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Interactions between nutrition and the intestinal microflora 
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The human gut is well colonized by a wide variety of bacteria. In the industrial nations, 
the stomach and small intestine have a sparse flora protected by gastric acid and a highly 
propulsive motility. The flora of the small intestine increases along its length and 
particularly in the terminal ileum (Drasar & Hill, 1974). The large intestine has a very 
rich, mainly anaerobic, flora capable of fermenting carbohydrate and protein, and 
metabolizing a wide and diverse range of endogenous and exogenous molecules such as 
bile acids, fats and drugs. In the less-developed countries the small intestine has heavier 
populations of bacteria and these may be a factor in the higher occurrence of diarrhoea 
and malnutrition (Gorbach et al. 1970; Gracey, 1979). 

The interactions between nutrition and the intestinal microflora are complex. Bacteria 
in the gut may affect digestion and absorption, the products of bacterial fermentation 
may provide nutrients or affect the well-being of the host, but diet may also affect the 
survival and metabolism of the bacteria. The products of bacterial metabolism may be 
beneficial, for example butyrate which may have anti-neoplastic properties (Augeron & 
Laboisse, 1984), or they may be potentially harmful, for example bile acid metabolites 
which may be co-carcinogenic (Owen et af. 1987). The interaction between the intestinal 
microflora and nutrition begins at birth and changes with age and disease. 

NEONATAL MICROFLORA AND NUTRITION 

At birth a baby encounters bacteria for the first time and quickly develops a commensal 
microflora on its skin and along its gastrointestinal tract. The factors which determine the 
initial colonization are not fully understood but must relate to environment, including 
the birth canal, and to diet. The faecal microflora of babies fed exclusively on mother’s 
breast milk differs in many ways from that of babies fed on formula milk derived from 
cow’s milk. The faecal flora of a breast-fed baby is more likely to have bifidobacteria and 
lactobacilli as the predominant organisms with lower amounts of Enterobacteriaceae and 
few bacteroides species (Bullen et al. 1977; Balmer & Wharton, 1989~). The bottle-fed 
baby has a faecal flora which resembles the adult more closely, with more Enterobac- 
teriaceae and streptococci and more bacteroides species. This difference is not always 
seen, however. Simhon et af. (1982) could find no difference in the microflora of 
breast-fed and bottle-fed babies in a study in London and suggested that this may be due 
to a difference in the obstetric practice resulting in different environmental factors which 
influence initial colonization. The difference between microflora of breast-fed and 
formula-fed babies is reflected in the profile of bacterial fermentation products in 
faeces, with a lower faecal pH (Bullen et af. 1977) and a more predominant aceticflactic 
acid-type fermentation in breast-fed compared with formula-fed babies (Bullen ef af .  
1977; C. A. Edwards, S. F. Balmer, A. P. Parrett & B. A. Wharton, unpublished 
results). 

The dietary factors which may influence the different colonization of the gut of 
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breast-fed and formula-fed infants are numerous. They include the buffering capacity, 
the caseidwhey and phosphate content, and the concentrations of oligosaccharides, 
bifidus factor, human proteins such as secretory IgA and lactoferrin, and other 
micronutrients such as Fe and nucleotides. The exact role of each of these factors is 
difficult to study in isolation in vivo but modern formulas now mimic human milk in 
many ways with very little real change in the faecal flora. Balmer & Wharton (1989a,b) 
and Balmer et al. (1989) have carried out several studies looking at the effect of dietary 
factors in formula milk on the faecal flora and found that whey-protein-predominant 
formula produced a higher prevalence of bifidobacteria and less bacteroides species than 
casein-predominant formula. The role of the Fe content of milk and the role of 
lactoferrin was less clear. Human milk contains less Fe than formula milks but it is more 
efficiently absorbed. Fe which remains in the gut is available for the growth of potential 
pathogens. Much of the free Fe in the gut of the breast-fed baby is probably bound to 
lactoferrin and is unavailable for bacteria. Bifidobacteria and lactobacilli do not need 
significant amounts of Fe for growth (Archibald, 1983). However, although whey 
formula without Fe reduced levels of enterococci and clostridia (Balmer & Wharton, 
1991), the faeces of babies fed on low-Fe formula was more dissimilar to those of 
breast-fed babies than those of babies fed on a whey formula with Fe (Mevissen-Verhage 
et al. 1985; Balmer & Wharton, 1991). The nucleotides in human milk may affect the gut 
microflora either indirectly by increasing Fe absorption in the small intestine (Faelli & 
Esposito, 1970; McMillan et al. 1977) or by stimulating the growth of bifidobacteria. 
Addition of a selection of nucleotides to in vitro cultures increased the growth of 
bifidobacteria and when added to infant formula have produced a faecal flora more 
similar to that of a group of breast-fed babies (Gil et al. 1986). Other dietary factors such 
as the concentrations of IgA or oligosaccharides have not yet been investigated in much 
detail. The differences in faecal flora must relate to a whole range of dietary differences 
between human and formula milk and not to a single element. However, they do indicate 
the importance of diet in the establishment of the gut microflora and are related to a 
difference in the gastrointestinal infection rate in babies. Howie et al. (1990), showed 
that breast-fed babies had a lower incidence of gastrointestinal infections than formula- 
fed babies even after compounding factors such as social class had been accounted for. 

In addition, the colonic microflora may also be important in salvaging unabsorbed 
carbohydrate and in cycling N in the neonate. Premature babies may have insufficient 
lactase (EC 3.2.1.108) in the small intestine and, thus, significant amounts of unabsorbed 
sugar enter the colon. This sugar is fermented by the colonic microflora to short-chain 
fatty acids (SCFA) and Hz, which are absorbed, preventing osmotic diarrhoea and 
conserving energy (MacLean & Fink, 1980; Mobassaleh et al. 1985; Kien et al. 1987). 
Protein digestion by the colonic bacteria and absorption of N may also occur in the colon 
of neonates (Heine et al. 1987). This dependence on the colonic microflora for nutrient 
absorption indicates a need to consider the effects of antibiotics on nutrition in small 
babies (Bhatia et al. 1986). 

Little is known of the factors which affect the changes in the microflora during 
weaning. The flora develops towards the adult flora, the bacteria becoming more 
numerous and the ecosystem more complex with a greater predominance of Escherichia 
coli, streptococci, clostridia and bacteroides species (Bullen et al. 1976). Studies in rats 
have suggested that the exposure of the microflora to a particular substrate at weaning 
may determine the response to that substrate in adult life (Armstrong et al. 1992). This 
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study in rats looked at complex carbohydrates but the same could be true for other 
dietary components and endogenous secretions. 

ADULT MICROFLORA AND NUTRITION 

The normal adult microflora and its fermentation pathways and patterns have been 
described elsewhere in this symposium. In the present paper I have concentrated on the 
consequences of the bacterial activity and how this relates to nutrition. 

Effect of diet on bacteria 

Bacteria in the human colon vary substantially from person to person both in the species 
present and in their fermentation capacity and product profile. The capacity of a person’s 
microflora to ferment different carbohydrates depends on past diet and the species of 
bacteria present. The faecal flora of adults is remarkably stable, with many studies 
looking at the effect of dietary change on the bacterial populations showing no real effect 
(Bornside, 1978; Hill, 1981). As some dietary fibres increase stool output and colonic 
content turnover, they increase bacterial turnover and populations. Indeed, for some 
fibres this increased bulk of bacterial cells is the major component of the increase in stool 
weight (Stephen & Cummings, 1980). The colonic fermentation capacity, rate of 
fermentation and range of SCFA and gaseous products are also altered by feeding 
fermentable carbohydrates. In vitro cultures of human faeces supplemented with starch, 
wheat bran and oat fibre produced substantial amounts of butyrate whereas arabino- 
glucan, ispaghula, guar gum and starch produced large proportions of propionate 
(Englyst et al. 1987; McBurney & Thompson, 1987; Adiotomre et al. 1990; Edwards et al. 
1992a,b; Weaver et al. 1992). These patterns were also demonstrated in the faeces of rats 
and other animals fed on similar fibres (Mallett et al. 1988; Topping et al. 1988; Goodlad 
& Mathers, 1990; Edwards & Eastwood, 1992). 

The polysaccharidase enzymes required for the breakdown of some carbohydrates are 
subject to dietary regulation; their activity is induced by exposure to the substrate and 
expression may be repressed by products of the fermentation reaction (Salyers & Leedle, 
1983). Florent et al. (1985) intubated the caecum of human volunteers and fed them on 
lactulose for 1 week. They found that the pH of the colon was reduced and the pattern of 
fermentation was changed at the end of the week, with a more rapid degradation of 
lactulose, a faster accumulation and clearance of intermediates and decreased HZ 
production. Other researchers report increased capacity to ferment fibres after ingestion 
for 1 week (Read & Eastwood, 1992) and studies in rats indicate at least 4 weeks of 
feeding is necessary before full fermentation capacity is achieved (Walter et al. 1986). 

Nutritional consequences of colonic fermentation 

The major consequences of carbohydrate fermentation in the colon are the loss of 
water-holding capacity (WHC) of certain fermentable dietary fibres, production of 
SCFA and gases, decreased pH, release of bound molecules from dietary fibre, 
production of bacterial cells and, hence, changes in the expression of other bacterial 
enzymes that have important physiological implications. 

The most obvious effect of colonic bacteria on a food is the fermentation of dietary 
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fibre and resistant starch. The impact of bacterial fermentation on the physiological 
effects of these can be seen when fermentable substrates are eaten by people taking 
antibiotics. Kurpad & Shetty (1986) showed that fibre had a much greater effect on stool 
output when subjects were also taking antimicrobial agents. The capacity of individuals 
to ingest lactulose without an increase in stool output was also decreased by ampicillin 
(Rao et al. 1988). The WHC of a dietary fibre is an important factor in its effect on stool 
output. However, many dietary fibres with high WHC have very little effect on stool 
output. This is because of bacterial degradation of the fibre in the colon. The 
post-fermentation WHC (measured in vitro) is the best indicator of action on stool 
output (McBurney et al. 1985). 

An increase in stool output has several nutritional implications. Increased faecal mass 
includes an increased loss of N, energy, water and electrolytes. There may be an 
increased loss of bile acid metabolites and other potential toxins which may decrease the 
risk of mucosal damage and alter the bile acid pool. 

The SCFA produced during carbohydrate fermentation also have several possible 
nutritional actions. They are rapidly absorbed by the colonic mucosa promoting water 
and Na absorption (Ruppin et al. 1980) and preventing osmotic diarrhoea in situations of 
small intestinal malabsorption of sugars. The colonic mucosa may use the SCFA as a 
preferential energy source, especially butyrate (Roediger, 1982). Very little butyrate is 
seen in the blood draining from the large intestine and propionate is metabolized in the 
liver, leaving acetate as the only SCFA to be seen in the systemic blood under normal 
conditions (Cummings el al. 1987). The SCFA may also have several other effects in the 
colonic lumen. SCFA in the colonic lumen may increase cellular proliferation of the 
colonic epithelia (Sakata, 1987) and may increase proliferation of the mucosa of the 
small intestine by a blood-borne factor (Sakata, 1989). Butyrate has been shown to 
stimulate differentiation of cancer cell lines (Augeron & Laboisse, 1984). SCFA in the 
lumen may also have effects on colonic motility but their exact role on propulsive or 
segmenting contractile activity is unclear. In isolated rat colon muscle strips propionic 
and butyric acid stimulated contraction (Yajima, 1985), whereas in an isolated rat 
caecalkolon model a mixture of SCFA decreased overall colonic motor activity (Squires 
et al. 1992). SCFA have also been shown to dilate arterial capillaries and may, thus, 
affect blood flow and absorption rate from the colon (Mortensen et al. 1990). 

Propionic acid is reported to have an influence, in the liver, on gluconeogenesis and 
cholesterol synthesis (Anderson & Bridges, 1984; Chen et al. 1984) but the concen- 
trations necessary for these actions may not be achieved in vivo under normal conditions 
(Illman et al. 1988). The metabolism of SCFA by the tissues may represent a significant 
component of the daily energy intake up to 7% (Cummings, 1981) and the energy value 
of fermentable dietary fibre may be from 0 to 17 kJ/g (0 to 4 kcaYg) depending on the 
calculation method (Wisker & Feldheim, 1992). The energy gained by utilization of 
SCFA may, in some part, be offset by the increased faecal losses that often occur with 
the intake of these dietary fibre sources (Wisker & Feldheim, 1990). 

The fermentation of dietary fibre sources by bacteria may also release sequestered 
molecules such as Ca and bile acids and these may then be available for absorption, in 
some cases after further bacterial metabolism. Bacteria deconjugate and dehydroxylate 
bile acids altering the composition and properties of the bile acid pool and also producing 
possible colonic cancer promoters. Bile acid metabolites and bacterially hydroxylated 
fatty acids may cause secretion (Mekhijian et al. 1971) and stimulate colonic motility 
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(Kirwan et af. 1975; Spiller et af. 1986). SCFA are potent inhibitors of pathogenic 
bacteria (Fay & Faires, 1975) along with deconjugated bile acids (Floch et af. 1972) and 
so the commensal bacteria help to prevent gastrointestinal infection. 

It is generally believed that on a mixed diet most fermentation takes place in the 
proximal colon of man but experiments in rats suggest that some non-starch poly- 
saccharides, such as xanthan and karaya, which are slowly fermented may spread the 
production of SCFA into the more distal colon where they may have less effect on 
colonic cellular proliferation (Edwards et af. 1992a,b) but may promote an increase in 
faecal water excretion (Edwards et al. 1990). Some fibres such as wheat bran, which were 
shown to produce significant amounts of butyrate in vitro, may be fermented mainly in 
the proximal colon so that butyrate in the distal colon, where cancer and colitic disease is 
more common, is unaffected (Edwards & Eastwood, 1992). Other fibres such as 
ispaghula, which are more often associated with propionic acid production, may in fact 
increase distal colonic butyrate to a greater extent (Edwards & Eastwood, 1992). It has 
recently been shown that rectal infusions of SCFA into the colons of patients with active 
colitis improved symptoms and disease activity (Breuer et af. 1991). 

Rapid fermentation in the colon, as with lactulose or some highly fermentable fibres, 
may produce a substantial decrease in colonic pH which may have several effects. Bile 
acids may be precipitated, reducing their absorption and actions on the colonic mucosa 
and the 7-a-dehydroxylase enzyme will also be inhibited. Bacterial production and 
absorption of NH3 may be inhibited (Swales et al. 1970; Vince et al. 1978) and colonic 
cellular proliferation may be stimulated (Lupton et af. 1988). 

Increased bacterial populations may result in increased activity of certain enzymes 
such as p-glucuronidase, p-glucosidase (EC 3.2.1.21) and azoreductase (EC 1.6.6.7) 
which are involved in the metabolism of exogenous molecules such as drugs and possible 
carcinogens (Rowland & Mallett, 1990). P-Glucuronidase and P-glucosidase may 
reactivate toxins previously deactivated in the liver (Mallett & Rowland, 1990). 
Fermentable carbohydrate sources often increase the activity of these enzymes (Rowland 
& Mallett, 1990) but the effects are not always consistent and no definite role for the 
enzymes in carcinogenesis has been proved. However, in rats fed on carcinogens as well 
as fermentable fibre tumour yield was increased in the colon (Jacobs, 1990). This may be 
due in part to the stimulation of cellular proliferation by SCFA as well as an increase in 
the active carcinogen. 

CONCLUSION 

The intestinal microflora and the nutrition of the host have several complicated but 
important interactions which start at birth and develop as the populations and number of 
species increase, the ecosystem becomes more stable and new bacterial substrates are 
ingested. Some of these interactions are beneficial to the host but some may be 
detrimental. However, the activity of the bacteria in the human colon is complex and 
very little understood at present. 
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