. The results will extend some theorems of Kyle [8], Sourour [13] and
Berberian [3], respectively.

1. The numerical range

We will assume that S is a linear subspace of £(Y, X) equipped with a norm
111 • 111 (possibly different from the operator norm || • ||) such that the following
conditions are satisfied:

(1) AS C S and §>B C S; (2) If D G £(X), r e S , £ G £(Y) and DTE G S,
then Hl/JrelH <||£>|||||r||| | |£||; (3) ||r|| <| | |7l | | for all T i n S , and the equality
holds whenever T has rank one; (4) §> contains all finite rank operators from Y to
X.

It follows from (1) that § is an invariant subspace of A = AA B, and from (2)
that the restriction A|S of A is a bounded linear operator on (S , | | | | | | ) . We
consider the numerical range of A | S.

THEOREM 1.1. For operators A G £(X) and B G £(Y) let (S , | | | | | | ) be the
normed linear space as mentioned above. Then

(*) K(A|S; £(§)) = V(A; £(X)) - V(B; £(Y)).

PROOF. We first prove that the left side is contained in the right side. So, let X
be an arbitrary element of F(A| S; £(S)). Then X = /(A |S) for some/ e (£(S))'
such that Il/H = /(/£(s)) = 1. where /£(S) denotes the identity operator in £(S). It
is clear that the set 911 (resp. 91) of all D G £(X) (resp. E G £(Y)) such that
D% C §> (resp. §>E C §) is a linear subspace of £(X) (resp. £(Y)) containing 7£(X)

and A (resp. /£(Y) and B). Define a linear functional F on 511 by F(D) =J(LD \ S)
(D £ 911) and a linear functional G on 91 by G(E) = f(RE\§) (E G 91), where
LD and RE stand for the left multiplication by D and the right multiplication by
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136 Sen-Yen Shaw [31

E, respectively. Now the Hahn-Banach theorem guarantees the existence of / in
(£(X))' and G in (£(Y))' such that F|<Dlt = F, \\F\\ = \\F\\, G\% = G and ||G|| =
||G||. Since F( / £ ( X ) ) = F( / £ ( X ) ) = / ( / e ( S ) ) = 1 and since \F(D)\< \\f\\\\LD\S\\ =
sup{|| |£>r|| |; T G S, | | | r | | | = 1} < \\D\\ for all D in 91L, we have that | |F | | = | |F | |
< 1 = / ( / e ( X ) ) ^ ll^ll, that is, (/e(X), F ) belongs to TT(£(X)). Similarly, we have
(/£(Y), G) e TT(£(Y)) . Hence

To prove the other inclusion, it suffices to show that

K(A|S; £(§)) D H^(^; £(X)) - W(B; £(Y))

since the closed convex hull of the set on the right side is V(A; £(X))—
V(B; £(Y)), by an elementary proof. So, let a = g(Ax) with (x, g) £ w(X) and
let 0 = h(By) with (j>, /i) G 77-(Y). Using the usual notation x ® /i for the
rank-one operator: z -»/i(z)x (z G Y), we define the linear functional P on £(S)
by

Clearly we have P{I^%)) = 1 and, by (3) and (4),

|P(0) |

that is, (/e(s), P) e w(£(S)). Hence K(A|S; £(§)) contains the number

/>(A|S) = g(>4(*®A)^- (x9h)By)

= g(Ax)h(y)-g(x)h(By) = a-B.

The proof is complete.

REMARK. Conditions (3) and (4) are used only in proving the direction "D ",
therefore the inclusion " C " will hold for any subspace satisfying (1) and (2).
That (4) is essential for the direction " 3 " is easily seen from the example where
X = Y = C2,A=B = (»»), S = span{^} and |||-|| | = || • ||.

The following are some examples of qualified subspaces (S,| | |- | | |):
(a) Components in £(Y, X) of all the operator ideals on Banach spaces, as

studied in Chapter 1 of [9], such as the classes of finite operators, approximate
operators, compact operators, weakly compact operators, completely continuous
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operators, unconditionally summing operators, separable operators, Kato opera-
tors and Pelczynski operators.

(b) Components in £(Y, X) of all the normed operator ideals on Banach spaces,
as studied in Chapter 6 of [9], such as nuclear operators, integral operators,
absolutely summing operators and Hilbert operators. (Compare the assumptions
on (S, HI • |||) with Definitions 6.1.1, 6.2.2 and Propositions 6.1.4, 6.1.5 of [9].)

(c) The Schatten />-class Cp(H2,H,) (1 ̂ /> < oo) or approximate operators
from a Hilbert space H 2 to another Hilbert space H,, that is, operators T such
that | | r | | p : = [ t race(r*r) / > / 2 ] 1 / ' '< oo, (see [9, page 216]). In the case where
p = 1 these are the operators of trace class (nuclear operators), and p = 2 yields
the Hilbert space of Hilbert-Schmidt operators (see [2, Chapter 12]).

COROLLARY 1.2. For any A G £(X) and B G £(Y),

; £(£(Y,X))) = V(A; £(X)) - V(B;

This contains Kyle's result [8] (for the case X = Y) as a special case.

COROLLARY 1.3. Let A and B be any operators on Hilbert spaces H, and H 2 ,
respectively, and let ( ^ ( H ^ H , ) be normed with \\ • \\or\\ • \\p. Then

F(A|C,(H2,HJ;£(C,(H2,H,))) = W^r-**W-

Thus Corollary 1.3 becomes a numerical range analogue of Fialkow's [5]
formula for spectra: a(A | Cp(H)) = a(A) - a{B).

We end this section by deriving from Theorem 1.1 the following known
property, which will be of use in Section 2.

COROLLARY 1.4. If AT - TB holds for all rank-one operators T in £(Y, X), then
A — A/e(X) and B = A / £ ( Y ) for some scalar X.

PROOF. Take S to be the space of all finite rank operators. Then A | S = 0 and
so V(A; £(X)) - V{B; £(Y)) = F(A|£(2)) = {0}, or equivalently, V(A; £(X))
= V(B; £(Y)) - {X} for some scalar X. It follows that V{A - XI&(X); £(X)) = {0}
and

- X/e(X); £(X))} = 0

(see [4, page 34]). Hence A = A/£(X), and similarly B — XIt(Y).
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2. Hermitian and normal derivations

An operator A on a normed linear space X is said to be Hermitian if its
numerical range is contained in the real line and it is normal if A — H + iK for
some commuting Hermitian operators H and K. In this section we try to answer
partly the question about when the operator A | §> is Hermitian or normal.

First, from the formula (*) comes immediately the following

COROLLARY 2.1. Let (S , | | | - | | | ) be as assumed in Theorem 1.1. Then A|S is
Hermitian in £ (£(¥ , ) // and only if A - XI £ £(X) and B - XI £ £(Y) are
Hermitian for some scalar X.

Kyle [8] has proved that when X = Y is a Banach space and when A — B, A is
normal if and only if A is normal in £(X). We shall extend this result under
various situations. The statement for the most general situation is as follows.

THEOREM 2.2. Let A G £(X) and B G £(Y) be of the forms A = H + iK and

B — M + iN, where H, K, M and N are Hermitian operators. Suppose that (S, 111 • 111)
satisfies i /S C S, ATS C S, $M C S, %N C S and conditions (2), (3), (4). Then
A12 is normal if and only if both A and B are normal.

PROOF. A^ B can be written as Aw M + J A ^ N, where AH M and A^ N and their
restrictions to S are Hermitian, by Corollary 2.1. Now, from the easily verified
identity

we see that A | S is normal if and only if (HK- KH)T = T(MN - NM) for all T
in S. Since § contains all finite rank operators, the latter condition is, by
Corollary 1.4, equivalent to that HK - KH = A/e(X) and MN - NM = X/e(Y) for
some scalar X. But this is possible only when X = 0, that is, A and B are normal
(see [10, page 332]).

It follows that for A | S to be normal it is sufficient that A and B are normal.
That this is also necessary in case X and Y are Hilbert spaces is already contained,
in the above theorem.

COROLLARY 2.3. Let H, and H 2 be Hilbert spaces. For A G £(H,) and B G
£(H 2 ) let S C £(H2, H,) be a subspace satisfying conditions (l)-(4) {for example,
Cp(H 2, H,) with norm \\ • \\por operator norm \\ • \|). Then A | S is normal if and only
if both A and B are normal.
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REMARK. When A and B are normal operators on a Hilbert space H, A and
A | C2(H) become normal operators on the Banach space £(H) and the Hilbert
space (C2(H),|| • | | 2) , respectively. It follows (see [6, Theorem A] or [1]) that the
null space N(k) is orthogonal to the range R(A) of A. Hence we have

R(A)-<BN(A) D ( t f (A|C 2 (H)) = ©JV(A|C2(H)))~= C2(H)-,

where the superscripts " - " and " = " denote the closure relative to || • || and
|| • ||2, respectively. Thus R(A)~ ®N(A) contains all compact operators while it is
in general strictly less than £(H) [1].

Since a general operator on a normed linear space is not necessarily of the form
H + IK, with H and K Hermitian, it is not known from Theorem 2.2 whether a
normal AAB | S (A £ £(X), B G £(Y)) must be made of two normal A and B. But,
at least when X is equal to Y and when S = £(X), this is true, as is shown by the
following extension of Kyle's result.

THEOREM 2.4. Let A and B be operators on a normed linear space X. Then AA B is
normal in £(£(X)) // and only if both A and B are normal in £(X).

This will follow from Theorem 2.2 (with S = £(X)) and the next

LEMMA 2.5. AA B = <I> + M for some Hermitian operators 0 and ¥ in £(£(X)) //
and only if A = H + iK and B = M + iN for some Hermitian operators / / , K, M
and N in £(X).

PROOF. Suppose A = $ + / ¥ where $ and ty are Hermitian. Fix a pair (JC0, / )
in TT(X) and define operators / / , , Kx, A/, and JV, by Htx-= ( $ ( * ®/ ) )x 0 ,
Ktx := ( * (x ®/ ) )x 0 (x G X), M, : = / / , - $ ( / ) and JV, : = AT, — * ( / ) , re-
spectively, where / is the identity operator on X.

We first show that these operators are Hermitian. To show that / / , is Hermi-
tian, we will prove that g(Hix) is real for any pair (x, g) in ir(X). Indeed, for a
fixed (x, g) in TT(X) there corresponds the linear functional G: T -» g(Tx0)
(T G £(X)) on £(X) which satisfies: ||G|| = G(x ®f) = \\x ® / | | = 1, that is,
(x ® / , G) G n( A(X)). This implies that

g(H,x) = g((<P(x ®/))x0) = G(9(x ®/)) G W(9; £(£(X))) C R.

By a similar way one can show that Kt is also Hermitian. To claim that $ ( / ) is
Hermitian we observe that F ( $ ( / ) ) belongs to W(<&, £(£(X))) for every (/, F) in
w(£(X)), or equivalently, F ( $ ( / ) ; £(X)) C (O; £(£(X))) C R. Similarly, * ( / ) is
Hermitian.
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Now we have, for D G £(X) and x G X,

(A H | M I (D))X = {HXD - DMx)x = HxDx - DHxx

= ($(Dx ®f))x0 -

and similarly

{AKi^(D))x = (*(Dx ®f))x0 -

Thus

- B)x

= A(Dx ®f)x0 - (Dx ®f)Bx0

- D(A(x ® / ) - (x ®f)B)x0 + D(A - B)x

= ADx - DAx + D(A - B)x

That is, (A - Hx - iKt)D = D(B - M, - /W,) holds for every D in e(X). It
follows from Corollary 1.4 that A = //, + iKx + \I and B = Af, + /W, + XI for
some scalar X. Now we can take / / = / / , + (Re X)/, # = Ki + (Im X)I, M = Mt

+ (Re X)/ and N = N{ + (Im A)/ as the desired Hermitian operators.
So far, the question about when A^ B \ S is Hermitian in £(S) (S C £(Y, X)) has

been answered by Corollary 2.1, and the question about when A | S is normal has
been answered by Theorem 2.2 for special operators A and B on normed linear
spaces X and Y, by Corollary 2.3 for the case where X and Y are Hilbert spaces,
and by Theorem 2.4 for the case where X is the same normed linear space as Y
and S is £(X). But the latter question for the more general case where X ̂  Y or
where X = Y and S ¥= £(X) remain unanswered. It is unknown whether there
exist nonnormal operators A, B such that A,, B \ S is normal.

On the other hand, when X = Y = H is a Hilbert space, one can deduce a
stronger result than Corollaries 2.1 and 2.3. Indeed, a result of Sinclair [12, page
213] states that a Hermitian operator on a C*-algebra (with identity) is the sum of
a left multiplication by a Hermitian element in the algebra and a ""-derivation,
and a result of Kadison [7] and Sakai [11] asserts that every derivation of a
C*-algebra acting on H is spatial (that is, of the form A^ A, with A and element in
the weak operator closure of the algebra). These facts together with Corollary 2.1
imply that an operator on a C*-algebra S in £(H) is Hermitian if and only if it is
of the form A H M \ S for some Hermitian operators H and M (in the weak operator
closure of S). Recently, Sourour [13] has proved the same assertion for the case
where S is a minimal norm ideal (including the (^(H) ideals, p =£ 2). Thus every
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normal opera to r o n such S has to be of the form A A B | S, with A = H + iK and
B = M + iN for some Hermi t i an H, K, M a n d N. Us ing Theo rem 2.2 we ob ta in
the following

T H E O R E M 2.6. Let % be a minimal norm ideal or a C*-algebra in't(H), which
contains all finite rank operators. Then an operator U on S is Hermitian {resp.
normal) in £ ( S ) // and only if U = A^ B\% for some Hermitian {resp. normal)
operators A and B.

3. Berberian's theorem

As another application of Theorem 1.1, we shall derive an extension of the
Fuglede-Putnam theorem to hyponormal operators A and B* on Hilbert spaces
H, and H2, respectively. It is also a slight extension of a theorem of Berberian [3]
who proved in a different way the special case where H, = H2.

A natural and consistent definition for a hyponormal operator A on a normed
linear space X is that it can be written as A = H + iK for some Hermitian
operators H and K such that A*A — AA* = 2i(HK — KH) is positive (that is,
has nonnegative numerical range). Suppose B* — M — iN is a hyponormal opera-
tor on another normed linear space Y. Then the operator A^ B | S is also
hyponormal. Indeed, from the easily verified identity:

A*A - AA* = 2i

we see that the numerical range of (A|S)*(A|S) — (A|S)(A|S)*, as the sum of
the numerical ranges of the two positive operators A*A — AA* and BB* — B*B is
nonnegative.

In particular, if X = H, and Y = H2 are two Hilbert spaces, then A | C2(H2, H,)
is a hyponormal operator on the Hilbert space (C2(H2,H,),|| • ||2). Hence we
have ||Ar||2 > ||A*r||2 for all T in C2(H2,H,). Since ( A ^ ) * = A ^ . , we have
proved the following

THEOREM 3.1. Let A and B* be hyponormal operators on the Hilbert spaces H,
and H2, respectively. If T is a Hilbert-Schmidt operator from H2 to H, such that
AT= TB,thenA*T= TB*.
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