ORBITS OF TROJAN ASTEROIDS

G. A. CHEBOTAREV, N. A. BELYAEV, and R. P. EREMENKO Institute of Theoretical Astronomy, Leningrad, U.S.S.R.

Abstract. In this paper the orbital evolution of Trojan asteroids are studied by integrating numerically the equations of motion over the interval 1660–2060, perturbations from Venus to Pluto being taken into account. The comparison of the actual motion of Trojans in the solar system with the theory based on the restricted three-body problem are given.

1. Introduction

Since the orbits of Trojan asteroids are typical examples of the motion in the vicinity of the libration triangular points L_4 and L_5 in the restricted three-body problem, many investigations have been made for these asteroids, especially for libration orbits about the triangular points. In Table I the minimum angular distance of the longitudes of Jupiter and the asteroid, α_1 the maximum angular distance, α_2 , and the libration period in years, *T*, are given for seven libration orbits based on the restricted problem of three bodies. Orbit No. 1 corresponds to the exact triangular solution, whereas No. 7 corresponds to the asymptotic solution, for which the longitude difference becomes as large as 180° .

No.	α1	α2	Т
1	60°.00	60 °	147.42
2	51°32	70 °	148.9
3	39°54	90 °	153.9
4	29°79	120°	172.6
5	25°25	150°	215.7
6	24°05	170°	294.0
7	23°91	180°	∞

TABLE I Libration orbits near triangular points L_4 or L_5

Applying the results to actual Trojans maximum and minimum deviations and the maximum possible deviations of the mean motion from that of Jupiter $(n-n_1)$ are obtained and are given in Table II.

The purpose of this paper is to compare the actual motion of Trojans in the Solar System with the theory based on the restricted three-body problem.

2. Evolution of Orbits of 15 Catalogued Trojans

In Table III the orbital elements of 15 Trojans given in *The Ephemerides of Minor Planets for 1972* are also tabulated. The asteroids are arranged in increasing order of

Y. Kozai (ed.), The Stability of the Solar System and of Small Stellar Systems, 63–69. All Rights Reserved, Copyright (* 1974 by the IAU.

mean longitude. Ten asteroids move ahead of Jupiter, describing libration orbits around the point L_4 . Five asteroids follow Jupiter (libration point L_5). Table III includes along the orbital elements the difference of the mean longitudes of these

		•	
Asteroid	α1	α2	$(n - n_1)$
588 Achilles	54°63	65°86	2″.36
617 Patroclus	53°96	66°65	2″66
624 Hector	45°22	79 °13	7″.03
659 Nestor	49 °07	73°11	5″01
884 Priam	49°71	72°20	4″.69
911 Agamemnon	46 °72	76°68	6".23
1143 Odysseus	51°37	69°95	3″.88
1172 Aeneas	51°08	70°31	4″.02
1173 Anchises	40°61	87°.72	9″.65
1208 Troilus	52°05	69°05	3″.55
1404 Ajax	44°01	81°21	7″69
1437 Diomedes	35°64	99°61	12".83

TABLE IILibration orbits of Trojans

asteroids and Jupiter $\Delta \lambda = \lambda - \lambda_1$. For this epoch $\lambda_1 = 342.^{\circ}8$ and the positions of libration points are $\lambda_4 = 42.^{\circ}8$ and $\lambda_5 = 282.^{\circ}8$.

For studying the orbits of Trojans a numerical integration of equations of motion has been made taking into account the perturbations by eight major planets (Venus-Pluto) covering the time interval of 400 years (1660–2060). The initial osculating elements are taken from *The Ephemerides of Minor Planets for 1972*.

Table IV summarizes the changes of orbital elements of Trojans for 400 years, and the maximum deviations $(n - n_1)$, as well as the maximum and minimum angular distances from Jupiter α_1 and α_2 . Comparison of Tables II and IV demonstrates a good agreement between the theory and the real motion of Trojans. Changes of inclinations and eccentricities of the orbits are insignificant. The nodal lines are nearly stationary. The lines of apsides turn in direct direction by angles from 1.°2 (1437) to 49°2 (659). During the time interval of 1660–2059 the approach of Anchises (1173) to Jupiter is the nearest; its minimum distance is $\Delta = 2.6$ AU. Small eccentricities are characteristic for the orbits of the Trojans.

Rabe (1967) suggested that in the case of the circular restricted three-body problem the limiting eccentricity for Trojans has the value e=0.19; when allowance is made for Jupiter's orbital eccentricity this limit increases up to e=0.24. From the catalogued Trojans the orbit of Achilles (588), with e=0.15, has the maximum eccentricity.

In accordance with the theory for Trojans the difference of the longitudes of perihelia is also 60°, $(\pi - \pi_1) = 60^\circ$. As $\pi_1 = 14^\circ$, for the Trojans near the libration point L_5 , the mean perihelion longitude should be equal to 74° and for those about the libration point $L_4\pi = 314^\circ$. Comparison with real Trojans proves that the perihelia of all known Trojans get into the interval of $\pi = 314^\circ \pm 45^\circ$, while the perihelia of the

Asteroid	У	Аż	и	а	д	З	σ	Я	i
1437 Diomedes	22°9	+40.1	305"4	5.130	0.048	128.9	315°3	84.2	20%6
1583 Antilochus	23°5	+40.7	292"7	5.276	0.054	186°.3	221°1	47.4	28°3
588 Achilles	37°9	+ 55.1	299".1	5.202	0.150	12834	316°4	84:5	10:3
624 Hector	40°.4	+ 57.6	306".1	5.122	0.025	180.0	342°1	162.1	18°3
911 Agamemnon	47°7	+ 64.9	305".1	5.133	0.066	5°62.	337°3	56°8	21.9
1749 Telamon	49°.7	767:0	293".5	5.267	0.111	106.1	340°8	86:9	6?1
659 Nestor	512	+ 68.4	295".6	5.243	0.110	333.7	350°.5	324:3	4°5
1647 Menelaus	5127	+ 68.9	298".1	5.214	0.026	286:6	239°8	166.4	5°6
1143 Odysseus	53°1	+ 70:3	300".3	5.187	0.092	233.3	220%6	93.9	3:1
1404 Ajax	63°.5	+ 80°.7	301".9	5.170	0.113	57.06	332°3	29:9	18.1
884 Priam	269°8	- 72:9	298".3	5.211	0.120	331°6	301:0	272.7	8:9
1172 Aeneas	273°2	-69.6	300″6	5.184	0.103	46°4	246°8	29322	16.7
1208 Troilus	282°3	- 59.5	302"6	5.161	0.093	292.9	48°0	340:9	33.7
617 Patroclus	287°9	- 54:9	298"8	5.206	0.142	303.8	43°9	347°.7	22°1
1173 Anchises	290°8	-51:9	308".4	5.097	0.137	30.9	284°.2	315.1	7.0

,

TABLE IIIOrbital elements of the Trojans. Epoch T = 1950 Nov. 15.0 ET

https://doi.org/10.1017/S007418090007039X Published online by Cambridge University Press

ORBITS OF TROJAN ASTEROIDS

65

.

Aster	oid	α1	α2	$(n-n_1)$	∆e	$\Delta \pi$	$\Delta \Omega$	∆i
1437	Diomedes	40°.1	93°.0	11″.6	-0.004	+ 1°2	-1°.9	-0°.3
1583	Antilochus	37°.6	84°.8	8″.9	+0.013	+ 8°.7	-1°.1	- 0°.1
588	Achilles	54°.7	66°.1	3″.2	0.000	+ 25°.9	-1°.1	0°.0
624	Hector	47°.4	81°.4	7″.4	-0.026	+ 19°.0	-1°.3	-0°.2
911	Agamemnon	43°.5	76°.0	6″.0	+0.007	+ 10°.0	− 0°.9	- 0°.1
1749	Telamon	48°.2	71°9	6".2	-0.005	+ 24°.4	-1°.9	0°.0
659	Nestor	52°.0	70°.0	4″.1	+0.030	+ 49 °2	-1°.8	0°.0
1647	Menelaus	56°.2	69 °0	4″.0	-0.033	+ 38°.0	-1°.4	$+0^{\circ}.1$
1143	Odysseus	52°.1	70°.4	4″.6	-0.009	+ 20°.9	-1°.5	+ 0°.1
1404	Ajax	4 6°.5	81°9	8".7	+ 0.020	+24°.4	-2°.2	+ 0°.1
884	Priam	54°.2	73°.1	5".2	+0.026	+ 31°2	-2°.4	0°.0
1172	Aeneas	51°.5	69°.6	4″.6	+0.016	+ 24°7	-1°.0	-0°1
1208	Troilus	48°.4	69°2	3″.9	-0.003	+12°.4	-0°.1	- 0°.1
617	Patroclus	54°.8	63°.6	2″2	-0.011	+21°.3	-0°.8	0°.0
1173	Anchises	43°.6	89°.4	10″.4	+0.010	+ 29°.2	-3°.5	+ 0°.1

TABLE IV Orbital evolution of Trojans for 400 years

three Trojans about the libration point L_4 (624, 659 and 1647) lie beyond the limit of $\pi = 74^{\circ} \pm 45^{\circ}$.

According to the orbital inclination, the Trojans may be divided into two groups (see Table V). In this table, besides *i*, the value $Z_0 = a \sin i$ is given, which indicates the height (in AU) over the plane of the ecliptic to which the Trojans can rise.

Table V gives also the size of Trojans. These dimensions have been determined

Asteroid	Z_0 (AU)	i	<i>d</i> (km)
1208 Troilus	2.86	33°.7	43
1583 Antilochus	2.50	28°.3	43
617 Patroclus	1.96	22°1	57
911 Agamemnon	1.92	21°9	65
1437 Diomedes	1.80	20°.6	57
624 Hector	1.61	18°3	71
1404 Ajax	1.61	18°.1	34
1172 Aeneas	1.49	16°.7	52
588 Achilles	0.94	10°.3	52
884 Priam	0.80	8°9	41
1173 Anchises	0.62	7 °0	37
1749 Telamon	0.55	6°.1	23
1647 Menelaus	0.52	5 °6	20
659 Nestor	0.41	4°.5	45
1143 Odysseus	0.28	3°.1	52

 TABLE V

 Distribution of Trojans by the angle of inclination

from their brightness by the formula (Combes, 1971):

$$\log d(\mathrm{km}) = 3.592 - 0.2g$$
.

It is interesting to note that among the Trojans with high orbital inclinations the asteroids of larger dimensions prevail.

3. Orbital Evolution of 15 Noncatalogued Trojans

In 1970 the Palomar and Leiden observatories completed an extensive collective work (van Houten *et al.*, 1970) on taking the photographs and determining the orbits of faint minor planets. Among the discovered asteroids 15 typical Trojans were detected whose orbits are nearly circular. The orbital elements of these Trojans are given in Table VI. Photographs of Trojans were taken in the vicinity of libration point

Astroid	λ	Δλ	n	а	е	ω	Ω	π	i
9607	34°.7	51°9	307″.6	5.105	0.111	256°2	34°1	290°.4	5.0
6629	49 °3	66°.5	312".4	5.053	0.008	299°.6	162°.1	101°7	4°.2
6020	57°.1	74°.3	297".0	5.226	0.093	90°3	189°0	279°.3	1°.4
4523	59°2	76°.4	305".8	5.125	0.050	129°5	208°5	338°.0	0°.9
4139	64°0	81°2	306".7	5.115	0.003	309°.5	2°.7	312°2	17°.6
2008	68°6	85°9	302".8	5.159	0.112	167°.6	197°2	4 °8	16°8
6844	69°.0	86°.2	301".1	5.178	0.104	24°.0	17°.6	41°.6	8°.2
4572	69 °1	86°.4	304".7	5.138	0.058	42°.0	16°.0	58°.0	9 °3
4655	70°.6	87°9	297".7	5.217	0.032	93°5	5°.8	99 °3	17°1
6591	71°1	88°.3	292".8	5.276	0.043	57°.0	18°.6	75°.6	7°.4
4596	72°1	89°.3	294".9	5.251	0.070	331°.0	43°9	14°8	4°.0
6581	72°.3	89°.5	291".6	5.291	0.031	54°.3	350°.6	45°.0	4°9
6540	72°.6	89°.6	296″.6	5.231	0.059	67°.3	24°.0	91°.3	9 °1
6541	73°.3	90°.5	297 ".3	5.223	0.088	263°.4	152°9	56°.3	8°1
2706	73°.3	90°6	313".4	5.042	0.120	355°.9	98 °8	94 °7	1°.2

 TABLE VI

 Orbital elements of 15 noncatalogued Trojans. Epoch 1950 Nov. 15.0 ET

 L_4 and, therefore, all 15 asteroids are in the orbit ahead of Jupiter. The lack of Trojans with great inclinations is explained by the fact that the photographs were taken in the region of the ecliptic. Nevertheless, in the case of faint Trojans it is also possible to distinguish two groups of asteroids with considerable and moderate inclinations (see Table VII). In this case the largest asteroids will again get into the first group.

Only for 9 asteroids out of 15 the perihelion longitude comes into the interval of $\pi = 74^{\circ} \pm 45^{\circ}$.

The lines of nodes are so located that they form two groups enclosed within the intervals of $350^{\circ}6-43^{\circ}9$ (9 asteroids) and $152^{\circ}9-208^{\circ}5$ (5 asteroids). The asteroid 2706 has a longitude of node $\Omega = 98^{\circ}8$ which is very close to the longitude of Jupiter's node $\Omega_1 = 100^{\circ}1$. However, the lacuna $208^{\circ}5-350^{\circ}6$ is completely filled with 13 catalogued Trojans whose longitudes of node are enclosed within the limits $220^{\circ}6-350^{\circ}5$. Thus,

	angle of it	nclination	
Asteroid	Z_0 (AU)	i	<i>d</i> (km)
4139	1.57	17:6	13.5
4655	1.53	17°.1	17.0
2008	1.50	16°.8	30.0
4572	0.84	9°.3	11.0
6540	0.82	9 °1	11.5
6844	0.74	8°.2	6.8
6541	0.73	8 °1	11.5
6591	0.67	7°.4	14.0
9507	0.45	5°.0	16.0
6581	0.44	4°.9	15.5
6629	0.38	4°2	13.5
4596	0.36	4°0	14.0
6020	0.13	1°.4	10.0
2706	0.11	1°2	6.2
4523	0.08	0°.9	13.5

TABLE VII
Distribution of Trojans according to the angle of inclination

in the distribution of the line of nodes we observe (Table VIII) a lacuna $48.^{\circ}0-152.^{\circ}8$ wide, into which gets only one asteroid (2706). The middle of the lacuna, $\Omega = 100.^{\circ}4$, exactly coincides with the longitude of Jupiter's node. To the descending node longitude of Jupiter ($\Omega_1 = 280.^{\circ}1$) corresponds the second lacuna of $246.^{\circ}8-301.^{\circ}0$, in which one asteroid, Anchises (1173), is located. This planet has the greatest angular velocity of the line of nodes ($\Delta\Omega = 3.^{\circ}5$).

Table IX provides the general characteristic of orbital evolution of faint Trojans

Distribut	ion of Trojans	by the longitudes of nodes	
Asteroid	Ω	Asteroid	Ω
4139	2°7	4523	208°.5
4655	5°.8	1143 Odysseus	220°.6
4572	16°.0	1583 Antilochus	221°1
6844	17°.6	1647 Menelaus	239°8
6591	18°.6	1172 Aeneas	246°.8
6540	24°0	1173 Anchises	284°2
9507	34°.1	884 Priam	301°0
4596	43°9	1437 Diomedes	315°3
617 Patroclus	43°9	588 Achilles	316°.1
1208 Troilus	48°.0	1404 Ajax	332°.3
2706	98°.8	911 Agamemnon	337°.3
6541	152°9	1749 Telamon	340°8
6629	162°.1	624 Hector	342°1
6020	189°.0	659 Nestor	350°.5
2008	197°2	6581	350°.6

TABLE VIII

for 400 years. The eccentricity value of asteroid 4139 has passed through zero; the longitude of perihelion, therewith, has changed from $\pi = 187^{\circ}.7$ to $\pi = 312^{\circ}.2$. The perturbations of orbital inclinations and eccentricities are insignificant.

Asteroid	α1	α2	$(n-n_1)$	∆e	$\Delta\pi$	$\Delta \Omega$	∆i
9507	51°9	96°.1	115	+0.004	+ 50°.7	-3°.5	0°.0
6629	42°.8	103°.7	13".8	-0.022	-26°.1	- 2°.9	+ 0°.1
6020	52°.7	74°9	4".5	+0.002	+61°.6	-2.5	+ 0°.1
4523	40°9	84°.0	6".5	+0.029	+ 64°.9	- 3°.7	+ 0°.1
4139	32°.5	93°0	10″1	-0.018		$-2^{\circ}.3$	$-0^{\circ}.1$
2008	41°.5	87°.8	9″.4	+0.036	+ 38°.4	$-2^{\circ}.2$	$+0.2^{\circ}$
6844	50°.3	86°.4	9".5	+0.020	+ 26°.5	- 2°.7	-0°.1
4572	37°.6	92°.0	10″0	+0.005	+ 10°.7	-2.6	0°.0
4655	45°.0	87°9	9".6	-0.018	- 2°.1	-2°.2	+ 0°.1
6591	38°.7	88°.3	10".9	-0.008	- 1°.5	- 3°.1	0°.0
4596	42°1	89°.3	8″.8	+0.035	+ 28°.9	-2°.5	0°.0
6581	36°.2	93°2	12".5	+0.009	-26°.4	-4°.1	0°.0
6540	46°.1	89°.8	9"7	-0.016	+15°.1	-2°.5	0°.0
6541	47°.7	90°.5	9".9	+0.009	+ 22°.1	-2°.3	+0.2
2706	37°.6	121°.0	16″.9	-0.014	+ 29°.7	+1°.3	0°.0

TABLE IX Orbital evolution of 15 noncatalogued Trojans

References

Combes, M. A.: 1971, L'Astronomie, Décembre, p. 413.

Rabe, E.: 1967, Astron. J. 72, 10.

van Houten, C. J., van Houten-Groeneveld, I., Herget, P., and Gehrels, T.: 1970, Astron. Astrophys. Suppl. 2, 339-448.