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Recently, the existence of so-called granular bubbles and droplets has been demonstrated
experimentally. Granular bubbles and droplets are clusters of particles that respectively
rise and sink if submerged in an aerated and vibrated bed of another granular material
of different size and/or density. However, currently, there is no model that explains the
coherent motion of these clusters and predicts the transition between a rising and sinking
motion. Here, we propose an analytical model predicting accurately the neutral buoyancy
limit of a granular bubble/droplet. This model allows the compilation of a regime map
identifying five distinct regimes of granular bubble/droplet motion.
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1. Introduction

Granular materials are complex systems that can exhibit liquid-like behaviour under
agitation. Examples are gas bubbles in gas—solid-fluidized beds (Davidson, Harrison &
Carvalho 1977), breaking waves in granular shear layers (Goldfarb, Glasser & Shinbrot
2002), gas—solid fingering patterns akin to Rayleigh—Taylor instabilities (Vinningland et al.
2007) and condensation-like droplet formation of particles on tapped plates (Duran 2001).
Very recently, McLaren et al. (2019) have observed further liquid-like phenomena in
binary granular materials that are subjected to simultaneous vibration and aeration. When
a cluster composed of particles with diameter d. and density p. is immersed in a bed
of particles of different diameter dj, and density pp, the cluster forms a coherent structure
rising similar to a gas bubble in a liquid. Such clusters have been termed ‘granular bubbles’
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Figure 1. (a) Numerical set-up: bulk particles (black, d;, = 1.16 mm and pp = 6000 kg m~3) are filled to a

height H in a container of width W and depth 7. Granular cluster particles (white) are initialized as a square
cuboid (W, = 30 mm) that is immersed in the bulk phase. The bed is subjected to a vertical, sinusoidal vibration

(A =1mm and f = 10 Hz) and an upwards gas flow U = 1.13 m s~! with pg=12kg m3and v =15 x

1075 m? s~!. (b) Time series of a rising granular bubble formed by granular cluster particles (d. = 1.45 mm
and p. = 3000 kg m~3). The images show a central cut out of the bed with a width of 0.375W and height H.

(see figure 1b) and have been observed to form for d./dp > 1 and p./pp < 1 albeit in
the absence of surface tension at the cluster interface. Conversely, for d./d, < 1 and
pe/pp > 1 the cluster (termed a ‘granular droplet’) sinks and splits similar to a droplet
of dense liquid falling in a miscible but lighter liquid. Despite some similarities with
their fluid analogues, the mechanism driving granular bubbles and droplets must differ
appreciably from their liquid counterparts as granular materials readily solidify under
pressure and lose their fluidity due to frictional forces. McLaren et al. (2019) have argued
that a granular bubble rises for d. > dp, as gas required to fluidize the granular material
is drawn into the bubble, counteracting gravity through an increased drag. On the other
hand, a granular droplet sinks for d. < d;, as gas bypasses the droplet. As the work of
McLaren et al. (2019) was largely experimental, relying on only two different ratios for
d./dp and p./pp, there is still very little understanding of the underlying physics of these
new phenomena. Here, we derive an analytical model that predicts the neutral buoyancy
limit of a granular cluster allowing the construction of a regime map. This regime map
reveals the existence of three additional, previously unreported, regimes.

2. Numerical set-up

A critical assessment of the hypothesis of McLaren et al. (2019) concerning the transition
between rising and sinking granular clusters requires quantitative information on the gas
flow near a cluster. However, this information is not easily accessible by experiments due to
the opaque nature of granular matter. To this end, computational fluid dynamics coupled to
a discrete element method (CFD-DEM) was applied to simulate a pseudo-two-dimensional
vibro-gas-fluidized bed using cfdemCoupling® (Kloss et al. 2012). Details on the
CFD-DEM model and the implemented equations can be found in Appendix A.

The gas flow field was calculated in cubic volume elements of 5 mm edge length
using the built-in finite volume method solver of cfdemCoupling® (Kloss et al. 2012).
The boundary conditions used in the CFD are summarized in table 1. Due to the coarse
resolution of the CFD mesh, a full-slip boundary condition was implemented between
solid walls and the gas phase (Beetstra, van der Hoef & Kuipers 2007; Li et al. 2012;
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Boundary
Quantity Inlet Outlet Walls
Reduced pressure  p/p,  zero gradient 10 m? 572 zero gradient
Gas velocity u 0,U,07 zero gradient full slip

Table 1. Boundary conditions used in the CFD part.

Li, Zhang & Herndndez-Jiménez 2016). However, the frictional and collisional contacts
between the particles and the walls are fully resolved in the DEM. Studies of Zenit, Hunt
& Brennen (1997) and Berzi & Fraccarollo (2015) have shown that particle collisions in
inertia-dominated suspensions cause velocity and pressure fluctuations in the interstitial
fluid that affect in turn the prevailing stresses and the effective viscosity of the fluid. In
our work, the occurring fluid velocity fluctuations due to particle collisions are expected
to be of the order of the magnitude of the peak particle velocities (that are ~0.1 m s~ 1),
however, the interstitial gas velocity is approximately 30 times faster on average. Thus, we
expect the drag force to dominate over local fluid forces due the collision-induced velocity
fluctuations. As the local void fraction € is fairly constant throughout the entire particle
packing, viscous stresses from local flow compressibility are expected to be small and only
shear stresses for the fluid stress tensor were used in (A4). Moreover, in our simulations,
the fluid density p, is low compared with the solid density of the particles. Thus, further
fluid—particle interaction forces such as the added mass effect are minor and have been
neglected (Sommerfeld 2018).

The numerical set-up of the vibro-gas-fluidized bed resembled the experiments of
McLaren et al. (2019), see figure 1(a). Specifically, a box of width W =200 mm and
thickness 7 = 10 mm was filled up to a height of H = 250 mm with a polydisperse mixture
of spherical particles, referred to as the bulk phase. The bulk particles had a density
pp = 6000 kg m—3 and a mean diameter d, = 1.16 mm. Polydispersity was introduced
to reduce crystallization effects of the packing (Pusey 1987). To this end, 60 mass-%
of the bulk particles had the nominal diameter dj, and 20 mass-% were attributed each
to a particle size equal to 0.9d), and 1.1d}, respectively. Inside the bulk phase, a square
cuboid of width W, = 30 mm and depth 7" was cut out and filled with spherical particles of
mean diameter d, and density p. (referred to as the granular cluster). The cluster particles
followed the same polydispersity scheme as the bulk particles. The lower edge of the
cluster was 30 mm above the bottom of the bed. Details on the DEM particle properties
are found in table 2.

In the present study, we reduced the coefficient of restitution e of the particles to 0.3
in order to speed up the simulations. However, a parameter study varying e showed that a
variation of e in the range 0.1-0.95 has no significant influence on the evolution of granular
bubbles, see Appendix E. At the bottom of the bed, an upwards gas flow with a superficial
velocity U = 1.13 m s~!, density pg = 1.2 kg m—> and viscosity v = 1.5 x 10> m? s~!
entered the bed. The value of U was equal to the minimum fluidization velocity of the bulk
particles (U, p), i.€. the velocity at which the drag force balances the weight of the bulk
particles in the gravitational field g = 9.81 m s~2 (Kunii & Levenspiel 1991). Fluidization
reduced frictional forces between the bulk particles, a key requirement for granular clusters
being able to rise/sink. During the simulations, the box was subjected to a vertical,
sinusoidal vibration with an amplitude A = 1 mm and frequency f = 10 Hz. Applying
vibration aids the creation of a mobilized state of the granular material and reduces the
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Quantity Bulk particles Cluster particles
Particle shape Sphere Sphere
Mean particle size dp = 1.16 mm d.-=05...3xdp
Particle size distribution AQ3(dp) = 0.6 AQ3(d.) = 0.6
(mass fraction) AQ3(0.9dp) = 0.2 AQ3(0.9d.) =0.2
AQ3(1.1dp) =0.2 AQ3(1.1d.) = 0.2
Particle density pp = 6000 kg m™3 pe=02...2xpp
Young’s modulus Ep, =5 MPa E. =5 MPa
Poisson ratio vy = 0.45 ve =045
Coefficient of restitution ep =03 e. =0.3
Coefficient of friction up = 0.15 e = 0.15
Contact law Hertzian Hertzian

Table 2. Particle properties used in the DEM part.

emergence of gas bubbles that otherwise would arise if the particles were fluidized by gas
alone (McLaren et al. 2019, 2021). This allowed the evolution of the granular clusters to be
unimpaired by the presence and motion of large gas bubbles. Importantly, applying only
vibration without gas fluidization did not establish any convective flow patterns in the bulk
phase and lead to an immobile granular cluster.

3. Experimental set-up

In an effort to validate the regimes found in numerical simulations, additional experiments
were performed matching the numerical set-up. To this end, a series of granular clusters
was prepared in a pseudo-two-dimensional vibro-gas-fluidized bed made of acrylic glass
sheets. The inner dimensions of the bed were W = 200 mm and 7 = 10 mm. Analogue
to the procedure described in Metzger er al. (2022), a granular cluster with W, =
30 mm was initialized in a bed of bulk particles, ensuring a configuration as shown in
figure 1(a). The height of the granular bed was set to H = 250 mm. Table 3 lists all
combinations of bulk and cluster particles that have been used in the experiments. During
the experiments, a shaker (Labworks Inc., ET-139) vertically vibrated the fluidized bed at
identical conditions used in the simulations, i.e. A =1 mm, f = 10 Hz and " = 0.4. A
flow of pressurized air was used to fluidize the granular material at incipient fluidization
conditions, i.e. U/Uyysp = 1. The gas flow was controlled by a mass flow controller
(Bronkhorst AG, F-202AV) and passed through a humidifier before entering the fluidized
bed. Humidification of the fluidizing gas mitigated the build-up of electrostatic charges on
the granular material. Additionally, the bulk materials were treated with anti-static spray
(Electrolube, ASA250). Neither humidification nor anti-static coating led to the formation
of liquid bridges such that the granular material maintained its free-flowing properties.
The emergence of a granular cluster was recorded with a digital camera (Canon, EOS
77D) at a frame rate of 50 Hz. Each experiment listed in table 3 was repeated three times.

4. Derivation of the analytic gas shift model

First, we evaluate numerically the effect of a granular cluster on the gas flow field.
Figures 2(a) and 2(b) display the gas flow in the vicinity and inside a granular cluster
for two values of the relative particle diameter

d* = d./dp. (4.1)
945 A16-4
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1D dp/mm pp/ (kg m=3) d./mm pe/ (kg m™3) d* Ap* Rey, Regime

A 1.1+0.1 6050 22402 2500 2 0.41 73.3 rising bubble
B 1.1+0.1 6050 2.45+0.15 5300 223 0.88 73.3 rising finger
C 1.1+0.1 6050 2.3540.15 6130 2.14  1.01 73.3 rising finger
D 1.1+0.1 6050 0.5+0.1 9200 046 1.52 70.9 sinking droplet
E 1.5+0.1 5300 2.4540.15 5300 1.63 1 103.3 rising finger
F 1.5+0.1 5300 2.35+0.15 6130 1.57 1.16  103.3 stagnant cone
G 1.5+0.1 4100 27402 3700 1.8 0.90 91.7 rising finger
H 1.6 £0.1 3700 0.6+0.1 4100 038 L.11 106.7  disintegrating bubble
I 1.454+0.2 2500 2.3540.15 4100 1.62 1.64 64.5 sinking droplet
J 1.45+0.2 2500 1.05 £ 0.05 6050 072 242 64.5 sinking droplet
K 1.454+0.2 2500 2.3540.15 6130 1.62 245 64.5 sinking droplet

Table 3. Combination of bulk particles (index b) and cluster particles (index c¢) used in the experiments.
All experiments were performed with vertical vibration (A = 1 mm, f = 10 Hz, I = 0.4) and at incipient
fluidization (U/Uyf,, = 1). The particles were sieved and the & sign indicates the upper and lower bounds of
the particle size. The values of d* = d./dp, Ap* = (pc — pg)(pp — ,og)_1 and Rep = Ud), /v were calculated
based on the mean particle diameters and the nominal solid densities.

(@) (o)
o f
(b) (d)15
U*1.0
0.5 0.5
—0.5 0 0.5 —0.5

x/W

Figure 2. Heterogeneous gas flow near a square-shaped granular cluster of width W, =30 mm. (a,b)
Simulated gas flow with Re, = Udp/v = 88.75 through a packing with d* = 1.5 and 0.5, respectively. The
white boxes mark the edge of the granular cluster and the black curves show the gas streamlines. Here, U*
is given by the background colour. (¢) Decomposition of U into u, (cluster) and u; (bulk phase) according to
(4.2) and (4.4). (d) The value of U* along the horizontal line through the centre of a granular cluster with,
respectively, d* = 1.5 (blue) and d* = 0.5 (red). Solid lines plot the Eulerian-Lagrangian simulation results;
dashed lines plot the solutions of the analytical model.

The black curves represent the gas streamlines and the background shows the
dimensionless magnitude of the gas velocity U* = u/U, where u is the magnitude of
the local superficial gas velocity. For d* = 1.5, the streamlines concentrate inside the
granular bubble and U* is higher in the cluster than in the surrounding bulk phase, i.e.
gas flows preferentially through the granular cluster. For d* = 0.5 the situation inverts.
Such flow characteristics have been expected by Gilbertson & Eames (2001) and McLaren
et al. (2019) due to an increased/reduced permeability with increasing/reduced particle
size (Kozeny 1927; Carman 1937; Ergun 1952). The flow heterogeneity that is caused by
the redirection of gas into or around a granular cluster will be referred to as ‘gas shift’ in
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the following. This gas shift is key to explaining the rising and sinking of granular bubbles
and droplets and hence has to be incorporated in any predictive analytical model.

In order to quantify the gas shift, we derive an analytical model for the gas flow around
the granular cluster. For the model we apply a horizontal cut through the centre of the
granular cluster that divides the bed into two regions: the cluster of dimensionless width
W* = W,/W and the bulk phase of dimensionless width (1 — W*), as shown in figure 2(c).
The gas that enters the bed is decomposed into two parallel flows through these two
regions. Gas is assumed to flow with a uniform dimensionless velocity U} = u./U and
U} = up/U through the cluster and bulk phase, respectively. Due to its low velocity, the
gas flow is assumed to be incompressible and the continuity equation reads

1= - WHU;} + WU 4.2)

Figures 2(a) and 2(b) show parallel and equally spaced streamlines below and above the
granular cluster, i.e. no horizontal pressure gradients exist in these regions. This implies
that the gas flow through the cluster is driven by the same vertical pressure drop as the
flow through the adjacent bulk phase. Ergun’s equation (Ergun 1952) is used to quantify
the pressure drop Ap across a height L of cluster or bulk phase particles

Api 150pug (1 — €;)? N 1.75ps 1 — € ,
—_— . us s
L d? € l d; e !

1

(4.3)

where index i = [b, c] denotes the bulk or cluster phase, respectively, and g, = vpg is
the dynamic gas viscosity. Equating Ap./L = App/L and rewriting the equation in a
non-dimensional form yields a correlation between U}, U}, d*, the void fraction € and the
Reynolds number of the bulk phase Re;, = Ud), /v, see Appendix B for the full derivation.
According to our computational simulations, € is very uniform in the bed (¢ ~ 0.4) for a
large range of d. and d), provided that the coefficients of friction of the bulk and cluster
particles are identical. Given these boundary conditions, we obtain

U\ Rey, [ . U"
O:(U;—dTCZ>+T<UZ—di), (4.4)

with k = 85.7(1 — €) ~ 51.42. When u; and p. differ substantially, the assumption of a
uniform void fraction € is no longer satisfied. This case is described in Appendix D. In the
following, only cases with identical coefficients of friction are considered. Combining
(4.2) and (4.4) allows us to determine U} and Uy as a function of Rep, d* and W*.
Figure 2(d) compares the values of U* along a horizontal line through the centre of a
cluster obtained by the Eulerian—Lagrangian simulation (solid lines) with the analytical
model (dashed lines). For both values of d*, the analytical model gives an accurate
quantitative prediction of the average gas velocity inside the granular cluster and the
bulk phase, although not all local effects (e.g. wall effects at |[x/W| = 0.5 or local
depletion/accumulation of gas flow in the bulk phase for 0.075 < |x/W| < 0.16 due to
the gas shift) are captured in the analytical model. Based on this finding, U} can be used
as a quantitative measure for the gas shift as U > 1 indicates an increased gas flow inside
the granular cluster compared with the inlet gas velocity U. Inversely, U’ < 1 denotes a
reduced gas flow in the cluster. A further evidence for the validity of the analytical gas
shift model is presented in figure 3(a) plotting U’ vs d*. Here, the predictions of the
gas shift model agree very well with the results of the Eulerian—Lagrangian simulations
(W* = 0.15). The analytical model further indicates that U} depends on the dimensionless
width of the cluster W*. An increase in W* yields higher values of U} for d* < 1 and lower
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Figure 3. (a) Gas shift (U}) occurring in granular clusters of particle size d* as predicted by (4.2) and (4.4)
for a series of widths W*. Triangles (A) represent the results of the Eulerian-Lagrangian simulations for U}
with W* = 0.15. (b) Neutral buoyancy limits predicted for granular clusters of varying W* (4.2), (4.4) and (5.2)
with Ap* = (pe — pg)(or — pg)~'. Both panels (a,b) use Re, = 88.75 and Arp, = 3.40 x 10°.

values for d* > 1. This is because, for a fixed W, an increasing width of the granular cluster
reduces the size of the bulk phase from which gas is withdrawn (d* > 1) or into which
additional gas is shifted (d* < 1): thus, U} — 1 for W* — 1. Inversely, U approaches a
finite value for W* — 0. This solution represents the maximal obtainable gas shift to/from
an infinitely small cluster for a given d* and Re,.

5. Derivation of the neutral buoyancy limit

As the analytical model is able to accurately predict the gas shift to/from the granular
cluster to the bulk phase, we address next the question of under which circumstances a
granular cluster rises or sinks. In our model we use two assumptions: first, the inlet gas
velocity U is set to the minimum fluidization velocity of the bulk particles Upy p, i.e.
the velocity of the gas flow required to induce a drag force that equals the weight of the
particles. Here, U,,r ; is determined from a force balance equating the pressure drop across
the packing (4.3) with the weight of the packing per cross-sectional area such that

Api  150p,v (1 —€)? 1.75p, 1 — €
— = Tg€—3Umf,i S U === pg, (5D
i 1

where i = [b, c] (Kunii & Levenspiel 1991). Rearranging the right-hand sides and
introducing the Reynolds number Re,r ; = d; Umf,iv_l and the Archimedes number Ar; =
&} (pi — pg) (pgv®) ™" yields

175, 150(1 —¢€)

o Conf i = Repy i = Ar;. (5.2)

Thus, for constant € and v, Reys , and Uy, are only functions of Ar, and dp. Applying
this assumption to the bulk particles (o, = 6000 kg m—3, d, = 1.16 mm, € = 0.4) and air
(pg=12kgm™3, v =1.5x 10> m? s7!) yields U = Uy = 1.13ms™".

Secondly, we assume that the rising/sinking of a cluster is driven by the degree
of fluidization of the cluster particles due to the gas flow. This assumption is based
on findings by Liu er al. (2010) and Li et al. (2017a,b, 2019) who have studied size
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separation in binary granular materials that have been subjected to combined vibration
and fluidizing gas flow. Their research revealed a competition between vibration-induced
size separation as well known from the Brazil nut effect (Rosato et al. 1987; Knight, Jaeger
& Nagel 1993; Huerta & Ruiz-Sudrez 2004) and its reverse (Hong, Quinn & Luding 2001;
Jenkins & Yoon 2002; Trujillo, Alam & Herrmann 2003; Breu et al. 2003; Shinbrot
2004; Alam, Trujillo & Herrmann 2006) and gas-flow-induced size separation due to
differences between the drag and gravitational forces acting on the particles. They found
that if the gas velocity U is close to or above the minimum fluidization velocity of a
granular material, size separation can be governed by gas flow effects even for strong
vibrational accelerations I" = A(2nf)?/g > 1. Under such boundary conditions, binary
granular materials segregate according to their Uy, values with the material of lower Uy,
segregating on top of the material with the higher U,,s. In our studies, we use I" = 0.4 and
U = Uy p, i.e. size separation is dominated by gas flow effects. Hence, we hypothesize
that a granular bubble rises if the gas flow through the granular bubble gives rise to a drag
force that is larger than the particle weight (u. > U,y ) and the granular droplet sinks for
uc < Upy c; a granular cluster is neutrally buoyant if u. = U,ys .. From the analytical gas
shift model we have u. = UU} and U, . can be calculated via (5.2). Although vibration
may reduce Uy, of granular particles for I" > 1 (Gupta & Mujumdar 1980; Mawatari,
Tatemoto & Noda 2003) and I" < 1 (McLaren et al. 2021), we assumed that vibration
does not affect appreciably the neutral buoyancy limit of the granular cluster because the
net drag that leads to the rise of a granular bubble is dominated by the effective gas flow.
Small fluctuations in the drag force due to vibration are expected to cancel out over a
full vibration cycle. However, the dynamics of a granular material in a vibro-gas-fluidized
bed might change once the vibrational acceleration exceeds gravity, i.e. for I" > 1. Hence,
to restrict the potential influence of vibration on the emergence of a granular cluster and
ensure validity of the previous assumptions, we limit the following derivation to I" < 1.

With these two assumptions at hand, the neutral buoyancy limit can be calculated as a
function of d*, W*, Rey, and Arp. Figure 3(b) plots the relative density difference

Ap* = (pe = pg) (o6 — pg) " (5.3)

required to establish a neutrally buoyant granular cluster of width W* as a function of
d* at constant U (later referred to as the ‘neutral buoyancy limit’). We observe that Ap*
decreases monotonically with increasing d*. For d* < 1, the density of the cluster particles
must be larger than the density of the bulk particles to achieve neutral buoyancy, and vice
versa for d* > 1. The monotonic behaviour is due to the particle size dependence of Uy ..
This dependence is depicted for W* = 1, i.e. the entire bed is filled with cluster particles
and no gas shift occurs (U} = 1). Here, a constant U leads to Ap* — oo (0) when d* — 0
(00). For W* < 1, the Ap*-curves increasingly flatten with decreasing W* due to the gas
shift to/from the granular cluster. As confirmed in Appendix C, the density of the cluster
particles must be equal to the density of the bulk particles to be neutrally buoyant for
W* — 0 (dashed line in figure 3b). To summarize, our model predicts a granular bubble
to rise if Ap™ is below the neutral buoyancy limit for any given Arp, Rep, W* and d*,
otherwise a granular droplet sinks.

6. Construction of a regime map

Using the present analytical model, we constructed a regime map that predicts the rising
or sinking of a granular bubble/droplet of a given size W* (figure 4). In order to test
the validity of the regime map, numerical simulations were performed to probe the
Ap*-d* space for a fixed cluster size of W* = 0.15, Re;, = 88.75 and Arp, = 3.40 x 10°.
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Figure 4. Regime map for a granular cluster with W* = 0.15, Re;, = 88.75 and Ar, = 3.40 x 10°. The solid
and dashed lines are the neutral buoyancy limits for W* = 0.15 and 0, respectively. The following regimes are
observed: sinking droplet (A, blue region), stagnant cone (V, purple region), rising finger (>, red region), rising
bubble (<, yellow region) and disintegrating bubble (¢, green region). Coloured symbols are the results of the
Eulerian-Lagrangian simulations. The grey filled symbols are results of the experiments listed in table 3. The
images show a snapshot of the transformation of an initially square-shaped cluster in the respective regime.

Examples of such simulations are depicted in the time series shown in the figures 35, 8, 9,
10 and 11. The occurring motion patterns of the different granular clusters simulated were
classified and marked in the regime map (figure 4). Five different regimes were identified:
rising bubbles, rising fingers, disintegrating bubbles, sinking droplets and stagnant cones.
The previous experimental study of McLaren et al. (2019) has identified only the rising
bubble and sinking droplet regimes. As can be seen in the regime map, the first four
regimes are in agreement with our neutral buoyancy model and their regime boundaries
coincide with the neutral buoyancy limit for W* = 0.15 and W* =0 (i.e. Ap* = 1).
Moreover, the experiments summarized in table 3 align with this regime map and agree
with the numerical findings. As can be seen in figure 4, the existence of all five regimes can
be confirmed by experiments. In the following, the characteristics of the different regimes
will be discussed.

6.1. Rising bubble regime

Rising bubbles occur if Ap* is below the neutral buoyancy limit of the cluster for d* > 1
or below Ap* =1 for d* < 1 (<, yellow region in figure 4). In this region, the cluster
particles form a bubble that rises through the bulk phase to the top of the bed, as seen in
figure 5. Rising granular bubbles form when the gas velocity in the bubble exceeds the
minimum fluidization velocity of the cluster particles and an effective drag pushes the
cluster particles upwards.

As can be seen in figure 6(b), the cluster particles within a granular bubble exhibit
a circulation flow that resembles vortex structures found in fluid bubbles rising in a
denser fluid (Hill & Henrici 1894; Hadamard 1911; Rybczynski 1911; Batchelor 2000).
Particles from the centre of the bubble move towards its roof, whereas particles close
to the side boundaries of the bubble move towards its bottom. At the bubble wake,
individual particles detach, forming a tail. The existence of such an internal circulation
pattern in granular bubbles points to a fluid-like state of granular matter in and around
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Figure 5. Time series of a rising bubble as obtained by («) simulations and (b) experiments (table 3 A). Both
rows show a cluster with d* = 2 and Ap* = 0.9. Time steps of the images are Ar = 0.5 s for simulations and
1 s for experiments.
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Figure 6. Motion of the cluster particles within a rising granular bubble for Ap* = 0.9 (a), 0.8 (b) and 0.4
(c). Trajectories of 100 particles are shown in a reference frame moving with the centre of mass of the bubble.
The colour grading of the trajectories corresponds to the progressing time with dark violet for a bubble at
t(y/H = 0.4) and bright yellow at #(y/H = 0.8). The background shows the location of the cluster particles
(grey) when the top of the bubble has reached the height y/H = 0.8 in the bed. All results were obtained from
simulations with W* = 0.15, Rej, = 88.75, Arj, = 3.40 x 10° and d* = 1.25.

the bubble. A comparison of the panels of figure 6 reveals that the shape of the bubble
and the circulation pattern therein depend on Ap*. For small values of Ap* far away
from the neutral buoyancy limit, e.g. Ap* = 0.4 in (c), the bubble is spherical cap-shaped
and exhibits a pronounced circulation flow. Increasing Ap* to 0.8 (figure 6b) yields a
spherical bubble and a circulation pattern which has striking similarities to Hill’s spherical
vortex (Hill & Henrici 1894). Increasing Ap* further towards the neutral buoyancy limit
leads to elongated bubbles with an attenuated inner circulation pattern and a pronounced
tail, as can be seen in figure 6(a) and figure 7. This observation raises the question
of why a tail is only formed for certain types of granular bubbles. To answer this, we
have analysed the number of particles Np,; that are found in the tail after a bubble
has reached a height of y/H = 0.8 for various combinations of d* and Ap*. Following
Nitsche & Batchelor (1997), who have studied the break-up of a falling drop containing
suspended particles in a liquid, all particles within a vertical distance of 1.5W, below
the topmost cluster particle are considered to be in the bubble. All other particles are
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Figure 7. Emergence of a particle tail in the wake of a rising granular bubble. Panels (a—d) show granular
bubbles as a function of Ap* with d* = 1.25, when their roof has reached y/H = 0.8. In analogy to Nitsche &
Batchelor (1997), all particles within a vertical distance of 1.5W, from the topmost particle are considered to be
part of the bubble (blue), otherwise the particles are considered to be part of the tail (grey). (¢) The number of
particles found in the tail N7 normalized by the number of particles initialized in the bubble N. The value of
Nr,i1/N depends on d* and Ap™*. All points are obtained from numerical simulations of bubbles at y/H = 0.8.
The lines are fitted power functions and only guidelines to the eyes. (f) Dependence of the normalized, effective

drag of a cluster particle Aa/g on Ap* for varying d*. Aa/g = (|[Fq.c| —mg)/(mg) =1 — (U/U,,,f,C)2 for
constant € and U = Uy, with Uy . calculated from (5.2).

regarded as part of the tail. Figure 7(a—d) shows the division of cluster particles into
bubble and tail particles for granular bubbles using d* = 1.25 and Ap* = 0.4, 0.7, 0.85,
and 0.93, respectively. Again, the size of the tail increases for increasing Ap*. Figure 7(e)
displays the ratio of Ny, to the total number of cluster particles N as a function of
d* and Ap*. It can be seen that, for d* > 1, Ny,;;/N is close to zero for small values
of Ap*. Once Ap* exceeds a certain threshold, the number of particles in the tail
increases significantly with increasing cluster particle density. This threshold decreases
monotonically from 0.8 for &* = 1.25 to 0.4 for d* = 2. Only for d* = 2.75 the threshold
seems to be increasing again. For clusters with d* < 1 no significant tail is formed at all
and N;1/N is (close to) zero. A possible explanation for the onset of tailing can be found
when inspecting the effective drag acting on the cluster particles. According to Li et al.
(2017a), the effective acceleration on a particle in a vibro-gas-fluidized system can be
expressed as Aa/g = (|Fg.c| —mg)/(mg) =1 — (U/Umf,c)2 provided € is constant and
drag dominates vibration in particle segregation. Imagine a single particle detaches from
a granular bubble, leaves the zone of preferential gas flow and disperses in the bulk phase.
This particle is only able to rise if the drag on it exceeds gravity, i.e. Aa/g > 0, otherwise
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Figure 8. Time series of a rising finger. (a) Euler-Lagrange simulation of a cluster with d* = 1.75,
Ap* = 0.9 and Ar = 2 s. (b) Experiment (table 3 G) with d* = 1.8, Ap* = 0.9 and Ar = 8§ s.

()

it would stay in the tail. Hence the particle would rise if the local superficial gas velocity
u exceeds the minimum fluidization velocity U, .. Since the detached cluster particle is
surrounded by bulk particles only, u will be close to the inlet velocity of the fluidized bed
U. Using this information, one can readily plot the effective drag for various diameters d*
(figure 7 f). Indeed, the roots of Aa/g = 0 (for a given d*) predict well the thresholds for
tailing found in figure 7(e). However, simulations with d* = 2.75 fall outside this trend.
This could be explained by the fact that the cluster particles are fairly large compared with
the bulk particles and distort the local packing structure changing in turn the gas flow field.
Despite the similarities of a granular bubble with sedimenting particle droplets (Nitsche
& Batchelor 1997), a mathematical relation for the rate of particles leaving the bubble has
not yet been found.

6.2. Rising finger regime

The strong tailing of a granular cluster as Ap* approaches the neutral buoyancy limit
leads to a change in the motion behaviour of the cluster. Instead of rising as a coherent,
spherical collective, the cluster forms an elongated and thinning stream of particles rising
in the bulk phase. This change in the motion dynamics indicates the existence of a distinct
regime, here referred to as rising fingers. Rising fingers occur for clusters with d* > 1
and Ap™ between the neutral buoyancy limit and Ap* = 1 (>, red region in figure 4). An
example for a rising finger is given in figure 8. The finger is thickest for Ap* close to the
neutral buoyancy limit (W* = 0.15) and becomes thinner as Ap* approaches unity. The
motion of a granular finger is described in two stages: at first, the rising finger elongates
quickly, where the lower part of the finger is almost stagnant and only the top part is
moving upwards. As the finger becomes thinner, the rise speed of the top part of the finger
decays until it almost stops rising. Rising granular fingers seldom reach the top surface
of the fluidized bed. Analysis of the gas flow within a rising finger reveals that the initial
elongation of a rising finger is driven by an increased gas flow inside the granular finger.
After a strong elongation and thinning of the finger, the cluster particles are then propelled
by small gas bubbles that form in the top part of the finger. Our analytical model helps
explain the emergence of rising fingers: if Ap* is larger than the neutral buoyancy limit,
uc is insufficient to levitate the entire granular cluster. However, decreasing the cluster
width increases the gas velocity inside the finger (see figure 3a) such that the cluster
particles experience a positive effective drag. Thus, the rising finger is stabilized by its
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Figure 9. Time series of a disintegrating bubble. () Euler-Lagrange simulation of a cluster with d* = 0.5,
Ap* = 1.1 and Ar=2.4s. (b) Experiment (table 3 H) with d* = 0.38, Ap™ = 1.11 and Ar = 65s. In the
experiment, cluster particles are dark grey, bulk particles are light grey, whereas emerging gas bubbles are
black.

decreasing thickness. During elongation, the width of the finger decreases until the cluster
particles stop behaving as a coherent cluster due to their immersion into the bulk phase. As
there is still an increased permeability of the packing due to the larger cluster particles, gas
flows preferentially along this thin tail forming small gas bubbles at the top of the finger
as u strongly exceeds Uy, in this region.

6.3. Disintegrating bubble regime

In contrast to the self-stabilized rising fingers, disintegrating bubbles form for d* < 1 and
Ap* between unity and the neutral buoyancy limit (¢, green region in figure 4). Here,
the cluster can rise as a coherent granular bubble, but particle fluctuations and emerging
gas bubbles during its rise induce its disintegration as seen in figure 9. According to our
model, the granular bubble particles rise because Ap* is below the neutral buoyancy limit.
However, the low U,y . of the cluster particles combined with the low permeability (d* <
1) of the cluster makes this granular bubble an unstable configuration. In the case that
a small void is created in the granular cluster due to the vibrations, gas suddenly flows
into this highly permeable region of the cluster and increases the gas velocity. The gas
flow inflates the size of the void and pushes the cluster particles upwards into the bulk
phase. Repetitions of this process lead to a disintegrating bubble. If the cluster particles
are sufficiently small compared with the bulk particles, they disperse in the surrounding
bulk phase filling the interstitial voids, as seen in figure 9(b).

6.4. Sinking droplet regime

For values of Ap* significantly larger than unity, a granular droplet sinks (A, blue region
in figure 4), as the cluster particles are too heavy to be carried up by the drag exerted
by the gas flow. During its descent, the sinking droplet flattens and performs ultimately
a binary split (figure 10). The splitting of such a granular droplet is not caused by the
cluster’s proximity to the bottom of the fluidized bed, but is a property that also exists for
larger distances to the confining walls. McLaren et al. (2019) discovered the splitting of
these droplets and a detailed analysis on the mechanism behind the droplet splitting can
be found in Metzger et al. (2022).
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Figure 10. Time series of a sinking droplet. (a) Euler-Lagrange simulation of a cluster with d* = 0.75,
Ap* =2.38 and Ar = 1 s. (b) Experiment (table 3 J) with d* = 0.72, Ap* = 2.42 and At =2 s.
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Figure 11. Time series of a stagnant cone. (a) Euler—Lagrange simulation of a cluster with d* = 1.75,
Ap* = 1.2 and Ar = 4 s. (b) Experiment (table 3 F) with d* = 1.57, Ap™ = 1.16 and At = 60 s.

6.5. Stagnant cone regime

Although the analytical model predicts that all droplets with d* > 1 and Ap* > 1 sink,
there is a region for Ap™ > 1 and d* > 1, where droplets become stagnant and develop a
conical shape, termed the stagnant cone (V, purple region in figure 4). The lower limit of
the stagnant cone regime is at Ap™ = 1 and the upper limit increases with increasing d*.
As the stagnant cone particles are too heavy to be neutrally buoyant (Ap™ > 1), the cluster
acts as an additional load and inhibits fluidization of the bulk particles underneath the
cluster. However, the net gravitational force of the cluster cannot overcome the interparticle
friction in this unfluidized bulk region and thus the cluster remains stagnant. The formation
of a cone (figure 11) can be explained by small fluctuations in the local gas velocity due to
bed vibration. These fluctuations lead to a temporary fluidization of the cluster particles at
the top of the cluster, such that they rearrange to an incipient granular finger. However, the
fluctuations cannot maintain fluidization conditions for an extended duration of time, i.e.
the cluster particles rest on top of the granular cluster. For Ap* — 1, the cone sharpens
further until it finally merges into a rising finger for Ap* = 1.
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6.6. Further considerations

We have performed additional numerical Eulerian—Lagrangian simulations in which we
varied the cluster width and were able to confirm the validity of the neutral buoyancy limit
for a series of W* = [0.1, 0.15, 0.3, 0.4]. However, the derivation of our model requires
d./W, < 1to allow for enough particles in the granular cluster to justify the use of Ergun’s
equation (Ergun 1952). Also, our model is most accurate for 0.4 < d* < 2.5, as outside
these limits small particles percolate into the interstitial voids of the larger particles and
change the permeability of the cluster packing.

7. Conclusion

We have investigated the physics controlling the motion of a granular cluster in a
pseudo-two-dimensional vibro-gas-fluidized bed. A granular cluster is an agglomeration
of granular particles of certain size and density that is submersed in a bulk of particles
with different particle size and/or density. When fluidized by combining vibration and
gas flow, the granular cluster either rises coherently to the freeboard of the bed (granular
bubble) or sinks to the bottom of the bed (granular droplet) depending on the relative size
and relative density of the cluster particles and the bulk particles (McLaren et al. 2019).
This work investigated the transition between rising granular bubbles and sinking granular
droplets and identified the conditions required to form neutrally buoyant granular clusters.
Eulerian-Lagrangian simulations revealed the existence of a gas flow heterogeneity in the
proximity of a granular cluster, where gas flows preferentially through regions of larger
particles due to their increased permeability. This shift in the gas flow pattern (into or
out of the granular cluster) affects locally the degree of fluidization of the particles in
and around the cluster and in turn significantly influences the motion of the granular
cluster itself. Based on a dimensionless gas shift model, we proposed an analytical model
predicting the neutral buoyancy limit of a granular cluster assuming that under this
condition the local gas velocity matches the minimum fluidization velocity Uy . of the
cluster particles. If the gas velocity is higher or lower than Uy ¢, the cluster rises or sinks,
respectively. Finally, a dimensionless regime map was compiled and tested against both
extensive Eulerian-Lagrangian simulations and experiments. This regime map correctly
predicts the regimes of rising bubbles and sinking droplets and revealed three distinct,
previously unreported, regimes in the transition region: rising fingers, disintegrating
bubbles and stagnant cones.
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Appendix A. Model equations implemented in the CFD-DEM

DEM was proposed initially by Cundall & Strack (1979) and uses a Lagrangian description
of the particle phase. The trajectories of the individual particles are determined by the
action of interparticle contact forces F j, torques M j, gravity g and the drag force Fy;
exerted by the fluid flow around the particles (Tsuji, Kawaguchi & Tanaka 1993; Zhou
et al. 2010). Momentum equations for the translational and rotational motion were solved
for each particle j of mass m; and diameter d; viz.

d2x;
mdezj =F.;j+Fy;+mg, (A1)
10" g = Med- (A2)

Here, x; denotes the position and w; the angular velocity of the particle. Details on the
implemented contact laws for F.; and M. ; are described by Kloss er al. (2012). The
gas flow (CFD, Eulerian description) was modelled by an incompressible, two-phase
formulation of the Navier—Stokes equations including a term R to capture the momentum
exchange between the gas phase and the suspended particles (Zhou ef al. 2010)

de

o, TV ew =0, (A3)
9 A% R
(€u) + V- (cun) = —e 2 eVt €g, (Ad)
ot Pg Py

where u is the gas velocity, p is the gas pressure, o, is the gas density, v is the viscosity and
€ is the local void fraction. Here, € was determined from the positions of the particles using
the ‘divided void fraction model’ implemented in cfdemCoupling® (Kloss et al. 2012).
The momentum exchange R between the fluid and the particles inside a finite volume
element AV was calculated as
> F d.j
R = Lj. (A5)
AV

Here, the drag force F;; was described by the Koch—Hill model (Koch & Hill 2001; van

Buijtenen et al. 2011) as implemented in cfdemCoupling® using the following relations:

T
Faj= 2d'Biu—up)), (A6)
18vp,e€
B = —5F. (A7)
d?
J
F=e (Fo n %F3Rep> , (A8)

€ 135
1+3 > + aep In (ep) + 16.14¢,

. ife, <04
Fo=1" 1+068lc,—848¢2+8.163 ~ = " (A9)
10¢, .
- ife, > 0.4
0.0232
F3 = 0.0673 4 0.212¢, + , (A10)

e
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with u,, ; the velocity of particle j. The local particle volume fraction €, was calculated
as 1 =¢,+e€ and the particle-based Reynolds number Re, is defined as Re, =
dielu —uy j|/v.

Appendix B. Derivation of the gas shift model

The continuity equation of an incompressible gas flow of constant flow rate Q = UWT
that splits into two parallel flows is given by

Q/T =UW = (1 — Woup + Weuc. (B1)
Division by UW and introduction of U} = u./U, U} = up/U and W* = W./W yields
1= (1 — WHU; + W*U*, (B2)

The pressure drop of a flow through a packing of height L is given by (Ergun 1952)
Api  150p, (1 —€)* N 1.75p, 1 — € »

= 1 79
L dl.2 ef d; e !

1

(B3)

where index i = [b, c] denotes the bulk phase and the cluster phase (i.e. granular
droplet/bubble), respectively, and g = vp, represents the dynamic gas viscosity. As
App/L = Ap./L and €, = €, = €, equating the pressure drop relations of the bulk and
the cluster phase yields

Ue 1.75d}, .
0=1{u — + uy — —— 1. (B4)
(dc/dp)? 150(1 — e)v dc/dp
Now, we substitute Uy = u./U, Uy = up/U,d* = d./dp, k = 150(1 — €)/1.75 and Re}, =
Udy /v to form dimensionless groups giving

2
U* Rey, > U*
0=<@_E§)+7_Q¢_c;>. (BS)

The combination of (B2) and (B5) determines the values of U} and U for given d*, W*
and Rey,.

Appendix C. Proof that Ap* = 1 for W* — 0

The starting point of the neutral buoyancy limit for an infinitely small cluster (W* — 0)
is the determination of the gas shift in/around the granular bubble/droplet. The continuity
equation reads U;; = 1 and the pressure relation yields

2
B U Rey, U:
0_<1_d7)+7<1_? . (1)

This expression is a quadratic equation that is solved for U} with the positive solution

U* = — (2kRepd*) " + \/ (2k Repd*) ™% + d* (k Rep) ™" + d*. (€2)

c

Next, the minimum fluidization velocity of each particle type is determined by (Kunii &
Levenspiel 1991)

LTS (dilpi\* 1500 =€) (dilni\ _ i (oi = po)g
€3 v €3 v N pgv?

: (C3)
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Figure 12. Influence of the coefficient of friction of the cluster particles . on the evolution of a granular
cluster with d* =1 and Ap* = 1. Panels (a,c,e) show the value of U* (red solid line) and €/{(¢p) (blue
dashed line) along a horizontal line through the centre of a granular cluster with w, =0, 0.15 and 1,
respectively. The black dotted lines represent the edges of the cluster at |x/W| = W* /2. Panels (b,d, f) show the
respectively forming granular clusters (dark grey), immersed in the bulk (light grey particles), after r = 8 s of
vibro-gas-fluidization. The red rectangle marks the initial position of the granular cluster at = 0 s. All results
were obtained from simulations with Rep, = 88.75, Arp, = 3.4 x 10° and pup, = 0.15.

where we define Ar; = d3 (p; — pg)g/(pgv?), Rej = diUpyi/v and i = [b, c], i.e.

1.75 150(1 —
—Re} + d-o

c i 63 Re,- = Ar,-. (C4)

For i = c, this equation yields, by substituting Re, = Red* U},

1.75 150(1 —¢)

5 ke (@Ur)’ + 5 Repd" U7 = Are. (C5)

Next, the definition of k is inserted into (C2) and the result is then substituted into (C5).
Simplifying the expression results in

S[175 5, 150(1 —€)
d* |: 63 Reb—l- 63

Reb] = Ar,. (C6)

The bracketed term in (C6) can be replaced by Arp, yielding

d* Ary = Ar,. (C7)
Finally, re-substitution of the Ar; definition and defining the relative density ratio to be
Apt =Pl (C8)
Pb — Pg
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Figure 13. Effect of the coefficient of restitution e of the particles on the evolution of a granular bubble with
d* = 1.5 and Ap* = 0.417. The coefficient of restitution increases from 0.1 (a) to 0.95 (d). Each column
shows a snapshot of the granular bubble at the indicated time 7 after starting the vibro-gas-fluidization. Cluster
particles are white, bulk particles are black. All results were obtained from simulations with Re, = 88.75,
Arp = 3.4 x 10° and pup, = 0.15.

leads to

Pb— Pg = Pc — Pg <> Ap* = 1. (C9)

Appendix D. Effect of particle friction on the gas shift

Deriving (4.4), we assumed a constant local void fraction of € & 0.4 for both the granular
cluster and its surrounding bulk. For spherical particles of comparable particle size
distribution this is only fulfilled if the cluster particles and the bulk particles have similar
coefficients of friction. Once the coefficient of friction of the cluster particles . differs
significantly from the coefficient of friction of the bulk particles up, both particle types
create packings of different void fraction. According to Ergun’s equation (Ergun 1952),
this leads to changes in the local permeability and influences the gas shift. To demonstrate
the effect of void fraction on the dynamics of a granular cluster, additional simulation with
d* = 1 and Ap* = 1 have been performed only changing the coefficient of friction of the
cluster particles . from O to 1 while ©; was held constant at 0.15. This approach allowed
us to initialize clusters of varying cluster void fraction €.. Except for the coefficient of
friction, the cluster and bulk particles were identical. As can be seen in figure 12(e), the
local void fraction €. in the cluster is higher than the average void fraction of the bulk
phase (€p), i.e. €./ (€p) = 1.15, for p, = 1. On the other hand, for u,. = 0, €. /(€p) = 0.91,
see figure 12(a). Due to these disturbances in the local void fraction, the fluidizing gas
flows preferentially into the cluster (U} > 1) for p. = 1 and around the cluster (U} < 1)
for u. = 0. As expected, for . = 0.15, no gas channelling occurs, see figure 12(c). The
local increase/depletion of gas flow in the cluster leads to a condition in which the cluster
particles are exposed to a gas velocity above/below Up,r . and thus rise/sink, respectively.
Accordingly, the granular cluster stretches and rises for pu. = 1, flattens and sinks for
e = 0, and does not deform significantly for . = 0.15, as can be seen in figure 12(b,d, f).
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This finding supports our argument of neutral buoyancy for clusters that fulfil the condition
uc = Upy c. In addition, we see that the assumption of homogeneous void fraction is only
fulfilled for beds containing particles of equal coefficients of friction. As the majority of
our study was performed with . = up = 0.15, the effect of particle friction on the void
fraction was neglected, justifying the simplification made in (4.4).

Appendix E. Effect of the coefficient of restitution on the motion of a granular bubble

Additional simulations have been performed to evaluate the effect of the coefficient of
restitution e on the rise behaviour of a granular bubble. Varying e in a wide range from 0.1
to 0.95, we found only negligible influence of the value of e on the evolution of a granular
bubble, as can be seen in figure 13. With increasing e, the rise of a granular bubble starts
earlier, e.g. for e = 0.95 (d) the motion sets in before t = 1.5 s, whereas for e = 0.1 (a)
no significant motion can be seen until # = 3 s. This is because the duration of the start-up
phase until the entire bed is mobilized by vibration increases for decreasing e due to an
increased rate of energy dissipation. However, the time required for the granular bubble to
reach the top of the bed does not change significantly with e. Moreover, the shape of the
rising bubble is hardly influenced by the value of e, as can be seen in figure 13. Thus, the
use of a comparatively low value e = 0.3 to speed up the simulations is justifiable.
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