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GENERATORS OF IDEALS DEFINING CERTAIN 
SURFACES IN PROJECTIVE SPACE 

SANDEEP H. HOLAY 

ABSTRACT. We consider the surface obtained from the projective plane by blowing 
up the points of intersection of two plane curves meeting transversely. We find minimal 
generating sets of the defining ideals of these surfaces embedded in projective space 
by the sections of a very ample divisor class. All of the results are proven over an 
algebraically closed field of arbitrary characteristic. 

0. Introduction. Consider a set of distinct points p\,... ,pn of the projective plane 
P | over a fixed ground field & which is algebraically closed of arbitrary characteris
tic. Let X be the surface obtained by blowing up the points /?,-. The problem of finding 
minimal generating sets, or more generally minimal free resolutions, for ideals of such 
surfaces, embedded in projective space by a linear system of forms on P2 vanishing at the 
points, has been studied by several authors (see for example [GG], [Gi], [GL], [GGH], 
and [GGP]). In [GG], resolutions of ideals defining Room surfaces in projective space 
are determined; these surfaces are blowings up of general sets of points in P2 (sets of 
(d^1) points which do not lie on a curve of degree d — 1), and the embedding in pro
jective space is given by the linear system of forms of degree d + 1 on P2 vanishing at 
these points. In [GGH], attention is paid to blowing up P2 at special sets of points. In 
particular, if X'v$> the blowing up of P2 at the points of intersection of two plane curves P 
and Q meeting transversely, Geramita, Gimigliano and Harbourne show that X supports 
very ample superabundant divisor classes if and only if both curves have degree at least 
4. The very ample superabundant classes found are uniform, i.e., of the form F^m, cor
responding to forms on P2 of degree d vanishing at each point of P n Q to order at least 
m. (For the definition, see Section 1.) Moreover, in [GGH], minimal generating sets for 
the ideal defining the image ofXin projective space, embedded by the sections of F\+u\ 
are found when P and Q have the same degree t. 

In this paper we extend the work on minimal sets of generators. Given any very ample 
uniform divisor class on the blowing up X of P2 at the points of intersection of two curves 
P and Q meeting transversely, regardless of the degrees of P and Q (and in particular, 
not assuming P and Q have the same degree), we find a minimal set of generators for the 
ideal Ix defining the surface X embedded in projective space by the sections of the very 
ample class. This work is motivated by the results obtained in [GGH]. 
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586 SANDEEP H. HOLAY 

In Section 1 we recall some preliminaries and introduce some notation. In Section 2 
we explain the set up in which we will be working. In Section 3 we prove the main 
theorem of the paper. 

Before we end this introduction, we wish to note that the results of this paper com
prise part of the author's Ph.D. thesis, written under the guidance of Professor Brian Har-
bourne, to whom we express our sincere gratitude. 

1. Preliminaries. Let X be a surface obtained by blowing up n distinct points 
p\,...,pn of P^ over a fixed ground field fit which is algebraically closed of arbitrary 
characteristic. The divisor class group Pic(X) of Xis a free abelian group of rank n +1. A 
basis for Pic(X) is given by eo,..., en, where eo is the pullback to X of the class of a line 
in P2, and eu i > 0, is the class of the exceptional divisor E\ corresponding to the blow
ing up of pi [Ha]. The intersection product on Pic(X) is described by saying eo,...,en 

are pairwise orthogonal and — 1 = — eo • eo = e\ • e\ = • • • = en - en. Following [GGH] 
we shall say a divisor class of the form deo — me\ — • — men is uniform and denote it 
b y ^ m . 

We recall that a divisor class F on a surface X is very ample if the global sections 
H°(X,F) define an embedding of X into P", where N + 1 = h°(X,F). Also recall that 
a projective variety X C P^ is said to be projectively normal (with respect to the given 
embedding) if its homogeneous coordinate ring is integrally closed. We shall say a divi
sor class F on X is projectively normal if F is very ample and if X, with respect to the 
embedding in projective space given by the sections of F, is projectively normal. 

We will follow the convention (£) = 0, if a < b. 

2. Set Up. Let P and Q be two plane curves of degrees d\ <di9 respectively, meet
ing transversely. Let g a n d / be the homogeneous polynomials in the coordinate ring 
R = Jt [w\, u>2, W3] of P2 defining P and Q, respectively. Let / be the ideal (f, g)inR. We 
shall denote di —d\by8 and d\d2 by p. Let Xbe the surface obtained by blowing up the 
points p\,... ,pp E P2 of intersection of P and Q. Let 7r: X —* P2 be the corresponding 
birational map. As before, Fd^m denotes the uniform class deo — me\ — mep. 

We recall the following result of [GGH] (see Proposition II and Theorem IV of 
[GGH]). 

PROPOSITION 2.1. The divisor class F^m is very ample on X if and only ifd > mdi 
and m > 0. Moreover, any very ample class F^m on X is projectively normal. 

For simplicity of notation we will denote Fr¥nui2tm by Drm. To find generators for the 
ideal of X embedded by any such very ample class Drm, we first study a related but 
possibly degenerate embedding of X, induced by a morphism <j> which we now define. 

Forr > Oandm > 0,let Vsijk =fm~sgswi
lW2wl, where i+j+k = r+s8md0 <s<m. 

Note there are £ ^ 0 i^T*) e l e m e n t s vsijk- Thus setting </>(«, 6, c) = (• • •, Vsijk(a9 b,c\---) 
defines a morphism 
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away from the pointsp\,... ,pp, where 

Let S = & [• • • ,Xsijk, • • •] be the homogenous coordinate ring of P^. 

LEMMA 2.2. Pullback by TT establishes a Si-vector space isomorphism from the ho
mogeneous component (rn)r¥md2 of the ideal F1 to H°(X,Drm). 

PROOF. We have that the homogeneous coordinate ring R is just ©;>o#°(P2,/eo) 
and that H°(X, (r + md2)e0) = H°(P2, (r + md2)eo). Via 

H°(X,Dr,m) C H°(X,(r + md2)e0), 

H° [X, Dr,m) corresponds in H° (P2, (r + md2)eo) to the linear system of forms on P2 of 
degree r + md2 vanishing at each pointp\,. . . ,pp to order m or more. Thus if P, de
notes the homogeneous ideal defining/?,, we have an isomorphism from H°(X,Drm) to 
the homogeneous component (P™ n • • • n P%)r+md2 of P™ n • • • D PJ? of degree 
r + mt/2- By a theorem of Macaulay (Lemma 5 of Appendix 6 of volume II of [ZS]), 
P"[ Pi • • • nP^1 = (Pi H • • • DPP)W. Thus now we have an isomorphism from H°(X, Dr,m) to 
(P, H • • • n P P ) ^ 2 . But (/>! n • • n Pp)^md2 = (/" W * , which establishes the result. • 

Since nDrm = Dnrnm, by Lemma 2.2 we see that 

Pr(X,nDryTn) = (rnn)n{r+md2) 

as ft-vector spaces. We will denote this isomorphism by £„. 
Now, for the reader's convenience, we state a part of Proposition III. 1 of [GGH]. 

PROPOSITION 2.3. Let X, Dr^m andb be as described above and letr>0 and m > 0. 
Then 

^«»>=sC+2+2)-sC+v+2)-
Let \:X —» PA be the morphism given by the sections ofDrm, where, by Proposi

tion 2.3, 
fr + fi + 2\ ^ fr + i6 -d{+2\ 

We also have the linear inclusion L:FX ^>FN corresponding to S\.[YN] —> ft [PA] defined 
byXgijk —̂> 7r*(F5Iyit), under the identification of linear forms on PA with sections ofDrm. 

PROPOSITION 2.4. The closure of the image of<j> is isomorphic to X. 

PROOF. Let U = 7r-1(P2 - {p\,... ,pp})< By Proposition 2.1 the divisor Dr,m is 
very ample if r > 0 and m > 0. Thus the map t o ^ I —> P^ is an isomorphism to 
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its image. By Lemma 2.2 , we see that </>ir and i\ have the same restriction to U. So 
X ^ x W = clos(im</>). • 

In particular, <j>\u extends to an embedding <j>':X —» P^, and we have <j>' = i\. The 
reader may find the following geometric perspective helpful. 

The image <j>'(X) spans the subspace L = L(FX) of P^; L is a proper subspace when 
d\ < r + (m — iy> (as we see by comparing (f) with Proposition 2.3). 

Our ultimate goal is to give generators for the homogeneous ideal Ix defining x f f l C 
PA, but it is easier to work with the ideal Ix defining <j>'(X) C P^, and derive our results 
for Ix from studying Ix, using the fact that Ix is a quotient of I'x by TV — A linear forms. 

3. The Generators. Before we get to the details of our main argument, we would 
like to give a brief overview of our approach. 

Consider the morphism <\>\X —• P^. We have the corresponding rational map 

P2 —> T*N which on coordinate rings factors as S —> T —> ft [P2], where T — 

fft[a : b,w\ : W2 : wi] and if) maps Xsijk to dn~stfWxyJ>£^ where i+j + k = r + s6, 
0 < s < m and a maps a t o / , b to g, and wt to w,- for / = 1,2, 3. ker(a o -0) is the ideal 
we are looking for. 

Note that T is bigraded, with 

T = ®[a :b,wl:w2: w3] = ® Tu,v, 
0<u,v 

where Tu^v is the ft-span of the monomials of degree (w,v), where deg(a) = (1,<5), 
deg(6) = (1,0) and deg(w,) = (0,1) for / = 1, 2, 3. Note that in the case d\ = d2, 
the grading on T agrees with the standard grading on P1 x P2 and the above factoriza
tion corresponds to factoring P2 —> PN through P1 x P2. We will show that generators 

coming from ker ^ are quadrics. The others map to S-module generators of Ixj ker-0 = 
tp(Ix) C T. To get a handle on these other generators we observe that the bihomogeneous 
elements of ker(a) generate (bf— ag)9 which is isomorphic to T, shifted in degrees. 

For example, ty(Ix) — im(^) D (bf— ag)T which in the case d\ = d2 = t is generated 
by the single component (bf— ag)Tmp-\^pr-t9 where/? is the least integer such thatpr > t. 
But Tmp-\iPr~t has &-dimension mp(^r~2+2), and so one gets mp(pr~2

+2) forms of degree 
p as generators [Ho]. If moreover r = m = 1, this gives / forms of degree /, which agrees 
with the result of [GGH]. 

If d\ < d2, Wx) is generated by various components of T and so generators coming 
from this are spread over various degrees. 

Now we give the details of our argument. 
Consider the morphism </>': X —> YN\ recall that the hyperplane sections are precisely 

the sections oiDrm. We get an exact sequence of sheaves of ideals 

0-> J £ - > < V - * Q r - > 0 . 

Tensoring with OpN(n) we get 

0 -+ fx(n) -> OpN(n) — Ox(n) -> 0. 
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Now taking cohomology and using the fact that Drm is projectively normal (see Propo
sition 2.1) we get an exact sequence 

0 -> ^(P", / > ) ) - H0^, Orfn)) - //°(X, nDr,m) -» 0. 

Thus for n > 0 we get an exact sequence 

(*) 0 — (fx)n -> Sn - ^ fl°(Z, «A-,») — 0. 

Next let Fy denotef^gf. If /i = ^ ^ i ' * ^ / j * *s a monomial of degree n\ + 
„2 + • •. + np = n in Sn then </#(//) = ^ / ( V / v ^ T • • • ^{w^w^fp. Since J = 
«i5i + • • • + w ^ is the power of g occurring in F^1 • • • F^, we can factor the map </>£* 
through 0 5 ^ by defining V>„: S, -* ©g^nr+tf via 

„̂(/x) = o e • • • e o e (W/ w f ^ T • • • (wf VJH£)* © o © • • • e o, 

where the nonzero component is in the d-th place, and by defining 

mn 

via 

aw(oe--eoe^0O0-..eo) = /i/nw-V. 
Now using the exact sequence (*) and the maps ifjn and an we construct for n > 0 the 

following diagram. 

0 —- (4)„ —- Sn - ^ H°(X,nDr,m) —> 0 

o — [esr^H-)], - ^ [®5,*H)i - ^ (̂ "% — o 
DIAGRAM 3.1 

where 77/ denotes («m^2 — #> + d\),i/ denotes n(r + w^) , and77 denotes («m^2 — #>)• In 
the above diagram define (3n via 

/?„(*<> © ' ' ' © hnm-i) = -gh0 © (Jho - ghi) © • • • © tfhmn-2 - ghmn-\) ®fhmn-\• 

LEMMA 3.2. Diagram 3.1 is commutative with exact rows. 

PROOF. The top row is exact as observed above (*). To check that the bottom row 
is exact, first note that an(3n = 0, so im(J3„) C ker(a„). To see ker(a„) C im(J3„), 
let h0 © • • • © hmn e ker(a„); i.e., £™0 hf™-^ = 0. Now g divides £™ hf1"-^. 
So g divides /ZQ/7™, which implies g divides /*o- Thus ho = gko for some ko E i?. But 
j8„(ikb©0©---©0) = -gfe©>3fcb©0©---©0 = -/zo©^o©0©---©O.Thusmodulo 
im(/3„), denoting^ + Ai by Aj, we can replace /*o © • • • © hmn by 0 0 h[ © h2 © • • • © hmn. 
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Arguing as above, there exists k\ G R such that h\ = gk\ and so, modulo im(/3„), denoting 
fk\ + h2 by h'2, we can replace 0 0 h\ 0 h2 0 • • • 0 hmn by 0 0 0 0 ^ 0 A3 0 • • • 0 / w 
In this way we eventually obtain 0 0 • • • 0 0 0 h'mn E ker(a„), which is only possible if 
h'mn = O.I.e., modulo im(J3„),ho®--®hmn = 0, so /zo0- • -(Bhmn € im(/3w), as claimed. 

Next, to see £„</>£* = anxj;„, note that for appropriate a, b, c, and rf (where the nonzero 
component of0 0 • • • 0 w\aW2bW3c 0 • • • 0 0 occurs in the d-th place) we have 

^(II( xsi jkT s i j k) = ocn(0 0 • • • 0 wfwW 0 • • • 0 0) 

= wl
aw2

bwicfnn-dg(i 

= mr-Ywiaw2
bmc) 

where products are taken over i+j + k = r+s8 and 0 < s < m. This completes the proof 
of the lemma. • 

We now make a definition. 

DEFINITION 3.3. Let \i — XSlijlkl • • • XSpipjpkp e S.We shall say that \i is lexicograph
ically minimal if the factors X^^ can be reordered so that 

(i) s1 > 0 implies si = mfor all l> 1, 
(ii) z7 > 0 implies ji = ki — Ofor all I < 1, 

(Hi) j 1 > 0 implies k\ — Ofor all / < 7, 
where 1 < /, 7 <p. 

REMARKS 3.4. (1) To clarify the point of the above definition, consider an analogy 
between a monomial XSxivj{kx • • -Xs y kp a n d a row ofp boxes, the /-th box containing m 
cubes (m — si being white, and sj being black) and r + sfi balls (// being blue,y'/ being 
green, and &/ being red). It is clear that by swapping cubes in adjacent boxes we can 
eventually force the white cubes to be as much as possible in the leftward boxes, and the 
black cubes as much as possible at the right, always maintaining m cubes in each box. In 
particular, we can force there to be at most one box with cubes of both colors, with all 
boxes to its left (if any) having only white cubes, and those to its right having only black 
cubes. Likewise, swapping balls in adjacent boxes can be done to eventually move the 
balls so that the blues are as far left as possible and the reds are as far right as possible. 
Having in this way the whites and blues at the left, and the blacks and reds at the right 
precisely means the corresponding monomial is lexicographically minimal. 

(2) Note that the map ipn can be interpreted using the above analogy. The wt corre
spond to the balls and s corresponds to the number of black cubes. The evaluation by tyn 

then precisely means lumping the contents of the boxes together. 
(3) We will say that two monomials of the same degree u and u' are equivalent if u 

can be transformed into u' by operations corresponding to these swaps. Then it is easy 
to see that there is a unique lexicographically minimal monomial in each class, and that 
the classes are precisely the monomials with the same image under ip. 

(4) Let Mp denote the set of lexicographically minimal monomials in Sp. We now 
count the number of elements in Mp. In terms of the analogy given above in (1), there is 
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a unique lexicographically minimal arrangement of cubes and balls with given numbers 
of cubes and balls of each color. In the notation above, there are r + s\h balls in the /-th 
box, so there are/?r + sS balls altogether, where s = s\ + • • • + sp is the number of black 
cubes. Thus the number of arrangments with s black cubes is the number of ways to 
apportion pr + s8 balls among the colors blue, green and red, which is well-known to be 
(pr+s8+2y S u m m i n g over ^ gives the number £ ^ 0 (/w+f+2) of elements in Mp. 

Next to find generators of ker(i/;„), we need a lemma. 

LEMMA 3.5. The set of lexicographically minimal monomials in Sn, Mn maps bijec-
tively to a basis of[®™0 R(-nmd2 + s6)]n(r+md2y 

PROOF. For simplicity of notation let us denote [©™=0 R(—nmd2 + s8)\^md. by T. 
Let 0® • • • 0 Wx w

,
2w^ 0 • • • 0 0 be a basis element of T, where the only nonzero component 

is at the cr-th position, and i+j+k = nr+ab. Consider a monomial \i = XSxixjxkx • • • XSpipjpkp 

in S such that following conditions hold. 
(i) s\ + si + • • • + sp = mn — a and if s1 > 0 then si = m for all / > 7. In other words, 

if (/ — \)m <a <lm then sv = 0 for all r\ = 1,2, • • •, / — 1, si = ml — a, sv = m for all 
j] = I + 1, • • •, n and ifa = mn then si — 0 for all /. 

(ii) /i+--- +ip = ij\ +• • • +jp =j9 k\ +• • • +kp = k such that if/7 > 0 then// = ki = 0 
for all / < 7, and if/7 > 0 then kt = 0 for all / < 7, 1 < /, 7 <p. 

Then by construction \i is lexicographically minimal, and one checks that 

\l)n(ji) = 0 0 • • • 0 WJM/2W£ 0 • • • 0 0. 

This proves ij)n is surjective. Also, by Remark 3.4(4) the number of elements in Mn is 
E^=0 (

wrff+2)> which is the dimension of the image T. Thus M„ maps bijectively to a 
basis of T. m 

LEMMA 3.6. Let J be the ideal ofS generated by ker (ife). Then J is generated by q 
quadrics where 

/ 2 + M *^(2r + s6 + 2\ 

* =( *, - E 

where N = E™=0 {"T*) ~x>and k e r WO C J, for all n>0. 

PROOF. Clearly J is generated by q quadrics, where q = dim ker (t/^). To see that 

(2+N\ 2m/2r + s<5 + 2\ 

=(r)-U2 dim ker (1/̂ 2) 

consider the short exact sequence 

0 -»kerfcfe) - » 5 2 - ^ ® J?2rfrf — 0. 

Then dim ker (^2) = dim(S2) - dim(e£>*2rfrf) = ( T ) - £2=o ( 2 r + f 2 ) . 

</>2 2 m 
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Next note that there is a bijection between coordinates Xsijk on P^ and the elements 
Vstjk = / w ~ Y w i W W , where i +j + k = r + s8 and 0 < s < m. Let Vs denote/"-V-
If a = X"1. ., • • • X*1/; ib is a monomial of degree / i i + ^ + ' ^ + W p ^ w o n P ^ then 

S\l\J\K\ SplpJpKp ^ f 

where ijjn* is a map from 5W to St [w\, H>2, W3,/, g] such that/andg are treated as variables 
in $$[w\, W2, W3,/,g] a n d ^ = «i(/w — ^i) + • • • + Wp(/w — sp) is the power off occurring 
in P 1 - ^ . Thus 

ij)n(ji) = 0 e • • • e WWW 1 )" 1 • • • (Wp^Jpmkp)np e • • • 0 o 
which is in [©^0 R(—nmdi + ̂ )]n^mdly where the nonzero component is in the z/-th 
place. 

By Lemma 3.5 we know that Mn maps bijectively to a basis of 
r mn I 

\(BR(-nmd2+m 
Li=0 i^r+mdi) 

and so 1/̂  is surjetive. Thus for every s, 0 < s < mn, and for any monomial / / in 
[®™?0R(—nmd2 + ^)]W(rfm</2) = © S ^ H - ^ , there is a unique monomial \x in M„ such 
that ^(fi) = ( ) © • • • © / / © 0 © - - - © 0 , where the nonzero component occurs in the i/-th 
position. From uniqueness we see that Sn = ker(i/;„) 0 (Mn), where (Mn) denotes the 
span of Mn. 

Now, as noted in Remark 3.4 (3), we see that if u is any monomial in Sn, then there exist 
monomials u\, • • •, «/ in Sn such that u = u\ is equivalent to w/ and w/ is lexicographically 
minimal. Here w7+i is obtained from w7 by the operation corresponding to a single swap of 
objects in corresponding adjacent boxes for 7 = 1,2, •, /— 1. We claim that w7 — u1+\ is 
in J. The proof of the claim is essentially writing out an algebraic interpretation of a single 
swap mentioned in Remark 3.4 (1). Write w7 as X^j^ • • -XSpipjpkp such that s\ < S2 < 
• • • < V Now transform the adjacent factors XSsi^kgXSs+lis+j6+lks+l into ^ J ^ S ^ J ^ ^ 

in the following way. If s$ = Othen^ = ssands's+l — ss+\9andifss > 0,and^+^+i < m 
then sf

5 = 0 and sf
6+l = s$ + s^+\, and if s$ > 0, and s^ + s&+\ > m then sf

g = s& + ̂ + 1 — m 
and s£+1 = w, and i6 + / M = i's + i'6+l,j6 +jM = y£ +^ + 1 , fe + A$+1 = klb + A£+1, 
such that if ^+1 > 0 then fb = k!b = 0, and if^+1 > 0 then k/8+l = 0. Let w7+i be 

^,iVi*i • • • ^ - i f c - i a - i ^ . ^ K A , ' ^ ; , ^ , • • • XwA>• T h e n n o t e t h a t w^ - w7+i € J. 
Now if for a monomial // we denote by / / the lexicographically minimal monomial 

with the same image under </>'*, then the set {\i — / / | \i monomial in Sn} is a basis of 
ker(V>w). The result follows, since we have already shown \i — \x' G J. • 

To state the main theorem, we need some notation. Let/?i be the least integer such that 
p\r+(mp\ — 1)6 >d\, and lety'i = mp\ — 1. For k>2, inductively define^ as the largest 
integer such that/?£-ir + 7 ^ < d\, andpk as the least integer such that/^r +jk& ^ d\. 
The procedure stops at that k = t for whichpt is the least integer wi ther > d\. Note 
that/?i < P2 < — - < Pi- Also let 

A=g('T2)-§(r+V'+2)-i. 
Now we can state the main theorem. 
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THEOREM 3.7. With X, t, pk andjk as above, the ideal I'x is generated by q' quadrics 
and, for each k— 1, • • •, / such thatpk ^ 2, by a> forms of degree p^ where 

A 5=0 \ s=0 

and 

°k 
= j*(pkr + ti-dx+2\ 

PROOF. We continue to use notation introduced for Lemma 3.6. We shall denote 

2 + M _ ^ /2r + s6 + 2 
2 / s=0 

by q, where tf = EJLoCT2)-!-
Consider Diagram 3.1. By Lemma 3.2 this diagram is commutative with exact rows, 

so(4)n = k e r ( ^ ) = ^"1(im( i8 l l)). 
Next note that [©S"1 R(-nmd2 + iS - d\)\^mdi) = 0 if n < px. So for n < pu 

(I'x)n — ker(/0W). Therefore by Lemma 3.6 (If
x)n — J„ for n <p\;i.e.,q quadrics account 

for everything when n <p\. 
Forn = p\, 

VxX/Jn = 

which has dimension 

mn— 1 

0 R(-nmd2 + ib-dx) 
. i=0 

mpi-\ 

— M7 Rp\r+ib-d\ j 
n(r+md2) i=0 

*i = E 
m ^ > /p,r + »5-«/i+2' 

,=o \ 2 

Thus we require cii forms of degree p\. Let J{ be the ideal generated by these forms. For 
n >p\, 

(l'X)n/(Jn+J[n)' @R(-nmd2 + tt-di) 
i=0 n(r+md2) i=0 

wherey*2 is the largest integer such that/?i r +j2b — d\ < 0. If« < /?2 then © ^ Rnr+ib-dx = 
0. Thus for « < p2, q quadrics and ai forms of degree p\ account for everything. For 
n=P2, 

which has dimension 

Q)R(-nmd2 + i8-dl) 
4=0 

~ \JjRp2r+i8-d\> 
n(r+md2) i=0 

& p2r+i8-d\ +2 

"2 = S 2 
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Thus we require 02 forms of degree/^. 
Inductively one checks that we require o> forms of degree /?*, for k = 1, 2, • • •, f, 

where/?/ is the least integer such that/?,r > <7i. 
To show these suffice, note that for n > pu im(j3n) is spanned by things of the form 

/z7(0, • • •, 0, —g,/, 0, •••, 0) where hy G Rnr+1s-di> and only nonzero components occur 
at the 7-th and (7 + l)-th places. 

If71 < 7 < mn — 1, then write /z7 = Y^L\ u-yv-y, where w77 G Rnr-Plr and v7y G 

If72 < 7 <yi , then write /*7 = Ejlj K77V77, where uv G tfWr-/>2r and v7y G RP2r+ib-dx • 
and so on. 

Thus im(/?w) is spanned by things of the form 

/*7(0,- • • , 0 , - g , / , 0 , - • • ,0) = E«7y(0,.. • ,0,-gv7„>7 y ,0,- • • ,0). 
7 

But the right hand side lies in the image under \jj„ of Sn-Pl(I'x) when^/ < 7 <ji-\. 
Thus we know that 7^ is generated by the g quadrics and o> forms of degree p^, 1 < 

We consider three cases. 
First, if p\ > 2 then we are done. Note that in this case A = N and 

2 ^ /2r + rf-</i+2\ = Q 

5=0 \ ^ / 

Hence q' = q. Thus I'x is generated by q' quadrics and ak forms of degree pk. 
Secondly, if p\ — 2 then A = N. In this case tx is generated by the 

*£? (2r + s6-dl+2 

5=0 

quadrics and for each k — 2, • • •, t such that/?* ^ 2, by o^ forms of degree/?#• Note that 
since A = N, 

2t^] f2r + s6-di+2\ , 

Thus in this case we are done. 
Finally, if/?i = 1 then I'x is minimally generated by J2™=o (rf*5~fi?1+2) linear forms, 

[ft°(p", 0(2)) - h\X92Drjnj\ - [h°(VN, 0(2)) - A°(p\ 0(2))] 

= h0(v\O(2))-h°(X,2Dr,m) 

quadrics, and for each k = 2, • • •, t such that pk ^ 2, by o> forms of degree/?#. 
Now by Proposition 2.3 we see that 

h\v\0(2))-h\xaDr,rn) = q'. 

Thus we get the result. 
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COROLLARY 3.8. Let \:Xc—> PA be the embedding given by the global sections of 
Drm, where 

^-sfT^-srv*2)-1-
Let Ix be the ideal defining X in PA. Let t, pk andjk be as in Theorem 3.7. Then Ix is 
generated by q' quadrics, where 

and, for each k = 1, 2, • • • ,t, such that pk > 3 in addition by cr* forms of degree p^ 
where 

J*tpkr + i8-dx+2\ 

PROOF. If r + (m — 1)6 < d\ then by (f) and Proposition 2.3, the embedding \ 
coincides with the embedding <j>'. So in this case the result follows from Theorem 3.7. 

If r + (m -j - 1 )S < d\ < r + (m -j)6 then the ideal tx defining X in P^ where AT = 
EJU {"T2) ~ l i s generated by ax = E^=0 [^m-^+2) linear forms, q' quadrics and 
<jk forms of degree^, Pk ^ 3.Theai linear forms define a linear subspaceL = PA C P^. 
Thus the generators for the ideal I'x modulo G\ linear forms give the generators for the 
ideal Ix of X in PA. Thus Ix is generated by q' quadrics, and if/?* > 3 for k = 1,2, • • •, t, 
in addition by a> forms of degree/?*. • 
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