GENERATORS OF IDEALS DEFINING CERTAIN SURFACES IN PROJECTIVE SPACE

SANDEEP H. HOLAY

Abstract

We consider the surface obtained from the projective plane by blowing up the points of intersection of two plane curves meeting transversely. We find minimal generating sets of the defining ideals of these surfaces embedded in projective space by the sections of a very ample divisor class. All of the results are proven over an algebraically closed field of arbitrary characteristic.

0. Introduction. Consider a set of distinct points p_{1}, \ldots, p_{n} of the projective plane $\mathbf{P}_{\mathfrak{H}}^{2}$ over a fixed ground field \mathfrak{H} which is algebraically closed of arbitrary characteristic. Let X be the surface obtained by blowing up the points p_{i}. The problem of finding minimal generating sets, or more generally minimal free resolutions, for ideals of such surfaces, embedded in projective space by a linear system of forms on \mathbf{P}^{2} vanishing at the points, has been studied by several authors (see for example [GG], [Gi], [GL], [GGH], and [GGP]). In [GG], resolutions of ideals defining Room surfaces in projective space are determined; these surfaces are blowings up of general sets of points in \mathbf{P}^{2} (sets of $\binom{d+1}{2}$ points which do not lie on a curve of degree $\left.d-1\right)$, and the embedding in projective space is given by the linear system of forms of degree $d+1$ on \mathbf{P}^{2} vanishing at these points. In [GGH], attention is paid to blowing up \mathbf{P}^{2} at special sets of points. In particular, if X is the blowing up of \mathbf{P}^{2} at the points of intersection of two plane curves P and Q meeting transversely, Geramita, Gimigliano and Harbourne show that X supports very ample superabundant divisor classes if and only if both curves have degree at least 4. The very ample superabundant classes found are uniform, i.e., of the form $F_{d, m}$, corresponding to forms on \mathbf{P}^{2} of degree d vanishing at each point of $P \cap Q$ to order at least m . (For the definition, see Section 1.) Moreover, in [GGH], minimal generating sets for the ideal defining the image of X in projective space, embedded by the sections of $F_{1+t, 1}$ are found when P and Q have the same degree t.

In this paper we extend the work on minimal sets of generators. Given any very ample uniform divisor class on the blowing up X of \mathbf{P}^{2} at the points of intersection of two curves P and Q meeting transversely, regardless of the degrees of P and Q (and in particular, not assuming P and Q have the same degree), we find a minimal set of generators for the ideal I_{X} defining the surface X embedded in projective space by the sections of the very ample class. This work is motivated by the results obtained in [GGH].

[^0]AMS subject classification: Primary: 14J26.
Key words and phrases: Generators, free resolution, blow up, rational surfaces
(c) Canadian Mathematical Society 1996.

In Section 1 we recall some preliminaries and introduce some notation. In Section 2 we explain the set up in which we will be working. In Section 3 we prove the main theorem of the paper.

Before we end this introduction, we wish to note that the results of this paper comprise part of the author's Ph.D. thesis, written under the guidance of Professor Brian Harbourne, to whom we express our sincere gratitude.

1. Preliminaries. Let X be a surface obtained by blowing up n distinct points p_{1}, \ldots, p_{n} of $\mathbf{P}_{\mathscr{H}}^{2}$ over a fixed ground field \mathfrak{H} which is algebraically closed of arbitrary characteristic. The divisor class group $\operatorname{Pic}(X)$ of X is a free abelian group of rank $n+1$. A basis for $\operatorname{Pic}(X)$ is given by e_{0}, \ldots, e_{n}, where e_{0} is the pullback to X of the class of a line in \mathbf{P}^{2}, and $e_{i}, i>0$, is the class of the exceptional divisor E_{i} corresponding to the blowing up of $p_{i}[\mathrm{Ha}]$. The intersection product on $\operatorname{Pic}(X)$ is described by saying e_{0}, \ldots, e_{n} are pairwise orthogonal and $-1=-e_{0} \cdot e_{0}=e_{1} \cdot e_{1}=\cdots=e_{n} \cdot e_{n}$. Following [GGH] we shall say a divisor class of the form $d e_{0}-m e_{1}-\cdots-m e_{n}$ is uniform and denote it by $F_{d, m}$.

We recall that a divisor class F on a surface X is very ample if the global sections $H^{0}(X, F)$ define an embedding of X into \mathbf{P}^{N}, where $N+1=h^{0}(X, F)$. Also recall that a projective variety $X \subset \mathbf{P}^{N}$ is said to be projectively normal (with respect to the given embedding) if its homogeneous coordinate ring is integrally closed. We shall say a divisor class F on X is projectively normal if F is very ample and if X, with respect to the embedding in projective space given by the sections of F, is projectively normal.

We will follow the convention $\binom{a}{b}=0$, if $a<b$.
2. Set Up. Let P and Q be two plane curves of degrees $d_{1} \leq d_{2}$, respectively, meeting transversely. Let g and f be the homogeneous polynomials in the coordinate ring $R=\mathfrak{H}\left[w_{1}, w_{2}, w_{3}\right]$ of \mathbf{P}^{2} defining P and Q, respectively. Let I be the ideal (f, g) in R. We shall denote $d_{2}-d_{1}$ by δ and $d_{1} d_{2}$ by ρ. Let X be the surface obtained by blowing up the points $p_{1}, \ldots, p_{\rho} \in \mathbf{P}^{2}$ of intersection of P and Q. Let $\pi: X \rightarrow \mathbf{P}^{2}$ be the corresponding birational map. As before, $F_{d, m}$ denotes the uniform class $d e_{0}-m e_{1}-\cdots-m e_{\rho}$.

We recall the following result of [GGH] (see Proposition II and Theorem IV of [GGH]).

Proposition 2.1. The divisor class $F_{d, m}$ is very ample on X if and only if $d>m d_{2}$ and $m>0$. Moreover, any very ample class $F_{d, m}$ on X is projectively normal.

For simplicity of notation we will denote $F_{r+m d_{2}, m}$ by $D_{r, m}$. To find generators for the ideal of X embedded by any such very ample class $D_{r, m}$, we first study a related but possibly degenerate embedding of X, induced by a morphism ϕ which we now define.

For $r>0$ and $m>0$, let $V_{s i j k}=f^{m-s} g^{s} w_{1}^{i} w_{2}^{j} w_{3}^{k}$, where $i+j+k=r+s \delta$ and $0 \leq s \leq m$. Note there are $\sum_{s=0}^{m}\binom{r+s \delta+2}{2}$ elements $V_{s i j k}$. Thus setting $\phi(a, b, c)=\left(\cdots, V_{s i j k}(a, b, c), \cdots\right)$ defines a morphism

$$
\phi: \mathbf{P}^{2}-\left\{p_{1}, \ldots, p_{\rho}\right\} \longrightarrow \mathbf{P}^{N}
$$

away from the points p_{1}, \ldots, p_{ρ}, where

$$
N+1=\sum_{s=0}^{m}\binom{r+s \delta+2}{2}
$$

Let $S=\mathfrak{H}\left[\cdots, X_{s i j}, \cdots\right]$ be the homogenous coordinate ring of \mathbf{P}^{N}.
Lemma 2.2. Pullback by π establishes $a \mathfrak{H}$-vector space isomorphism from the homogeneous component $\left(I^{m}\right)_{r+m d_{2}}$ of the ideal I^{m} to $H^{0}\left(X, D_{r, m}\right)$.

Proof. We have that the homogeneous coordinate ring R is just $\oplus_{i \geq 0} H^{0}\left(\mathbf{P}^{2}, i e_{0}\right)$ and that $H^{0}\left(X,\left(r+m d_{2}\right) e_{0}\right) \cong H^{0}\left(\mathbf{P}^{2},\left(r+m d_{2}\right) e_{0}\right)$. Via

$$
H^{0}\left(X, D_{r, m}\right) \subset H^{0}\left(X,\left(r+m d_{2}\right) e_{0}\right)
$$

$H^{0}\left(X, D_{r, m}\right)$ corresponds in $H^{0}\left(\mathbf{P}^{2},\left(r+m d_{2}\right) e_{0}\right)$ to the linear system of forms on \mathbf{P}^{2} of degree $r+m d_{2}$ vanishing at each point p_{1}, \ldots, p_{ρ} to order m or more. Thus if P_{i} denotes the homogeneous ideal defining p_{i}, we have an isomorphism from $H^{0}\left(X, D_{r, m}\right)$ to the homogeneous component $\left(P_{1}^{m} \cap \cdots \cap P_{\rho}^{m}\right)_{r+m d_{2}}$ of $P_{1}^{m} \cap \cdots \cap P_{\rho}^{m}$ of degree $r+m d_{2}$. By a theorem of Macaulay (Lemma 5 of Appendix 6 of volume II of [ZS]), $P_{1}^{m} \cap \cdots \cap P_{\rho}^{m}=\left(P_{1} \cap \cdots \cap P_{\rho}\right)^{m}$. Thus now we have an isomorphism from $H^{0}\left(X, D_{r, m}\right)$ to $\left(P_{1} \cap \cdots \cap P_{\rho}\right)_{r+m d_{2}}^{m}$. But $\left(P_{1} \cap \cdots \cap P_{\rho}\right)_{r+m d_{2}}^{m}=\left(m^{m}\right)_{r+m d_{2}}$, which establishes the result. .

Since $n D_{r, m}=D_{n r, n m}$, by Lemma 2.2 we see that

$$
H^{0}\left(X, n D_{r, m}\right) \cong\left(I^{m n}\right)_{n\left(r+m d_{2}\right)}
$$

as \mathfrak{H}-vector spaces. We will denote this isomorphism by ξ_{n}.
Now, for the reader's convenience, we state a part of Proposition III. 1 of [GGH].
PROPOSITION 2.3. Let $X, D_{r, m}$ and δ be as described above and let $r>0$ and $m>0$. Then

$$
h^{0}\left(X, D_{r, m}\right)=\sum_{i=0}^{m}\binom{r+i \delta+2}{2}-\sum_{i=0}^{m-1}\binom{r+i \delta-d_{1}+2}{2}
$$

Let $\chi: X \rightarrow \mathbf{P}^{\lambda}$ be the morphism given by the sections of $D_{r, m}$, where, by Proposition 2.3,

$$
\lambda=\sum_{i=0}^{m}\binom{r+i \delta+2}{2}-\sum_{i=0}^{m-1}\binom{r+i \delta-d_{1}+2}{2}-1 .
$$

We also have the linear inclusion $t: \mathbf{P}^{\lambda} \hookrightarrow \mathbf{P}^{N}$ corresponding to $\mathfrak{H}\left[\mathbf{P}^{N}\right] \rightarrow \mathfrak{H}\left[\mathbf{P}^{\lambda}\right]$ defined by $X_{s i j k} \mapsto \pi^{*}\left(V_{s i j k}\right)$, under the identification of linear forms on \mathbf{P}^{λ} with sections of $D_{r, m}$.

Proposition 2.4. The closure of the image of ϕ is isomorphic to X.
Proof. Let $U=\pi^{-1}\left(\mathbf{P}^{2}-\left\{p_{1}, \ldots, p_{\rho}\right\}\right)$. By Proposition 2.1 the divisor $D_{r, m}$ is very ample if $r>0$ and $m>0$. Thus the map $\iota \circ \chi: X \longrightarrow \mathbf{P}^{N}$ is an isomorphism to
its image. By Lemma 2.2 , we see that $\phi \pi$ and $\iota \chi$ have the same restriction to U. So $X \cong \iota \chi(X) \cong \operatorname{clos}(\operatorname{im} \phi)$.

In particular, $\left.\phi\right|_{U}$ extends to an embedding $\phi^{\prime}: X \rightarrow \mathbf{P}^{N}$, and we have $\phi^{\prime}=\iota \chi$. The reader may find the following geometric perspective helpful.

The image $\phi^{\prime}(X)$ spans the subspace $L=\iota\left(\mathbf{P}^{\lambda}\right)$ of $\mathbf{P}^{N} ; L$ is a proper subspace when $d_{1} \leq r+(m-1) \delta$ (as we see by comparing (\dagger) with Proposition 2.3).

Our ultimate goal is to give generators for the homogeneous ideal I_{X} defining $\chi(X) \subset$ \mathbf{P}^{λ}, but it is easier to work with the ideal I_{X}^{\prime} defining $\phi^{\prime}(X) \subset \mathbf{P}^{N}$, and derive our results for I_{X} from studying I_{X}^{\prime}, using the fact that I_{X} is a quotient of I_{X}^{\prime} by $N-\lambda$ linear forms.
3. The Generators. Before we get to the details of our main argument, we would like to give a brief overview of our approach.

Consider the morphism $\phi^{\prime}: X \rightarrow \mathbf{P}^{N}$. We have the corresponding rational map $\mathbf{P}^{2} \xrightarrow{\phi} \mathbf{P}^{N}$ which on coordinate rings factors as $S \xrightarrow{\psi} T \xrightarrow{\alpha} \mathfrak{H}\left[\mathbf{P}^{2}\right]$, where $T=$ $\mathfrak{H}\left[a: b, w_{1}: w_{2}: w_{3}\right]$ and ψ maps $X_{s i j k}$ to $a^{m-s} b^{s} w_{1}^{i} w_{2}^{j} w_{3}^{k}$ where $i+j+k=r+s \delta$, $0 \leq s \leq m$ and α maps a to f, b to g, and w_{i} to w_{i} for $i=1,2,3 . \operatorname{ker}(\alpha \circ \psi)$ is the ideal we are looking for.

Note that T is bigraded, with

$$
T=\mathfrak{H}\left[a: b, w_{1}: w_{2}: w_{3}\right]=\bigoplus_{0 \leq u, v} T_{u, v}
$$

where $T_{u, v}$ is the \mathfrak{K}-span of the monomials of degree (u, v), where $\operatorname{deg}(a)=(1, \delta)$, $\operatorname{deg}(b)=(1,0)$ and $\operatorname{deg}\left(w_{i}\right)=(0,1)$ for $i=1,2,3$. Note that in the case $d_{1}=d_{2}$, the grading on T agrees with the standard grading on $\mathbf{P}^{1} \times \mathbf{P}^{2}$ and the above factorization corresponds to factoring $\mathbf{P}^{2} \xrightarrow{\phi} \mathbf{P}^{N}$ through $\mathbf{P}^{1} \times \mathbf{P}^{2}$. We will show that generators coming from ker ψ are quadrics. The others map to S-module generators of $I_{X} / \operatorname{ker} \psi \cong$ $\psi\left(I_{X}\right) \subset T$. To get a handle on these other generators we observe that the bihomogeneous elements of $\operatorname{ker}(\alpha)$ generate $\langle b f-a g\rangle$, which is isomorphic to T, shifted in degrees.

For example, $\psi\left(I_{X}\right)=\operatorname{im}(\psi) \cap(b f-a g) T$ which in the case $d_{1}=d_{2}=t$ is generated by the single component $(b f-a g) T_{m p-1, p r-t}$, where p is the least integer such that $p r \geq t$. But $T_{m p-1, p r-t}$ has \mathfrak{H}-dimension $m p\binom{p r-i+2}{2}$, and so one gets $m p\binom{p r-t+2}{2}$ forms of degree p as generators [Ho]. If moreover $r=m=1$, this gives t forms of degree t, which agrees with the result of [GGH].

If $d_{1}<d_{2}, \psi\left(I_{X}\right)$ is generated by various components of T and so generators coming from this are spread over various degrees.

Now we give the details of our argument.
Consider the morphism $\phi^{\prime}: X \rightarrow \mathbf{P}^{N}$; recall that the hyperplane sections are precisely the sections of $D_{r, m}$. We get an exact sequence of sheaves of ideals

$$
0 \rightarrow I_{X}^{\sim} \rightarrow O_{\mathbf{P}^{N}} \rightarrow O_{X} \rightarrow 0
$$

Tensoring with $O_{\mathbf{P}^{N}}(n)$ we get

$$
0 \rightarrow \tilde{I_{X}}(n) \rightarrow O_{\mathbf{P}^{N}}(n) \longrightarrow O_{X}(n) \longrightarrow 0
$$

Now taking cohomology and using the fact that $D_{r, m}$ is projectively normal (see Proposition 2.1) we get an exact sequence

$$
0 \rightarrow H^{0}\left(\mathbf{P}^{N}, \tilde{I_{X}}(n)\right) \rightarrow H^{0}\left(\mathbf{P}^{N}, O_{\mathbf{P}^{N}}(n)\right) \rightarrow H^{0}\left(X, n D_{r, m}\right) \rightarrow 0
$$

Thus for $n>0$ we get an exact sequence

$$
\begin{equation*}
0 \rightarrow\left(I_{X}^{\prime}\right)_{n} \rightarrow S_{n} \xrightarrow{\phi_{n}^{\prime *}} H^{0}\left(X, n D_{r, m}\right) \rightarrow 0 \tag{*}
\end{equation*}
$$

Next let V_{s} denote $f^{m-s} g^{s}$. If $\mu=X_{s_{1} i j_{1} k_{1}}^{n_{1}} \cdots X_{s_{p} i_{j} j_{p} k_{p}}^{n_{p}}$ is a monomial of degree $n_{1}+$ $n_{2}+\cdots+n_{p}=n$ in S_{n} then $\phi_{n}^{* *}(\mu)=V_{s_{1}}^{n_{1}}\left(w_{1}^{i_{1}} w_{2}^{j_{1}} w_{3}^{k_{1}}\right)^{n_{1}} \cdots V_{s_{p}}^{n_{p}}\left(w_{1}^{i_{p}} w_{2}^{j_{p}} w_{3}^{k_{p}}\right)^{n_{p}}$. Since $d=$ $n_{1} s_{1}+\cdots+n_{p} s_{p}$ is the power of g occurring in $V_{s_{1}}^{n_{1}} \cdots V_{s_{p}}^{n_{p}}$, we can factor the map $\phi_{n}^{* *}$ through $\oplus_{i=0}^{m n} R_{n r+i \delta}$ by defining $\psi_{n}: S_{n} \rightarrow \oplus_{i=0}^{m n} R_{n r+i \delta}$ via

$$
\psi_{n}(\mu)=0 \oplus \cdots \oplus 0 \oplus\left(w_{1}^{j_{1}} w_{2}^{j_{1}} w_{3}^{k_{1}}\right)^{n_{1}} \cdots\left(w_{1}^{i_{p}} w_{2}^{j_{p}} w_{3}^{k_{p}}\right)^{n_{p}} \oplus 0 \oplus \cdots \oplus 0
$$

where the nonzero component is in the d-th place, and by defining

$$
\alpha_{n}: \bigoplus_{i=0}^{m n} R_{n r+i \delta} \rightarrow\left(I^{m n}\right)_{n\left(r+m d_{2}\right)}
$$

via

$$
\alpha_{n}\left(0 \oplus \cdots \oplus 0 \oplus h_{d} \oplus 0 \oplus \cdots \oplus 0\right)=h_{d} f^{m n-d} g^{d}
$$

Now using the exact sequence $(*)$ and the maps ψ_{n} and α_{n} we construct for $n>0$ the following diagram.

where η_{i} denotes $\left(n m d_{2}-i \delta+d_{1}\right), \nu$ denotes $n\left(r+m d_{2}\right)$, and τ_{i} denotes $\left(n m d_{2}-i \delta\right)$. In the above diagram define β_{n} via

$$
\beta_{n}\left(h_{0} \oplus \cdots \oplus h_{m n-1}\right)=-g h_{0} \oplus\left(f h_{0}-g h_{1}\right) \oplus \cdots \oplus\left(f h_{m n-2}-g h_{m n-1}\right) \oplus f h_{m n-1}
$$

Lemma 3.2. Diagram 3.1 is commutative with exact rows.
Proof. The top row is exact as observed above (*). To check that the bottom row is exact, first note that $\alpha_{n} \beta_{n}=0$, so $\operatorname{im}\left(\beta_{n}\right) \subset \operatorname{ker}\left(\alpha_{n}\right)$. To see $\operatorname{ker}\left(\alpha_{n}\right) \subset \operatorname{im}\left(\beta_{n}\right)$, let $h_{0} \oplus \cdots \oplus h_{m n} \in \operatorname{ker}\left(\alpha_{n}\right)$; i.e., $\sum_{i=0}^{m n} h_{i} f^{m n-i} g^{i}=0$. Now g divides $\sum_{i=1}^{m n} h_{i} f^{m n-i} g^{i}$. So g divides $h_{0} f^{m n}$, which implies g divides h_{0}. Thus $h_{0}=g k_{0}$ for some $k_{0} \in R$. But $\beta_{n}\left(k_{0} \oplus 0 \oplus \cdots \oplus 0\right)=-g k_{0} \oplus f k_{0} \oplus 0 \oplus \cdots \oplus 0=-h_{0} \oplus f k_{0} \oplus 0 \oplus \cdots \oplus 0$. Thus modulo $\operatorname{im}\left(\beta_{n}\right)$, denoting $f k_{0}+h_{1}$ by h_{1}^{\prime}, we can replace $h_{0} \oplus \cdots \oplus h_{m n}$ by $0 \oplus h_{1}^{\prime} \oplus h_{2} \oplus \cdots \oplus h_{m n}$.

Arguing as above, there exists $k_{1} \in R$ such that $h_{1}^{\prime}=g k_{1}$ and so, modulo im $\left(\beta_{n}\right)$, denoting $f k_{1}+h_{2}$ by h_{2}^{\prime}, we can replace $0 \oplus h_{1}^{\prime} \oplus h_{2} \oplus \cdots \oplus h_{m n}$ by $0 \oplus 0 \oplus h_{2}^{\prime} \oplus h_{3} \oplus \cdots \oplus h_{m n}$. In this way we eventually obtain $0 \oplus \cdots \oplus 0 \oplus h_{m n}^{\prime} \in \operatorname{ker}\left(\alpha_{n}\right)$, which is only possible if $h_{m n}^{\prime}=0$. I.e., modulo $\operatorname{im}\left(\beta_{n}\right), h_{0} \oplus \cdots \oplus h_{m n} \equiv 0$, so $h_{0} \oplus \cdots \oplus h_{m n} \in \operatorname{im}\left(\beta_{n}\right)$, as claimed.

Next, to see $\xi_{n} \phi_{n}^{* *}=\alpha_{n} \psi_{n}$, note that for appropriate a, b, c, and d (where the nonzero component of $0 \oplus \cdots \oplus w_{1}{ }^{a} w_{2}{ }^{b} w_{3}{ }^{c} \oplus \cdots \oplus 0$ occurs in the d-th place) we have

$$
\begin{aligned}
\alpha_{n} \psi_{n}\left(\prod\left(X_{s i j k}\right)^{u_{s j k}}\right) & =\alpha_{n}\left(0 \oplus \cdots \oplus w_{1}{ }^{a} w_{2}{ }^{b} w_{3}{ }^{c} \oplus \cdots \oplus 0\right) \\
& =w_{1}{ }^{a} w_{2}{ }^{b} w_{3}{ }^{c} f^{m n-d} g^{d} \\
& =\prod\left(f^{m-s} g^{s} w_{1}{ }^{a} w_{2}{ }^{b} w_{3}{ }^{c}\right) \\
& =\xi_{n} \phi_{n}^{* *}\left(\prod\left(X_{s i j k}\right)^{u_{s j i}}\right),
\end{aligned}
$$

where products are taken over $i+j+k=r+s \delta$ and $0 \leq s \leq m$. This completes the proof of the lemma.

We now make a definition.
DEFInITION 3.3. Let $\mu=X_{s_{1} i_{j} k_{1} k_{1}} \cdots X_{s_{p} i_{p} j_{p} k_{p}} \in S$. We shall say that μ is lexicographically minimal if the factors $X_{s i i_{j} k_{l}}$ can be reordered so that
(i) $s_{\gamma}>0$ implies $s_{l}=m$ for all $l>\gamma$,
(ii) $i_{\gamma}>0$ implies $j_{l}=k_{l}=0$ for all $l<\gamma$,
(iii) $j_{\gamma}>0$ implies $k_{l}=0$ for all $l<\gamma$,
where $1 \leq l, \gamma \leq p$.
Remarks 3.4. (1) To clarify the point of the above definition, consider an analogy between a monomial $X_{s_{1} i i_{1} k_{1}} \ldots X_{s_{p} i_{j} j_{p} k_{p}}$ and a row of p boxes, the l-th box containing m cubes ($m-s_{l}$ being white, and s_{l} being black) and $r+s_{l} \delta$ balls (i_{l} being blue, j_{l} being green, and k_{l} being red). It is clear that by swapping cubes in adjacent boxes we can eventually force the white cubes to be as much as possible in the leftward boxes, and the black cubes as much as possible at the right, always maintaining m cubes in each box. In particular, we can force there to be at most one box with cubes of both colors, with all boxes to its left (if any) having only white cubes, and those to its right having only black cubes. Likewise, swapping balls in adjacent boxes can be done to eventually move the balls so that the blues are as far left as possible and the reds are as far right as possible. Having in this way the whites and blues at the left, and the blacks and reds at the right precisely means the corresponding monomial is lexicographically minimal.
(2) Note that the map ψ_{n} can be interpreted using the above analogy. The w_{i} correspond to the balls and s corresponds to the number of black cubes. The evaluation by ψ_{n} then precisely means lumping the contents of the boxes together.
(3) We will say that two monomials of the same degree u and u^{\prime} are equivalent if u can be transformed into u^{\prime} by operations corresponding to these swaps. Then it is easy to see that there is a unique lexicographically minimal monomial in each class, and that the classes are precisely the monomials with the same image under ψ.
(4) Let M_{p} denote the set of lexicographically minimal monomials in S_{p}. We now count the number of elements in M_{p}. In terms of the analogy given above in (1), there is
a unique lexicographically minimal arrangement of cubes and balls with given numbers of cubes and balls of each color. In the notation above, there are $r+s_{l} \delta$ balls in the l-th box, so there are $p r+s \delta$ balls altogether, where $s=s_{1}+\cdots+s_{p}$ is the number of black cubes. Thus the number of arrangments with s black cubes is the number of ways to apportion $p r+s \delta$ balls among the colors blue, green and red, which is well-known to be $\binom{p r+s \delta+2}{2}$. Summing over s gives the number $\sum_{s=0}^{m p}\binom{p r+s \delta+2}{2}$ of elements in M_{p}.

Next to find generators of $\operatorname{ker}\left(\psi_{n}\right)$, we need a lemma.
Lemma 3.5. The set of lexicographically minimal monomials in S_{n}, M_{n} maps bijectively to a basis of $\left[\oplus_{s=0}^{m n} R\left(-n m d_{2}+s \delta\right)\right]_{n\left(r+m d_{2}\right)}$.

Proof. For simplicity of notation let us denote $\left[\bigoplus_{s=0}^{m n} R\left(-n m d_{2}+s \delta\right)\right]_{n\left(r+m d_{2}\right)}$ by T. Let $0 \oplus \cdots \oplus w_{1}^{j} w_{2}^{j} w_{3}^{k} \oplus \cdots \oplus 0$ be a basis element of T, where the only nonzero component is at the σ-th position, and $i+j+k=n r+\sigma \delta$. Consider a monomial $\mu=X_{s_{1} i i_{1} k_{1}} \cdots X_{s_{p} i_{p} k_{p}}$ in S such that following conditions hold.
(i) $s_{1}+s_{2}+\cdots+s_{p}=m n-\sigma$ and if $s_{\gamma}>0$ then $s_{l}=m$ for all $l>\gamma$. In other words, if $(l-1) m \leq \sigma<l m$ then $s_{\eta}=0$ for all $\eta=1,2, \cdots, l-1, s_{l}=m l-\sigma, s_{\eta}=m$ for all $\eta=l+1, \cdots, n$ and if $\sigma=m n$ then $s_{l}=0$ for all l.
(ii) $i_{1}+\cdots+i_{p}=i, j_{1}+\cdots+j_{p}=j, k_{1}+\cdots+k_{p}=k$ such that if $i_{\gamma}>0$ then $j_{l}=k_{l}=0$ for all $l<\gamma$, and if $j_{\gamma}>0$ then $k_{l}=0$ for all $l<\gamma, 1 \leq l, \gamma \leq p$.

Then by construction μ is lexicographically minimal, and one checks that

$$
\psi_{n}(\mu)=0 \oplus \cdots \oplus w_{1}^{j} w_{2}^{j} w_{3}^{k} \oplus \cdots \oplus 0
$$

This proves ψ_{n} is surjective. Also, by Remark 3.4(4) the number of elements in M_{n} is $\sum_{s=0}^{m n}\binom{n++s \delta+2}{2}$, which is the dimension of the image T. Thus M_{n} maps bijectively to a basis of T.

Lemma 3.6. Let J be the ideal of S generated by $\operatorname{ker}\left(\psi_{2}\right)$. Then J is generated by q quadrics where

$$
q=\binom{2+N}{N}-\sum_{s=0}^{2 m}\binom{2 r+s \delta+2}{2}
$$

where $N=\sum_{s=0}^{m}\binom{r+s \delta+2}{2}-1$, and $\operatorname{ker}\left(\psi_{n}\right) \subset J$, for all $n \geq 0$.
Proof. Clearly J is generated by q quadrics, where $q=\operatorname{dim} \operatorname{ker}\left(\psi_{2}\right)$. To see that

$$
\operatorname{dim} \operatorname{ker}\left(\psi_{2}\right)=\binom{2+N}{N}-\sum_{s=0}^{2 m}\binom{2 r+s \delta+2}{2}
$$

consider the short exact sequence

$$
0 \rightarrow \operatorname{ker}\left(\psi_{2}\right) \rightarrow S_{2} \xrightarrow{\psi_{2}} \bigoplus_{s=0}^{2 m} R_{2 r+s \delta} \rightarrow 0
$$

Then $\operatorname{dim} \operatorname{ker}\left(\psi_{2}\right)=\operatorname{dim}\left(S_{2}\right)-\operatorname{dim}\left(\oplus_{s=0}^{2 m} R_{2 r+s \delta}\right)=\binom{2+N}{N}-\sum_{s=0}^{2 m}\binom{2 r+s \delta+2}{2}$.

Next note that there is a bijection between coordinates $X_{s i j k}$ on \mathbf{P}^{N} and the elements $V_{s i j k}=f^{m-s} g^{s} w_{1}{ }^{i} w_{2}{ }^{j} w_{3}{ }^{k}$, where $i+j+k=r+s \delta$ and $0 \leq s \leq m$. Let V_{s} denote $f^{m-s} g^{s}$. If $\mu=X_{s_{1} i_{j} j_{1} k_{1}}^{n_{1}} \cdots X_{s_{p} i_{j} j_{p} k_{p}}^{n_{p}}$ is a monomial of degree $n_{1}+n_{2}+\cdots+n_{p}=n$ on \mathbf{P}^{N} then

$$
\psi_{n}^{*}(\mu)=V_{s_{1}}^{n_{1}}\left(w_{1}^{i_{1}} w_{2}^{j_{1}} w_{3}^{k_{1}}\right)^{n_{1}} \cdots V_{s_{p}}^{n_{p}}\left(w_{1}{ }^{i_{p}} w_{2}^{j_{p}} w_{3}^{k_{p}}\right)^{n_{p}}
$$

where $\psi_{n}{ }^{*}$ is a map from S_{n} to $\mathfrak{H}\left[w_{1}, w_{2}, w_{3}, f, g\right]$ such that f and g are treated as variables in $\mathfrak{H}\left[w_{1}, w_{2}, w_{3}, f, g\right]$ and $\nu=n_{1}\left(m-s_{1}\right)+\cdots+n_{p}\left(m-s_{p}\right)$ is the power of f occurring in $V_{s_{1}}^{n_{1}} \cdots V_{s_{p}}^{n_{p}}$. Thus

$$
\psi_{n}(\mu)=0 \oplus \cdots \oplus\left(w_{1}{ }_{1}^{i_{1}} w_{2}{ }^{j_{1}} w_{3}{ }^{k_{1}}\right)^{n_{1}} \cdots\left(w_{1}{ }_{1}^{i_{p}} w_{2}{ }^{j_{p}} w_{3}{ }^{k_{p}}\right)^{n_{p}} \oplus \cdots \oplus 0
$$

which is in $\left[\oplus_{i=0}^{m n} R\left(-n m d_{2}+i \delta\right)\right]_{n\left(r+m d_{2}\right)}$, where the nonzero component is in the ν-th place.

By Lemma 3.5 we know that M_{n} maps bijectively to a basis of

$$
\left[\bigoplus_{i=0}^{m n} R\left(-n m d_{2}+i \delta\right)\right]_{n\left(r+m d_{2}\right)},
$$

and so ψ_{n} is surjetive. Thus for every $s, 0 \leq s \leq m n$, and for any monomial μ^{\prime} in $\left[\oplus_{i=0}^{m n} R\left(-n m d_{2}+i \delta\right)\right]_{n\left(r+m d_{2}\right)}=\oplus_{i=0}^{m n} R_{n r+i \delta}$, there is a unique monomial μ in M_{n} such that $\psi(\mu)=0 \oplus \cdots \oplus \mu^{\prime} \oplus 0 \oplus \cdots \oplus 0$, where the nonzero component occurs in the ν-th position. From uniqueness we see that $S_{n}=\operatorname{ker}\left(\psi_{n}\right) \oplus\left\langle M_{n}\right\rangle$, where $\left\langle M_{n}\right\rangle$ denotes the span of M_{n}.

Now, as noted in Remark 3.4 (3), we see that if u is any monomial in S_{n}, then there exist monomials u_{1}, \cdots, u_{l} in S_{n} such that $u=u_{1}$ is equivalent to u_{l} and u_{l} is lexicographically minimal. Here $u_{\gamma+1}$ is obtained from u_{γ} by the operation corresponding to a single swap of objects in corresponding adjacent boxes for $\gamma=1,2, \cdots, l-1$. We claim that $u_{\gamma}-u_{\gamma+1}$ is in J. The proof of the claim is essentially writing out an algebraic interpretation of a single swap mentioned in Remark 3.4(1). Write u_{γ} as $X_{s_{1} i j_{j} k_{1}} \cdots X_{s_{p} i_{j} j_{p} k_{p}}$ such that $s_{1} \leq s_{2} \leq$
 in the following way. If $s_{\delta}=0$ then $s_{\delta}^{\prime}=s_{\delta}$ and $s_{\delta+1}^{\prime}=s_{\delta+1}$, and if $s_{\delta}>0$, and $s_{\delta}+s_{\delta+1} \leq m$ then $s_{\delta}^{\prime}=0$ and $s_{\delta+1}^{\prime}=s_{\delta}+s_{\delta+1}$, and if $s_{\delta}>0$, and $s_{\delta}+s_{\delta+1}>m$ then $s_{\delta}^{\prime}=s_{\delta}+s_{\delta+1}-m$ and $s_{\delta+1}^{\prime}=m$, and $i_{\delta}+i_{\delta+1}=i_{\delta}^{\prime}+i_{\delta+1}^{\prime}, j_{\delta}+j_{\delta+1}=j_{\delta}^{\prime}+j_{\delta+1}^{\prime}, k_{\delta}+k_{\delta+1}=k_{\delta}^{\prime}+k_{\delta+1}^{\prime}$, such that if $i_{\delta+1}^{\prime}>0$ then $j_{\delta}^{\prime}=k_{\delta}^{\prime}=0$, and if $j_{\delta+1}^{\prime}>0$ then $k_{\delta+1}^{\prime}=0$. Let $u_{\gamma+1}$ be

Now if for a monomial μ we denote by μ^{\prime} the lexicographically minimal monomial with the same image under $\phi^{\prime *}$, then the set $\left\{\mu-\mu^{\prime} \mid \mu\right.$ monomial in $\left.S_{n}\right\}$ is a basis of $\operatorname{ker}\left(\psi_{n}\right)$. The result follows, since we have already shown $\mu-\mu^{\prime} \in J$.

To state the main theorem, we need some notation. Let p_{1} be the least integer such that $p_{1} r+\left(m p_{1}-1\right) \delta \geq d_{1}$, and let $j_{1}=m p_{1}-1$. For $k \geq 2$, inductively define j_{k} as the largest integer such that $p_{k-1} r+j_{k} \delta<d_{1}$, and p_{k} as the least integer such that $p_{k} r+j_{k} \delta \geq d_{1}$. The procedure stops at that $k=t$ for which p_{t} is the least integer with $p_{t} r \geq d_{1}$. Note that $p_{1}<p_{2}<\cdots<p_{t}$. Also let

$$
\lambda=\sum_{i=0}^{m}\binom{r+i \delta+2}{2}-\sum_{i=0}^{m-1}\binom{r+i \delta-d_{1}+2}{2}-1 .
$$

Now we can state the main theorem.

Theorem 3.7. With λ, t, p_{k} and j_{k} as above, the ideal I_{X}^{\prime} is generated by q^{\prime} quadrics and, for each $k=1, \cdots$, t such that $p_{k} \neq 2$, by σ_{k} forms of degree p_{k}, where

$$
q^{\prime}=\binom{2+\lambda}{\lambda}-\sum_{s=0}^{2 m}\binom{2 r+s \delta+2}{2}+\sum_{s=0}^{2 m-1}\binom{2 r+s \delta-d_{1}+2}{2}
$$

and

$$
\sigma_{k}=\sum_{i=0}^{j_{k}}\binom{p_{k} r+i \delta-d_{1}+2}{2} .
$$

Proof. We continue to use notation introduced for Lemma 3.6. We shall denote

$$
\binom{2+N}{2}-\sum_{s=0}^{2 m}\binom{2 r+s \delta+2}{2}
$$

by q, where $N=\sum_{s=0}^{m}\binom{r+s \delta+2}{2}-1$.
Consider Diagram 3.1. By Lemma 3.2 this diagram is commutative with exact rows, so $\left(I_{X}^{\prime}\right)_{n}=\operatorname{ker}\left(\phi_{n}^{\prime *}\right)=\psi_{n}^{-1}\left(\operatorname{im}\left(\beta_{n}\right)\right)$.

Next note that $\left[\oplus_{i=0}^{m n-1} R\left(-n m d_{2}+i \delta-d_{1}\right)\right]_{n\left(r+m d_{2}\right)}=0$ if $n<p_{1}$. So for $n<p_{1}$, $\left(I_{X}^{\prime}\right)_{n}=\operatorname{ker}\left(\psi_{n}\right)$. Therefore by Lemma $3.6\left(I_{X}^{\prime}\right)_{n}=J_{n}$ for $n<p_{1} ;$ i.e., q quadrics account for everything when $n<p_{1}$.

For $n=p_{1}$,

$$
\left(I_{X}^{\prime}\right)_{n} / J_{n} \cong\left[\bigoplus_{i=0}^{m n-1} R\left(-n m d_{2}+i \delta-d_{1}\right)\right]_{n\left(r+m d_{2}\right)}=\bigoplus_{i=0}^{m p_{1}-1} R_{p_{1} r+i \delta-d_{1}}
$$

which has dimension

$$
\sigma_{1}=\sum_{i=0}^{m p_{1}-1}\binom{p_{1} r+i \delta-d_{1}+2}{2}
$$

Thus we require σ_{1} forms of degree p_{1}. Let J_{1}^{\prime} be the ideal generated by these forms. For $n>p_{1}$,

$$
\left(I_{X}^{\prime}\right)_{n} /\left(J_{n}+J_{1 n}^{\prime}\right) \cong\left[\bigoplus_{i=0}^{j_{2}} R\left(-n m d_{2}+i \delta-d_{1}\right)\right]_{n\left(r+m d_{2}\right)}=\bigoplus_{i=0}^{j_{2}} R_{n r+i \delta-d_{1}}
$$

where j_{2} is the largest integer such that $p_{1} r+j_{2} \delta-d_{1}<0$. If $n<p_{2}$ then $\bigoplus_{i=0}^{j_{2}} R_{n r+i \delta-d_{1}}=$ 0 . Thus for $n<p_{2}, q$ quadrics and σ_{1} forms of degree p_{1} account for everything. For $n=p_{2}$,

$$
\left(I_{X}^{\prime}\right)_{n} /\left(J_{n}+J_{1 n}^{\prime}\right) \cong\left[\bigoplus_{i=0}^{j_{2}} R\left(-n m d_{2}+i \delta-d_{1}\right)\right]_{n\left(r+m d_{2}\right)}=\bigoplus_{i=0}^{j_{2}} R_{p_{2} r+i \delta-d_{1}}
$$

which has dimension

$$
\sigma_{2}=\sum_{i=0}^{j_{2}}\binom{p_{2} r+i \delta-d_{1}+2}{2}
$$

Thus we require σ_{2} forms of degree p_{2}.
Inductively one checks that we require σ_{k} forms of degree p_{k}, for $k=1,2, \cdots, t$, where p_{t} is the least integer such that $p_{t} r \geq d_{1}$.

To show these suffice, note that for $n>p_{t}, \operatorname{im}\left(\beta_{n}\right)$ is spanned by things of the form $h_{\gamma}(0, \cdots, 0,-g, f, 0, \cdots, 0)$ where $h_{\gamma} \in R_{n r+\gamma \delta-d_{1}}$, and only nonzero components occur at the γ-th and $(\gamma+1)$-th places.

If $j_{1}<\gamma \leq m n-1$, then write $h_{\gamma}=\sum_{j=1}^{n_{\gamma}} u_{\gamma j} v_{\gamma j}$, where $u_{\gamma j} \in R_{n r-p_{1} r}$ and $v_{\gamma j} \in$ $R_{p_{1} r+\gamma \delta-d_{1}}$.

If $j_{2}<\gamma \leq j_{1}$, then write $h_{\gamma}=\sum_{j=1}^{n_{\gamma}} u_{\gamma j} v_{\gamma j}$, where $u_{\gamma j} \in R_{n r-p_{2} r}$ and $v_{\gamma j} \in R_{p_{2} r+\gamma \delta-d_{1}}$. and so on.

Thus $\operatorname{im}\left(\beta_{n}\right)$ is spanned by things of the form

$$
h_{\gamma}(0, \cdots, 0,-g, f, 0, \cdots, 0)=\sum_{j} u_{\gamma_{j}}\left(0, \cdots, 0,-g v_{\gamma j}, f v_{\gamma j}, 0, \cdots, 0\right)
$$

But the right hand side lies in the image under ψ_{n} of $S_{n-p_{l}}\left(I_{X}^{\prime}\right)_{p_{l}}$ when $j_{l}<\gamma \leq j_{l-1}$.
Thus we know that I_{X}^{\prime} is generated by the q quadrics and σ_{k} forms of degree $p_{k}, 1 \leq$ $k \leq t$.

We consider three cases.
First, if $p_{1}>2$ then we are done. Note that in this case $\lambda=N$ and

$$
\sum_{s=0}^{2 m-1}\binom{2 r+s \delta-d_{1}+2}{2}=0
$$

Hence $q^{\prime}=q$. Thus I_{X}^{\prime} is generated by q^{\prime} quadrics and σ_{k} forms of degree p_{k}.
Secondly, if $p_{1}=2$ then $\lambda=N$. In this case I_{X}^{\prime} is generated by the

$$
q+\sum_{s=0}^{2 m-1}\binom{2 r+s \delta-d_{1}+2}{2}
$$

quadrics and for each $k=2, \cdots, t$ such that $p_{k} \neq 2$, by σ_{k} forms of degree p_{k}. Note that since $\lambda=N$,

$$
q+\sum_{s=0}^{2 m-1}\binom{2 r+s \delta-d_{1}+2}{2}=q^{\prime}
$$

Thus in this case we are done.
Finally, if $p_{1}=1$ then I_{X}^{\prime} is minimally generated by $\sum_{s=0}^{m-1}\binom{r+s \delta-d_{1}+2}{2}$ linear forms,

$$
\begin{aligned}
{\left[h^{0}\left(\mathbf{P}^{N}, O(2)\right)-h^{0}\left(X, 2 D_{r, m}\right)\right]-} & {\left[h^{0}\left(\mathbf{P}^{N}, O(2)\right)-h^{0}\left(\mathbf{P}^{\lambda}, O(2)\right)\right] } \\
& =h^{0}\left(\mathbf{P}^{\lambda}, O(2)\right)-h^{0}\left(X, 2 D_{r, m}\right)
\end{aligned}
$$

quadrics, and for each $k=2, \cdots, t$ such that $p_{k} \neq 2$, by σ_{k} forms of degree p_{k}.
Now by Proposition 2.3 we see that

$$
h^{0}\left(\mathbf{P}^{\lambda}, O(2)\right)-h^{0}\left(X, 2 D_{r, m}\right)=q^{\prime}
$$

Thus we get the result.

Corollary 3.8. Let $\chi: X \hookrightarrow \mathbf{P}^{\lambda}$ be the embedding given by the global sections of $D_{r, m}$, where

$$
\lambda=\sum_{i=0}^{m}\binom{r+i \delta+2}{2}-\sum_{i=0}^{m-1}\binom{r+i \delta-d_{1}+2}{2}-1 .
$$

Let I_{X} be the ideal defining X in \mathbf{P}^{λ}. Let t, p_{k} and j_{k} be as in Theorem 3.7. Then I_{X} is generated by q^{\prime} quadrics, where

$$
q^{\prime}=\binom{2+\lambda}{\lambda}-\sum_{s=0}^{2 m}\binom{2 r+s \delta+2}{2}+\sum_{s=0}^{2 m-1}\binom{2 r+s \delta-d_{1}+2}{2}
$$

and, for each $k=1,2, \cdots, t$, such that $p_{k} \geq 3$ in addition by σ_{k} forms of degree p_{k}, where

$$
\sigma_{k}=\sum_{i=0}^{j_{k}}\binom{p_{k} r+i \delta-d_{1}+2}{2} .
$$

Proof. If $r+(m-1) \delta<d_{1}$ then by (\dagger) and Proposition 2.3, the embedding χ coincides with the embedding ϕ^{\prime}. So in this case the result follows from Theorem 3.7.

If $r+(m-j-1) \delta<d_{1} \leq r+(m-j) \delta$ then the ideal I_{X}^{\prime} defining X in \mathbf{P}^{N} where $N=$ $\sum_{s=0}^{m}\binom{r+s \delta+2}{2}-1$ is generated by $\sigma_{1}=\sum_{i=0}^{j}\binom{r(m-i) \delta-d_{1}+2}{2}$ linear forms, q^{\prime} quadrics and σ_{k} forms of degree $p_{k}, p_{k} \geq 3$. The σ_{1} linear forms define a linear subspace $L \cong \mathbf{P}^{\lambda} \subset \mathbf{P}^{N}$. Thus the generators for the ideal I_{X}^{\prime} modulo σ_{1} linear forms give the generators for the ideal I_{X} of X in \mathbf{P}^{λ}. Thus I_{X} is generated by q^{\prime} quadrics, and if $p_{k} \geq 3$ for $k=1,2, \cdots, t$, in addition by σ_{k} forms of degree p_{k}.

References

[GG] A. Geramita and A. Gimigliano, Generators for the defining ideals of certain rational surfaces, Duke Math J. 62(1991), 61-83.
[GGH] A. Geramita, A. Gimigliano and B. Harbourne, Projectively normal but superabundant embedding of rational surfaces in projective space, J. Algebra 169(1994), 791-804.
[GGP] A. Geramita, A. Gimigliano and Y. Pitteloud, Graded Betti numbers of some embedded rational n-folds, Math. Ann. 301(1995), 363-380.
[Gi] A. Gimigliano, On Veronesean surfaces, Proc. Konin. Ned. Akda. van Wetenschappen, Ser. A 92(1989), 71-85.
[GL] M. L. Green, and R. Lazarsfeld, Some results on the syzygies of finite sets and algebraic curves, Compositio Math. 67(1988), 301-314.
[Ha] R. Hartshorne, Algebraic Geometry, Grad texts in Math, 52, Springer-Verlag, New York, 1977.
[Ho] S. H. Holay, Generators and resolutions of ideals defining certain surfaces in projective space, Ph.D. Thesis, University of Nebraska-Lincoln, 1994.
[ZS] O. Zariski and P. Samuel, Commutative Algebra, Vol. I, II, Van Nostrand, Princeton, 1958, 1960.

[^1]
[^0]: Received by the editors December 29, 1994; revised September, 1995.

[^1]: Department of Mathematics
 Southeast Community College
 Lincoln, NE 68520
 U.S.A.
 e-mail: sholay@unlinfo.unl.edu

