
2
Analyticity and unitarity

Firstly, we are going to show that the property of causality results in
analyticity of the scattering amplitude.

2.1 Causality and analyticity

Consider a four-point Green function A(x1, x2;x3, x4), where the space–
time points x1, x2 and x3, x4 lie in the remote past and future, corre-
spondingly. Let y1 (y2) mark the point where the incident particle 1 (2)
interacts for the first time, and y3 (y4) the point of the last interaction of
the particle 3 (4). Then

A(x1, x2;x3, x4) =

y y x

xyyx 4

31

2 4

31

2

x

=
∫

f(y1, y2, y3, y4)
{ 4∏

i=1

D(yi − xi) d4yi

}
.

(2.1)

Here D(y − x) describes the propagation of a free particle which we take
to be a scalar one since the spin play no rôle in the analysis that follows:

D(yμ − xμ) =
∫

d3p
(2π)3

∫
dp0

2πi
exp{−ipμ(y − x)μ}

m2 − p2 − iε
.

31
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32 Analyticity and unitarity

For the time ordering y0 > x0, one closes the integration contour in energy
around the pole at p0 =

√
m2 + p2 in the lower half-plane, to obtain

D(yμ − xμ) =
∫

d3p
(2π)3

exp {−ipμ(y − x)μ}
2p0

=
∫

d3p
(2π)3

ψp(y) · ψ∗
p(x), y0 > x0.

For the final state particles we have x03 > y03, x04 > y04, and their prop-
agators take the form

D(yμ − xμ) =
∫

d3p
(2π)3

ψp(x) · ψ∗
p(y), x0 > y0.

Thus, the ‘truncated’ interaction amplitude f in (2.1) gets multiplied by
the product of the wave functions ψ of the incoming particles and of
the conjugate wave functions ψ∗ of the outgoing ones, evaluated at the
‘entry’ points y1, y2 and the ‘exit’ points y3, y4, correspondingly. The two-
particle interaction amplitude in the momentum space, M(pi), becomes
the Fourier transform:

M(pi) =
∫

f(y1, y2, y3, y4) e−i(p1y1+p2y2)+i(p3y3+p4y4)
∏

d4yi. (2.2)

An integral over the ‘centre of gravity’ of the four coordinates produces
the energy–momentum conservation condition, and we are left with three
integrations over the relative positions, yi − yk. For the sake of simplicity,
let us restrict ourselves to to the forward scattering case, p1 ≈ p3, p2 ≈ p4.
Then (2.2) reduces to

M =⇒ (2π)4δ(p1 + p2 − p3 − p4)
∫

eip1(y3−y1)f(y13; p2)d4y13, (2.3)

where we have singled out the dependence on one of the momenta, namely
p1. This is sufficient since, because of the Lorentz invariance, the ampli-
tude actually depends on the invariant energy, M(pi) = M(s),

s ≡ (p1 + p2)2 = m2
1 + m2

2 + 2m2E1,

which is proportional to the energy E1 of one of the incident particles in
the rest frame of the second one, E2 = m2.

Causality means that the function f in the integrand of (2.3) must have
the form

f(y) = ϑ(y0)ϑ(y2
μ) · f1(y) + f0(y), (2.4a)
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2.1 Causality and analyticity 33

where f0 does not contribute to the scattering:∫
d4y f0(y) exp{ip1y} = 0. (2.4b)

Mark that the condition (2.4b) does not imply f0 ≡ 0, since it is only the
Fourier components with a physical momentum p1,

p1 =
(√

m2 + p2, p
)
,

that are required to vanish. How does such a decomposition emerge in the
field theory? The easiest way to arrive at (2.4) is to invoke the general
operator language.

The interaction amplitude in the coordinate space is related to the
time-ordered product of operators describing an absorption of a particle
in y1 and a creation of another one in the space–time point y3:

f(y3, y1) ∝
〈
T ψ(y3)ψ̄(y1)

〉
≡ ϑ(Δy0) · ψ(y3)ψ̄(y1) ± ϑ(−Δy0) · ψ̄(y1)ψ(y3)

= ϑ(Δy0)
[
ψ(y3)ψ̄(y1) ∓ ψ̄(y1)ψ(y3)

]
± ψ̄(y1)ψ(y3),

(2.5)

where Δy stands for the relative coordinate,

Δyμ = yμ3 − yμ1 .

Alternative signs ± in (2.5) and below correspond to bosonic and
fermionic operators, i.e. particles with integer and half-integer spin. For
the space-like intervals, that is when (Δy)2 < 0, by the virtue of causality
our operators (anti)commute, so that

f(y3, y1) ∝ ϑ(Δy0)ϑ((Δy)2) · f1 ± ψ̄(y1)ψ(y3) .

The latter piece (f0) is given by a simple (not T -ordered) product of
the two operators, which may be represented as a sum over all possible
intermediate states:

〈0| ψ̄(y1)ψ(y3) |0〉=
∑
n

〈0| ψ̄(y1)|n〉 · 〈n|ψ(y3)|0〉=
∑
n

|Cn|2 e−iPn(y1−y3).

Here we have explicitly extracted the coordinate dependence in terms of
the total intermediate state momenta, Pn. Substituting into the integral
for the scattering amplitude, (2.4a), we immediately get∑

n

∣∣C2
n

∣∣ ∫ d4y31 eip1y31 · eiPny31 ∝ δ(p0,1 + P0,n) = 0.

Vanishing of this contribution is due to the fact that both the incoming
particle and any physical intermediate state n have a positive energy. This
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34 Analyticity and unitarity

conclusion derives from the stability of the vacuum: any excitation must
lie above the vacuum state, P0,n > 0.

Finally, we arrive at the integral representation for the amplitude,

M(E1) =
∫

d4y f1(y) · ϑ(y0)ϑ(y2
μ) eip1y =

∫
d3y
∫ ∞

√
y 2

dt eiE1(t−v1z)f1(y);

(2.6)

p1y ≡ E1t− p1 · y = E1 · (t− v1z),

where z is the coordinate projection on the direction of the momentum.
The theta-functions in (2.6) ensure that the phase of the exponent is
positively definite:

t > 0, t >
√

z2 + ρ2
⊥ ≥ |z| > |v1z| =⇒ (t− v1z) > 0 .

As a consequence, M(E1) ≡ M(s) is a regular analytic function in the
upper half-plane of complex energies E1. Indeed, if the integral (2.6) exists
(converges) for real values of the energy, it can be analytically continued
onto the upper plane, ImE1 > 0, where it converges even better due to
the additional exponentially falling factor, exp{−ImE1(t− v1z)}.

2.1.1 Causality and the polynomial boundary for M(s).

Let us reverse the logic now. The inverse Fourier transform reads

f(t) =
∫ +∞

−∞
dE e−iE tM(E).

If t < 0, by moving the contour onto the upper half-plane where (as we
have just established) M(E) is regular, we should get zero, to be in accord
with causality. This is the case provided the amplitude does not increase
exponentially along the imaginary axis:

|M(ImE → +∞)| < exp(γ ImE) for arbitrary γ > 0.

Otherwise, the exponentially decreasing factor exp(t · ImE) would not be
sufficient to guarantee the vanishing of the response at small but finite
negative times

−γ ≤ t < 0.

That is why, to be on the safe side, we will impose an additional restriction
on the scattering amplitude by bounding its possible growth with energy

|M(s)| < |s|N ,

with N some finite (though maybe large) power.
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2.2 Singularities of the Born diagrams 35

2.2 Cross-channel singularities of Born diagrams from
s-channel point of view

We will employ for simplicity the QFT model scalar particles with a λϕ3

interaction. This is the simplest example of a renormalizable theory and,
though not without a defect (it has no ground state – a stable vacuum),
it is well suited for the qualitative analysis of singularities of scattering
amplitudes.

Let m and λ be the renormalized mass and interaction constant. We
consider a four-particle amplitude characterized by the Mandelstam vari-
ables s, t, u:

p
1

p
2

p4

p
3

s = (p1 + p2)2;

t = (p1 − p3)2; s + t + u = 4m2,

u = (p1 − p4)2.

What sort of singularities will we encounter at each order of perturbation
theory? In the Born approximation we have three poles, in each of the
Mandelstam invariants,

=
λ2

m2 − s
, =

λ2

m2 − t
, =

λ2

m2 − u
. (2.7)

Before moving further we will first discuss the meaning of these poles.

2.2.1 Pole in energy

The first one is the pole in the invariant collision energy s. Recall quantum
mechanics. Here the amplitude of elastic scattering of a particle with
initial momentum p, |p| = |p′| =

√
2mE, has the following representation

in terms of the potential V and the incoming state wave function:

f(E,q) = −2m
4π

∫
d3r′ e−ip′·r′

V (r′)ψp(r′), (2.8)

with q = p′ − p the momentum transfer.
In order to extract the energy dependence we are after, we invoke the

Green function of the stationary Schrödinger equation:

(Ĥ − E)GE(r′, r) = δ(r′ − r);

GE(r′, r) =
∑
n

ψn(r′)ψ∗
n(r)

En − E
; Ĥψn = Enψ(n),
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36 Analyticity and unitarity

where En are the exact energy levels of the system. Now we express the
exact wave function ψp(r′) as

ψp(r′) = eip·r
′ −
∫

d3r GE(r′, r)V (r) eip·r,

and substitute into (2.8) to derive

f(E,q) = −2m
4π

[
V (q) −

∑
n

1
En − E

×
(∫

dr e−ip′ rV (r)ψn(r)
)(∫

dr′ eipr′
V (r′)ψ∗

n(r′)
)]

= fB +
∑
n

Cn(p)C∗
n(p′)

En − E
.

(2.9a)

Here the Born scattering amplitude fB,

fB(q) = −2m
4π

∫
d3r e−iq·rV (r), (2.9b)

depends only on the momentum transfer q, while the dependence on the
energy is contained in the sum over intermediate states n. If the system
possesses a bound state – a discrete energy
level En – its contribution to the amplitude
can be depicted as a diagram with 1/(En − E)
as the ‘propagator’ of the state n, and C as the
‘coupling constant’. Thus, in non-relativistic

CC
n

*

quantum mechanics a pole in energy corresponds to scattering via an
intermediate state related to a discrete energy level. In the relativistic
theory two particles can transfer into one, and it is this particle which
plays the rôle of such an intermediate state.

2.2.2 Pole in momentum transfer

Having understood the physical meaning of the pole in s, we could repeat
the same consideration in the crossing channels where t and u play, cor-
respondingly, the rôle of energy, and thus would make sense of the two
other poles in (2.7).

Still, what is the meaning of these poles from the s-channel point of
view? The Mandelstam variable t measures the momentum transfer (for
elastic scattering with p0 = p′0, t = −q2). Are there singularities in the
momentum transfer in quantum mechanics? Let us examine the Born
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2.2 Singularities of the Born diagrams 37

scattering amplitude (2.9b),

fB(q) ∝
∫

d3r e−iq·rV (r).

It develops a singularity at a point where the integral diverges when we
continue q onto the complex plane. If the potential has a power tail,

V (r) ∝ r−n, r → ∞,

this happens for an arbitrary small value of Im q �= 0. This means that
the singularity emerges at t = 0. By dimensional consideration,∫

d3r

rn
∼ r−n+3 =⇒ qn−3,

for n = 1, 2 it is a pole; for an integer n ≥ 3 it is a logarithmic singularity.
It becomes clear that in order to have a singularity at some finite t = m2,
as this is the case of the amplitude (II) in (2.7), the potential has to fall
exponentially at large distances. More precisely, it is the Yukawa potential,

V (r) =
A

r
e−mr, (2.10a)

whose Fourier image as we saw in the previous lecture gives the pole
amplitude, see (1.8),

fB ∝ A

m2 + q2
≡ λ2

m2 − t
. (2.10b)

We conclude that the relativistic Born amplitude (II) in (2.7) corresponds
to a definite potential (Yukawa) with a definite strength (A = λ2) and a
definite sign (attraction).

Thus, singularities in momentum transfer are related to the interaction
radius. Let us remark that our ‘strong interaction potential’ V has a finite
radius r0 = 1/m owing to our basic supposition that all hadrons have non-
zero masses.

2.2.3 Exchange potential

Finally, what is the pole in u?
The diagrams (II) and (III) in (2.7) differ by the exchange of final

particles (momenta p3 and p4). In the non-relativistic quantum mechanics
the exchange potential is a well known object:

V (ex)(rik) = V (rik) · Pik,

with Pik the particle permutation operator. Thus, the diagram (III) deter-
mines the exchange potential which in our case coincides with the direct
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38 Analyticity and unitarity

one: the sum of the diagrams (2.7) automatically takes care of the identity
of our scalar particles (Bose statistics).

2.3 Higher orders

In higher orders Feynman diagrams become more and more complex. In
the second order in λ2, we will have graphs like

  + . . . + + . . . + + . . .  (2.11)

(where the dots stand for the diagrams of the same type with the external
lines transmuted). The first diagram seems to have a double pole in t.
However, this ‘self-energy insertion’ into the propagator line modifies the
particle mass, while we wanted m2 to represent the true physical mass
of the particle in the Green function (m2 − t)−1. Therefore a subtraction
has to be made,

1
m2 − t

Σ(t)
1

m2 − t
=⇒ 1

m2 − t

[
Σ(t) − Σ(m2)

] 1
m2 − t

,

after which the double pole disappears.
Moreover, the simple pole in t is effectively absent too. Indeed, by ex-

panding the subtracted self-energy blob one step further,

Σ(t) − Σ(m2) = (t−m2) · Σ′(m2) + Σc(t),

we observe that the term proportional to Σ′(m2) must be dropped too,
as modifying the value of the on-mass-shell coupling constant λ2 in the
corresponding t-channel Born diagram of (2.7). Since Σc(t) ∝ (t−m2)2,
the remaining contribution is finite. In the same way, the t-channel prop-
agator pole cancels in the second (vertex correction) diagram of (2.11).

The remaining last (‘box’) graph in (2.11) has no poles either.
The fact that the second-order diagrams do not possess pole singulari-

ties does not mean that higher orders do not modify analytic properties
of the amplitude. Far from that. This becomes immediately clear if we
look at the unitarity condition for the elastic scattering amplitude:

2 ImMaa =
∑
c

MacM
∗
ac = . (2.12)
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2.3 Higher orders 39

⎧⎨
⎩ + +

⎫⎬
⎭

⎧⎨
⎩ + +

⎫⎬
⎭

Fig. 2.1 Product of the Born amplitudes in the unitarity condition.

If in the r.h.s. we substitute the Born amplitude M = O
(
λ2
)
, see Fig. 2.1,

then on the l.h.s. of the equation we will have ImM of the order of λ4. This
shows that starting from the second order in λ2, the scattering amplitude
must be complex above the two-particle threshold, s > 4m2.

Among the products of the diagrams on
the r.h.s. of the unitarity condition (2.12),
there is a square of the s-channel Born graph.

s

Let us examine the corresponding second-order diagram to see where the
complexity comes from.

2.3.1 Two-particle thresholds

Consider the second-order diagram

s
p                   pk

(2.13)

Looking for the origin of the complexity, we can drop the real pole factors
and concentrate on the loop integral:

Σ(s) =
1
2!

∫
d4k

(2π)4i
λ2

(m2 − k2 − iε)(m2 − (p− k)2 − iε)
,

(with 1/2! the symmetry factor characteristic for the loop of two identical
particles). In the complex plane of the k0 variable, singularities of the
integrand are positioned at

k0 = ±
√
m2 + k2 ∓ iε, (2.14a)

k0 = p0 ±
√
m2 + (p − k)2 ∓ iε. (2.14b)

The Feynman iε prescription displaces the poles from the real axis to tell
us on which side of the singularity the contour passes.
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40 Analyticity and unitarity

(a) (b)

k0

Fig. 2.2 Transformation of the k0 integration contour; s < 0.

Consider the two cases.

s < 0. In this case we can always find a reference frame such that p0 = 0,
so that the pairs of the poles (2.14) are placed symmetrically around
the imaginary axis, as displayed in Fig. 2.2(a). In this situation we can
turn the integration path as on Fig. 2.2(b). Introducing a new integration
variable, k0 = iκ, the self-energy becomes

Σ(−p2) =
1
2!

∫
d3k

(2π)3

∫
dκ

2π
λ2

(m2 + κ2 + k2)(m2 + κ2 + (p − k)2)
,

where we have dropped the iε terms since the denominators vanish
nowhere in the integration region. The answer is obviously real valued.

s > 0. Now, contrary to the previous case, we can choose the frame p = 0:

k0 = ±
√

m2 + k2 ∓ iε,

k0 = ±
√

m2 + k2 + p0 ∓ iε.

With p0 > 0 and increasing, the second pair of poles will move to the
right, and at some point the trailing pole of the second pair will collide
with the leading pole of the first one:

−
√

m2 + k2 + p0 =
√

m2 + k2 .

Two poles pinch the contour, and the integral becomes complex.

k0

(2.15)
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2.3 Higher orders 41

Since we are integrating over k, this happens for the first time at

s = 4m2 ≤
(

2
√
m2 + k2

)2

. (2.16)

This is the value of s corresponding to the two-particle energy threshold.
It is straightforward to calculate the imaginary part of the self-energy

graph in (2.13). To this end we close the contour around the two poles on
the upper half-plane in (2.15) and look at the contribution of the pinching
one at k0 = p0 −

√
m2 + k2:

Σ(p2
0) =

1
2!

∫
d3k

(2π)3
· 1
2(p0 −

√
m2 + k2)

· λ2

m2 + k2 − (p0 −
√
m2 + k2)2 − iε

+ real,

where the first factor is the residue, 2k0, and the second – the remaining
Green function. Using

Im
1

a− iε
= πδ(a),

we obtain

2 Im Σ(p2
0) =

λ2

2!p0

∫
d3k

2(2π)2
√
m2 + k2

· δ
(
2
√

m2 + k2 − p0

)
. (2.17)

As expected, the integral has a non-vanishing support only when p0 > 2m,
cf. (2.16). The fact that the amplitude becomes complex means that in
the complex plane of the energy variable s = p2

0 it has a branch cut which
starts at s = 4m2 and runs to infinity. This is the threshold singularity
corresponding to the production of two particles with equal masses m.

The integral (2.17) is easy to calculate; the calculation produces nothing
but the phase-space volume for the production of two real particles with
an aggregate four-momentum p, see (1.25). This is straightforward to see
if we recast the answer in the Lorentz covariant form as

2 Im Σ(p2) =
λ2

2!

∫
d4k

(2π)4
2πδ+((p− k)2−m2) · 2πδ+(k2−m2). (2.18)

We conclude that in order to calculate 2 Im Σ(p2) one simply has to ‘cut
through’ the diagram (2.13) and replace in the Feynman expression for
the amplitude each cut propagator by (double) its imaginary part,

1
m2 − k2 − iε

=⇒ (2πi)δ+
(
k2 −m2

)
.
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42 Analyticity and unitarity

s ≥ 4m 2 4m 2t ≥ 

Fig. 2.3 The second-order box graph having branch cuts both in s and t.

This rule is in a perfect accord with the unitarity condition formally
applied to the 1 → 1 transition via a two-particle intermediate state (take
n = 2, Mac = M∗

bc = λ in (1.31)), and can be used to calculate imaginary
parts of arbitrary diagrams.

When cutting a diagram in order to find its imaginary part, one must
make sure that the two graphs that emerge correspond to a real phys-
ical process. For example, the diagram with the self-insertion into the
t-channel particle exchange can be cut into two as

s t .

From the point of view of the s-channel, this looks like squaring an am-
plitude of the decay of the incoming particle into three, which process is
kinematically forbidden. On the other hand, in the t-channel these very
subgraphs correspond to a legitimate 2 → 2 scattering process, so that
this cut describes the t-channel two-particle threshold and makes the am-
plitude complex for t > 4m2.

Another example. Contrary to the self-energy insertion graph, the ‘box’
in Fig. 2.3 can be legitimately cut both in the s- and t-channels and
therefore possesses two branch cuts. Another second-order graph – the
‘crossed box’ – shown in Fig. 2.4 has the same t threshold but cannot be
cut in the physical region of the s-channel, since such a division would
correspond to two-body decays of incoming particles. At the same time, it
can be cut in the u-channel describing the 14̄ → 32̄ transition. If we keep
t fixed and study analytic properties of the amplitude as a function of s,
the u-channel threshold at u = 4m2 will manifest itself as another branch
cut in s = 4m2 − u− t which starts at s = −t and runs to the left.
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=
3

42

1 1

4

3

2

u ≥ 4m 2

Fig. 2.4 The crossed box graph having branch cuts in t and u. Arrows mark
the direction of the positive energy flow.

t = 0

t = 4m2

u = 4m
2

u = m
2

s 
= 

m
2

s 
= 

4m
2

u s

t

Fig. 2.5 Singularities of the second order amplitude on the Mandelstam plane.

2.3.2 Scattering amplitude as a function of s

Nine cut diagrams contained in Fig. 2.1 describe the imaginary part of
the full two particle scattering amplitude in the order λ4, due to the s-
channel threshold. The same diagrams with permuted external particles
give t- and u-channel complexities.

Thus, the amplitude on the Mandelstam plane is real inside the triangle
marked by the dotted lines on Fig. 2.5. By fixing the variable t at some
value in the interval 0 ≤ t ≤ 4m2, the regions where the amplitude is com-
plex are displayed by two bold lines on Fig. 2.6. The physical s-channel
scattering amplitude A(s) is defined for s ≥ 4m2 and is given by the value
of the invariant amplitude on the upper side of the right cut, Im s =→
+ i0. Since for a fixed t we have s + u = const., the physical u-channel
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s

t 3m2 − t      4m2 −

A
(s)

A
(u)

m 2

Fig. 2.6 Analytic structure of the amplitude in the complex s-plane and the
definition of physical amplitudes of the s- and u-channel reactions.

amplitude A(u) that describes the process 14̄ → 32̄ one obtains by ap-
proaching the left cut from below Im s → −i0, Reu > 4m2 (see Fig. 2.6).

As we have learnt, due to causality, A(s) is a regular function in the
upper half-plane of the invariant energy s. Analogously, the lower half
of the s-plane is free of any singularities as well, thanks to the causality
property of the u-channel reaction (which makes the amplitude A(u) regu-
lar for Imu > 0). Moreover, since the upper and the lower half-planes are
analytically connected through a finite interval on which the amplitude
is real, we conclude that the invariant amplitude is an analytic function
on the entire complex s-plane apart from two poles and two branch cuts
originating from two-particle thresholds.

In higher orders there appear higher thresholds, and related additional
branching points, due to multi-particle thresholds in the intermediate
states of the s- and u-channel reactions:

s s0 =

(
n∑

i=1

mi

)2

→ n2m2. (2.19)

2.3.3 Dispersion relation

Once the imaginary part of the analytic function is known, we can restore
its real part using the dispersion relation. We write a Cauchy integral
around a point s in the complex plane where the amplitude is regular,∫

C

dz

2πi
A(z)
z − s

= A(s) ,

and then inflate the contour to embrace the singularities of the amplitude
A(z) in the z plane, as shown in Fig. 2.7. If the function falls on the
large circle, |z| → ∞, we obtain s and u poles inherited from the Born
amplitude, and a sum of integrals of the discontinuity across the right
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C

z
s

Fig. 2.7 Integration contour in the dispersion relation for the amplitude A(s).

and left branch cuts:

ImsA ≡ 1
2i

[
A(s + i0, t) −A(s− i0, t)

]
, s > 4m2, (2.20a)

ImuA ≡ 1
2i

[
A(u + i0, t) −A(u− i0, t)

]
, u > 4m2. (2.20b)

The piece of the Born amplitude responsible for t-channel particle ex-
change, λ2/(m2 − t), does not fall with s. Therefore in order to eliminate
the contribution of the large circle, one has to use the dispersion relation
with one subtraction, that is to apply the Cauchy theorem to the function

A(s) −A(0) =
∫
C

dz

2πi

[
A(z)
z − s

− A(z)
z

]
=

s

π

∫
C

dz

2i
A(z)

z(z − s)
.

The s-independent piece then hides in the subtraction term A(0, t). By
combining this result with a complementary information coming from the
t channel, we can restore the full second-order amplitude O

(
λ4
)

from the
Born one, O

(
λ2
)
. In principle, one can move further, order by order, and

recursively build up full interaction amplitudes by exploiting unitarity in
the cross-channels and analyticity.

It is worthwhile to mention that if the Born amplitude happens to
increase too fast with energy, the subtraction trick fails to work (as it
happens, e.g. in electrodynamics with an anomalous magnetic moment
interaction vertex term Γμ ∝ σμνq

ν). The number of arbitrary subtrac-
tion constants grows with the order of the perturbative expansion, which
manifests, in the dispersive theory language, the non-renormalizability of
the underlying interaction.

The dispersive programme was found indeed to be rather effective in
quantum electrodynamics. There were times when it was being enthusi-
astically explored as a possible way of constructing the theory of hadrons
without knowing the internal structure of the interaction. An attractive
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feature of such a scheme is that it operates only with experimentally ac-
cessible physical quantities – on-mass-shell amplitudes.

2.4 Singularities of Feynman graphs: Landau rules

Now we have to address an essentially technical problem, namely how to
find singularities of arbitrary Feynman diagrams, and how to determine
their position and character.

2.4.1 Position of singularities

Consider a diagram containing n internal lines with four-momenta k1,
k2, . . . , kn which may be expressed as linear combinations of the external
momenta pj and the integration momenta qm:

ki =
�∑

m=1

bimqm +
∑
j

cijpj , (2.21)

where bim are either 1 or 0. The number of the independent integration
contours (loops) � is a function of the topology of the given diagram.

The Feynman integral corresponding to our diagram has the structure

An� =
∫

d4q1 d
4q2 · · · d4q�

[(2π)4i]�
1

(m2
1 − k2

1)(m
2
2 − k2

2) · · · (m2
n − k2

n)
. (2.22)

We need to find the conditions under which this integral becomes singular
in external variables sik = (pi + pk)2 – Lorentz invariants formed by four-
momenta of the external particles.

It is worthwhile to stress that for the case of particles with higher spins,
matrices and different powers of momenta would appear in the numer-
ator of the integrand. This, however, would not affect the singularities
of the amplitude which depend exclusively on the structure of the scalar
denominator in (2.22).

To study the appearance of singularities it is convenient to use the
trick invented by R. Feynman in order to get rid of multiple four-vector
integrations. Applying to the denominators ai = m2

i − k2
i in (2.22) the

Feynman identity

1
a1a2 · · · an

=
1
n!

∫
αi≥0

dα1 dα2 · · · dαn

(α1a1 + α2a2 + · · · + αnan)n
δ
(
1 −

n∑
i=1

αi

)
,
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which is not difficult to prove by induction, we get

An� =
∫

d4q1 · · · d4q�

[(2π)4i]�

∫ 1

0

dα1 dα2 · · · dαn
n δ

(
1 −

n∑
i=1

αi

)
, (2.23)

where

= ({α}, {p}; {q}) ≡
n∑

i=1

αi(m2
i − k2

i ). (2.24)

The integrand in (2.23) depends analytically on the integration variables;
the vanishing of the denominator inside the integration region, = 0,
is the only potential source of singularities.

Substituting the decomposition (2.21), the characteristic function
of (2.24) becomes an inhomogeneous quadratic form. This form can be
diagonalized by an orthogonal transformation:

(α, p; q) = Δ(α, p) −
�∑

m=1

δm · q̃2
m, δm = δm(α) > 0, (2.25)

with q̃ = {q̃m} the set of new integration momenta.
In (2.25) Δ = Δ(α, sik) is a function of invariant energies sik. Let us

start from the kinematical domain where all these invariants are negative,
sik < 0. (This is easy to achieve by taking all the energy components
pj = 0 in some reference frame.) Then the energy integrations can be
transformed as we did above when we studied the self-energy graph,

q̃0m = iκm,
d4q̃m
(2π)4i

=
dκm d3q̃m

(2π)4
≡ d4Qm

(2π)4
.

The expression for the denominator becomes positively definite,

=
∑
i

αi

(
m2

i +
[∑

κs
]2 + k2

i

)
= Δ(α, sik) +

�∑
m=1

δm
[
κ2
m + q̃2

m

]
,

and consequently the integral (2.23) yields a regular, real amplitude An�.
Rescaling the Q variables, the integral can be evaluated as

An� =
∫ 1

0

δ(1−Σα)
∏

i dαi

(2π)4�

∫
d4Q1 d

4Q2 · · · d4Q�

[Δ +
∑�

m=1 δmQ2
m]n

=
∫ 1

0

δ(1−Σα)
∏

i dαi∏�
m=1 δ

2
m(α)

· 1[
Δ(α, sik)

]n−2�
× [number].

(2.26)
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As a function of the integration momenta q̃, has a minimum at q̃m = 0.
At this point = Δ, which permits us to determine Δ from the equation

Δ(α, sik) = (α, p, q(0)), (2.27a)

where {q(0)} is the position of the extremum of , simultaneously in 4�
integration variables:

∂ ({q})
∂qk

∣∣∣∣∣
{q}={q(0)}

= 0, k = 1, 2, . . . , �. (2.27b)

Now we start changing sik to see when (2.26) becomes singular. We are left
with n− 1 integrations over Feynman parameters 0 ≤ αi ≤ 1 restricted
by the condition 1 −∑n−1

i=1 αi = αn ≥ 0. An equation Δ(α, sik) = 0 deter-
mines a surface in the n-dimensional space of αs. A singularity appears
when this surface touches for the first time the integration domain.

For each variable αi this can happen in two ways: either a zero of Δ
collides with the endpoint of the integration interval, αi = 0, or two zeroes
simultaneously arrive from the complex plane and assume a common real
value inside the interval, αi > 0:

αi = 0, or
dΔ
dαi

= 0, i = 1, 2, . . . , n− 1. (2.28)

By virtue of (2.27b),

dΔ(α; q(0))
dαi

=
∂

∂αi
+
∑
k

∂

∂qk

dq
(0)
k

dαi
=

∂

∂αi
. (2.29)

Moreover, since , by its definition (2.24), is a homogeneous linear func-
tion of αs,

=
n∑

i=1

αi
∂

∂αi
. (2.30)

By successively applying equations (2.27a), (2.30), (2.29) and (2.28) to
the point Δ = 0, we derive

0 = Δ = =
n∑

i=1

αi
∂

∂αi
=

n−1∑
i=1

αi
dΔ
dαi

+ αn
∂

∂αn
= αn

∂

∂αn
.
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Finally, the condition for the appearance of singularity reads

∂

∂qk
= 0, k = 1, 2, . . . , �; (2.31a)

∂

∂αi
= 0 (or αi = 0), i = 1, 2, . . . , n. (2.31b)

Equations (2.31b), combined with (2.30), guarantee that in this point
= 0, so that we need not watch the relation = Δ = 0 anymore.

The relations (2.31) together with the restriction
∑

αi = 1 impose 4� +
n + 1 conditions on 4� + n variables qk and αi. This means that a solution
may exist only for specific values of external momenta. The corresponding
equation f(sik) = 0 determines the ‘Landau surface’ for the position of a
singularity of the amplitude in the space of invariants sik. This equation
may be resolved, e.g. to determine the position of a singularity in the
invariant energy s for fixed momentum transfer variables: s = s0(t, u, . . .),
or vice versa.

Consider some closed contour inside the diagram:

7

k6
q1 +

q1 k6 k7+ +

k5

k6

k7
k8

k2
k1

k3
k4

65

8

q1

Introducing the loop momentum q1 = k1 and applying the first extremum
condition (2.31a),

∂

∂q1

(
α1q

2
1 + α2(q1 + k6)2 + α3(q1 + k6 + k7)2 + α4(q1 − k5)2

)
= 0,

we obtain a system of linear equations stating that

∑
i

αik
μ
i = 0 along each loop. (2.32a)

(It resembles Kirchhoff current law equations for electric circuits, with
momentum ki playing the rôle of the current, and αi that of resistance.)
In addition, the second condition (2.31b) tells us that each line either
has to have an on-mass-shell momentum or should be dropped from
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consideration (short-circuited):

k2
i = m2

i or αi = 0 . (2.32b)

Let us consider some examples.

2.4.2 Threshold singularities

We first take the diagram which has a two-particle threshold singularity,
in order to see how the Landau equations (2.32) reproduce the result that
we have already learnt.

p

S
k

2

k
1

k
2

k
1

The Landau condition

α1k1 + α2k2 = 0 (2.33)

shows that the energy components of the momenta k1 and k2 have opposite
signs (αi > 0), so that the singularity we are looking for corresponds
physically to the decay of the external particle p into two.

Our elementary loop is too simple to sustain reduction (putting one of
αs to zero), so the pinch singularity remains the only option:

k2
1 = m2

1 , k2
2 = m2

2 ; αi > 0.

Projecting (2.33) onto ki we obtain a system of linear equations for α1

and α2,

α1k
2
1 + α2(k1k2) = 0

α1(k1k2) + α2k
2
2 = 0,

(2.34)

whose determinant must be zero for a solution to exist. Substituting

2(k1k2) = k2
1 + k2

2 − (k1 − k2)2 = m2
1 + m2

2 − p2 ,

we obtain the solvability condition for the system (2.34) in the form

Det = m2
1m

2
2 −

1
4
(
m2

1 + m2
2 − p2

)2 = 0 ,

that is,

(p2 − (m1 + m2)2) · (p2 − (m1 −m2)2) = 0 .

Only one of the two possible solutions,

p2 = (m1 + m2)2,
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satisfies the condition αi > 0 (one has to have (k1k2) < 0 in (2.34)).
We conclude that the singularity emerges when the mass of the initial
object (invariant energy s of the system) exceeds the threshold value
m1 + m2 sufficient for a real decay into two particles m1 and m2 to take
place.

2.4.3 Anomalous singularity and deuteron form factor

Now take a diagram with three lines in the loop:

s

p2

a3 a1

a2

p1

This graph can be reduced to a simpler one by setting one of αs to zero.
For example, such a reduction

s

p2

p1

a1

a3  = 0

a2

gives us back the threshold singularity at s = (m1 + m2)2. If we choose
to nullify another Feynman parameter, e.g.

s
2a

a3
p

2

p

= 01

1

a

the emerging singularity at p2
1 = (m2 + m3)2 has nothing to do with the

energy s but corresponds to the situation when the external particle p1 is
unstable (acquires a ‘complex mass’).

Let us look for a genuine singularity of the triangle diagram that cor-
responds to three on-mass-shell lines:

α1k
2
1 + α2(k1k2) + α3(k1k3) = 0 ,

α1(k1k2) + α2k
2
2 + α3(k2k3) = 0 ,

α1(k1k3) + α2(k2k3) + α3k
2
3 = 0 .

(2.35)
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52 Analyticity and unitarity

We take masses of the internal particles to be the same,

k2
1 = k2

2 = k2
3 = m2,

and, at the same time, allow the virtual momenta of external particles to
be different. For the sake of simplicity we take two of them equal,

p2
1 = p2

2 = M2 , p2
3 = Q2 ,

and look for a singularity in the virtuality Q2:

p1
p2

p3

k1
k2

k3

Q

MM

m         m

m

(2.36)

Kinematical relations between internal and external momenta result in

(k1k2) = 1
2

[
k2

1 + k2
2 − (k1 − k2)2

]
= m2 − 1

2Q
2 ,

(k1k3) = (k2k3) = m2 − 1
2M

2.
(2.37)

Bearing in mind that αi > 0, from the last line of the system (2.35),

(α1 + α2) ·
(
m2 − 1

2M
2
)

+ α3m
2 = 0 ,

we derive the necessary condition for the existence of singularity:

M2 > 2m2 . (2.38)

Substituting (2.37) into (2.35), the characteristic equation follows:

0 = Det

⎡
⎢⎣ m2 m2 − 1

2Q
2 m2 − 1

2M
2

m2 − 1
2Q

2 m2 m2 − 1
2M

2

m2 − 1
2M

2 m2 − 1
2M

2 m2

⎤
⎥⎦

= 1
2Q

2 ·
[
m2
(
2m2 − 1

2Q
2
)
− 2(m2 − 1

2M
2)2
]
.

(2.39)

We obtain the so-called ‘anomalous singularity’ positioned at

Q2
0 = 4M2

[
1 −
(
M

2m

)2
]
. (2.40)

The graph (2.36) describes the scattering of an object of mass M with
momentum transfer p2

3 = Q2. If this object is stable (M < 2m), the sin-
gularity (2.40) lies at Q2

0 > 0, that is outside the physical region of the
scattering reaction. However, if the ‘mass defect’ is small, 2m−M � M ,
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the singularity may occur very close to the physical region, t = Q2 ≤ 0,
in which case it would strongly affect the behaviour of the amplitude. A

D

pp
n

 

g

D

physical example is provided by a
deuteron D – the lightest nucleus,
a loosely bound state of a proton
and a neutron, with the graph (2.36)
describing, e.g. the electromagnetic
electron–deuteron scattering:

MD − (mp + mn) = ε � m (m = mp � mn).

In non-relativistic quantum mechanics, the electron scattering amplitude

f(q) =
e2

q2
F (q)

is proportional to the form factor F (q), given by the Fourier component
of the distribution of electric charge inside the nucleus:

F (q) =
∫

d3r ψ2(r) eiq·r, F (0) = 1. (2.41)

Here ψ is the proton wave function inside the deuteron:

ψ(r) ∝ e−r
√
εm,

with ε the binding energy. Expanding (2.41) at small momentum transfer,

F (q) = 1 − q2

∫
d3r

r2

2
ψ2(r) + O

(
q4
)
� 1 − q2

〈
r2
〉

2
,
〈
r2
〉
∼ (εm)−1,

we see that the amplitude starts falling at characteristic momentum trans-
fers of the order of the inverse deuteron radius.

On the other hand, in the relativistic-theory framework we have dis-
cussed that the interaction radius is determined by the t-channel singu-
larities. If the triangle amplitude as a function of t = Q2 had the normal
threshold at Q2 = 4m2 �

〈
r2
〉−1 as the closest singularity to the physical

region, this would contradict the non-relativistic expectation for a loosely
bound large-size system. It is the anomalous singularity (2.40),

Q2
0 � 16m · ε � m2,

that is responsible for a fast decrease of the elastic form factor with mo-
mentum transfer and reconciles the two approaches.

If, having started from the vicinity of 2m, we decrease the mass M of
the external particle down to M =

√
2m, the position of the anomalous

singularity Q2
0(M) reaches its maximum, where it hits the two-particle

threshold branch point, Q2
0 = 4m2, and disappears from the physical sheet

of the amplitude, diving under the branch cut.
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Thus, the anomalous singularity is present only inside a specific interval
of masses, 2m2 < M2 < 4m2. In particular, it is absent when masses of
all (external and internal) particles are the same (as in the λϕ3 theory).

2.4.4 When imaginary part acquires imaginary part

For the last example consider the diagram with four internal lines:

t

s

p
1

p
3

p
4

a

a

1

2

a3

4a

a 1 =  a 2 =  0 a1 =  a 3 = 0 a2 =  a 4 =  0 

1

2

3

4p
2

By setting to zero two neighbouring α parameters, we get a singularity
in the virtual mass of one of the external particles; setting α1 = α3 = 0
reproduces the s-channel two-particle threshold, and α2 = α4 = 0 – the
corresponding t-channel singularity.

The reduction of one line leads us back to the triangle graphs which,
as we already know, may possess anomalous singularities.

Let us examine a new genuine singularity of the box graph corre-
sponding to αi �= 0. Taking for simplicity all the masses to be equal,
p2
i = k2

i = m2, for the products of internal momenta we have

k4

k2
p1 p3

p4

k1 k3

p2

2k1k2 = 2k2k3 = 2k3k4 = 2k4k1 = m2 ;

2k1k3 = 2m2 − t , 2k2k4 = 2m2 − s .
(2.42)

The system of Landau equations can be simplified using the symmetry
of the solution following from the structure of the graph itself: α3 = α1,
α4 = α2. Then the 4 × 4 system reduces to

α1 · (m2 + k1k3) + α2 · 2k1k2 = 0,

α1 · 2k1k2 + α2 · (m2 + k2k4) = 0.

Evaluating the determinant,

Det = (m2 + k1k3)(m2 + k2k4) − 4(k1k2)2 = 0,

and using the kinematical relations (2.42) we obtain the equation for the
Landau surface in the form

(s− 4m2)(t− 4m2) = 4m4. (2.43)
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t = 4m2

s 
= 

4 
m

2

s channel

t channel

Fig. 2.8 Landau curve of the ‘s–t’ box graph on the Mandelstam plane.

On the Mandelstam plane, it is a hyperbola (known as a Karplus curve),
limited by the asymptotes s = 4m2 (t = ∞) and t = 4m2 (s = ∞). This
curve is lying in the unphysical domain, ‘between’ the physical regions of
s- and t-channel reactions, see Fig. 2.8. But for s > 4m2, as well as for t >
4m2, the amplitude is already complex due to the threshold singularities.
Where then does the additional singularity come from and what is its
meaning?

In the discussion of the analytic features of the second-order scattering
amplitude and their relation to the unitarity in the λϕ3 theory, we saw
that for s > 4μ2 the two ‘horizontal’ lines may both turn on-shell, and
the amplitude develops an imaginary part:

s > 4μ2 : = 2i ImsA(s, t) ≡ A(s + i0, t) −A(s− i0, t).

(2.44)

In the physical region of s-channel scattering, t < 0, the ‘vertical’ propa-
gators stay always off-shell. However, the imaginary part (discontinuity)
(2.44) is itself an analytic function of t. If we start to increase t, some-
where above t = 4μ2 the vertical lines will be able to go on-shell too.
This happens precisely on the Landau curve (2.43) where the ‘imaginary
part’ ImsA becomes complex, that is develops its own ‘imaginary part’:
Imt ImsA(s, t) �= 0.

2.4.5 Character of singularities

Let us find out the way the amplitude behaves near the singularity,
that is the character of the latter. To do that we return to the origi-
nal integral (2.23). As we know, when s approaches the Landau surface,
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s → s0(t, u, . . .), the characteristic function defined in (2.24) devel-
ops a simultaneous extremum in integration momenta, q = q(0), and in
n− 1 independent Feynman parameters, α=α(0). It may be represented
therefore as follows:

=
4�∑
ij

(qi − q
(0)
i )(qj − q

(0)
j )aij+

n−1∑
ij

(αi − α
(0)
i )(αj − α

(0)
j )bij+γ(s0 − s).

Let us rescale the integration variables as

qi − q
(0)
i =

√
s0 − s · yi , αi − α

(0)
i =

√
s0 − s · βi.

Then the s-dependence of the integral factors out,

An� ∼
(s0 − s)

4�
2 (s0 − s)

n−1
2

(s0 − s)n

∫
d4y1 · · · d4y� dβ1 · · · dβn−1

n
(y, β)

,

(y, β) =
4�∑
ij

aijyiyj +
n−1∑
ij

bijβiβj + γ,

giving

An� =
(√

s0 − s
)4�−n−1 · N . (2.45)

Due to finite limits of the integrals over αs, the factor N here may have
some residual s-dependence. With s → s0, however, the integration range
in βs expands,

|Δβi| ∝ 1/
√
s0 − s → ∞.

Hence the integrals over βi may be replaced by the s-independent integra-
tion over −∞ < βi < +∞, provided the multiple y–β integral so obtained
does not diverge. A simple power counting shows that the integral for N
converges when

(4� + n− 1) − 2n = 4�− n− 1 < 0.

Looking at (2.45) we conclude that the latter condition is equivalent to
the amplitude An� increasing towards the singularity. If this is the case,
one has two possibilities for the character of the singularity, depending on
the value of the characteristic exponent

E ≡ 4�− n− 1, (2.46)

namely:
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(1) the branching point when E is odd, E = −(2k + 1),

An� ∝ (s0 − s)−k−1
2 (k ≥ 0); (2.47a)

(2) the pole in (s0 − s) of degree k for the case of even E = −2k:

An� ∝ (s0 − s)−k (k ≥ 1). (2.47b)

What kind of singularity appears when E ≥ 0 and the integral diverges?
To answer the question we should treat not the amplitude An� itself, but
its s-derivative:

dmAn�

dsm
∼
∫

d4q1 · · · d4q� dα1 d · · · dαn−1
n+m (−γ)m

(n + m)!
n!

.

By choosing a proper value of m, we make the integral convergent and
can repeat the above analysis to obtain

dmAn�

dsm
= const. · (s0 − s)

4�−n−1
2

−m.

Now we integrate m times over s to restore the amplitude and face two
cases as before:

(1) the branching point singularity when E = 2k + 1 [m = k],

An� ∝ (s0 − s)k+
1
2 (k ≥ 0) ; (2.48a)

(2) the logarithmic singularity for E = 2k [m = k + 1],

An� ∝ (s0 − s)k ln(s0 − s) (k ≥ 0). (2.48b)

Example 1. Return to multi-particle threshold singularities (2.19). Here

s

we have n internal lines and � = n− 1 inde-
pendent momentum integrations. The ex-
ponent (2.46) equals E = 3n− 5, and when
the number of particles in the intermedi-
ate state is even, the amplitude near the
threshold singularity behaves as

A ∼ (s0 − s)
3
2
(n−2)+

1
2 (n even). (2.49a)

For n = 2 we recover the known square-root singularity characterizing the
two-particle threshold. If the number of particle is odd, for n = 1 our for-
mula gives a simple particle pole, A ∼ (m2 − s)−1; otherwise the exponent
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is a positive integer, and the threshold singularity becomes logarithmic:

A ∼ (s0 − s)
3
2
(n−1)−1 · ln(s0 − s) (n odd). (2.49b)

This result is easy to get directly from the unitarity relation:

2 ImA ∝
∫

d4k1 · · · d4kn
(2π)3n

(2π)4δ4
(
p− Σ ki

) n∏
i=1

δ(k2
i −m2

i ).

Near the threshold, three-momenta of all particles are small, and the
integration produces the non-relativistic phase space volume:

∼
n−1∏
i=1

d3ki · δ
(
√
s−√

s0 −
n∑

i=1

k2
i

2mi

)
∼ |k|3·(n−1)−2 ;

√
s0 =

n∑
i=1

mi .

Each additional particle brings in the suppression factor
|k|3 ∼ (s0 − s)3/2, and the singularity weakens.

Example 2. Anomalous ‘vertex’ singularity:

n = 3, � = 1, E = 4 · 1 − 3 − 1 = 0; A ∼ ln(s0 − s).

Example 3. Box diagram:

n = 4, � = 1, E = 4 · 1 − 4 − 1 = −1; A ∼ 1√
s0 − s

.

Example 4. A five-leg amplitude possesses a genuine pole singularity:

n = 5, � = 1, E = 4 · 1 − 5 − 1 = −1; A ∼ 1
s0 − s

.

We observe that the strength of the singularity grows when we increase
the number of lines in the loop. According to the Landau rules, multi-
leg one loop amplitudes would seem to develop stronger and stronger
singularities: A61 ∼ (s− s0)−3/2, A71 ∼ (s− s0)−2, etc.

Would they? Rather not. It is most likely that the strongest singularity
a Feynman diagram may have is a pole and the reason is the following.
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2.4 Singularities of Feynman graphs: Landau rules 59

While studying the equation for the Landau surface that determines
the position of singularities,

f({sik}) = 0 , 1 ≤ i < k ≤ N − 1 (2.50)

(with N the number of external momenta), we were treating the Lorentz
invariants sik that characterize the amplitude as independent variables.
The number of linearly independent pair products of the external mo-
menta pipk (not counting the masses, i �= k) in (2.50) is

(N − 1)(N − 2)
2

− 1, (2.51a)

where the subtracted unity stands for the additional on-mass-shell rela-
tion, m2

N = sNN for the last particle with momentum pN = −∑N−1
i=1 pi.

At the same time, we have calculated in (1.33) the total number of Lorentz
invariant variables, the N -point amplitude depends on:

3N − 10. (2.51b)

The two numbers (2.51) coincide for N = 5, which is just the case of the
pole singularity in the Example 4 above.

If we take N > 5, the number of the pair products (2.51a) takes over,
which means that certain kinematical relations between sik appear, un-
dermining our analysis of the character of singularities.

What remains to be done about the character of Landau singularities
is to verify the case when some of the αs are zero.

Consider a singularity that emerges when α1 = 0. Then there is no
extremum with respect to α1, and the function has the expansion

� cα1 +
n−1∑
i,k

(αi − α
(0)
i )(αk − α

(0)
k )bik + · · · + γ(s0 − s). (2.52)

Near the singularity, the characteristic magnitude of α1 under the integral,
α1 ∼ (s0 − s), is much smaller than all other deviations, |αi − α

(0)
i | ∼√

s0 − s. Therefore α1 can be neglected in the quadratic form in (2.52),
as well as in the sum,

δ

(
1 −

n∑
i=1

αi

)
� δ

(
1 −

n∑
i=2

αi

)
.
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Hence, we obtain an expression identical to that for the amplitude without
the line k1, α1: ∫ 1

0
dα2 · · · dαn

∫
dα1 δ

(
1 −∑n

i=1 αi

)(
cα1 + α1=0

)n
=⇒

∫ 1

0

dα2 · · · dαn
n−1 δ

(
1 −

n∑
i=2

αi

)
.

Thus, not only the position of the singularity but also its character can
be derived from a reduced graph with the line α1 contracted:

a1

a2

a3

a4

a2

a3

a4

a1 = 0
 .

2.4.6 Amplitude near singularity

Now that we learnt how to determine the position and the character of the
singularities, let us address the question of the magnitude of the amplitude
near a singularity.

Let us take some complicated amplitude and set to zero all αs but
four, to form a square graph. At the corresponding Landau singularity,
all internal particles are on the mass shell, k2

i = m2
i , therefore the full sub-

amplitudes that determine their interaction vertices may each be equated
with the renormalized on-mass-shell interaction constant g:

a1

2a
a3

4a
g

.
g

g g

If we consider instead a simpler threshold branch-cut singularity, its mag-
nitude will be determined by the square of the physical scattering ampli-
tude near the threshold:

s ∝ A2 (s = s0). (2.53)

In general, if we want to calculate the magnitude of an arbitrary Feynman
diagram near the singularity, it will be always determined by the exact
on-mass-shell interaction amplitudes.
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2.5 Beyond perturbation theory: relation to unitarity 61

2.5 Beyond perturbation theory: relation to unitarity

By using the language of Feynman diagrams we have arrived at the pat-
tern of singularities of the interaction amplitudes.

Namely, for each singularity:

(1) its position is determined by masses of real hadrons;

(2) its character derives from the topology of the interaction process;

(3) the coefficient in front of a singularity is expressed in terms of the
physical on-mass-shell amplitudes.

This conclusion goes beyond the perturbation theory which we have em-
ployed to derive it. The reason for that lies in the unitarity property:
the series of Feynman diagrams (though having little sense in a theory of
strongly interacting objects) formally solve the unitarity conditions.

The blocks in (2.53) are supposed to correspond to exact two-particle
scattering amplitudes which become
complex themselves when we move
above the threshold. The particles in
the intermediate state are allowed to
interact many times: as a result, the
threshold singularities overlay.

s

?

How to treat such an eventuality?
To take into account successive two-particle scatterings in the full am-

plitude, let us single out the block that has no two-particle intermediate
state and, therefore, no threshold at s = 4m2:

= ++  + . . . (2.54)

According to Landau rules, to find the s-channel threshold singularity,
we must pick one of the two-particle states and put the two lines on the
mass shell. Then the chains of two-particle irreducible blocks sum up into
the full amplitudes, on the left and on the right from the ‘cut’, resulting
in (2.53). A branch cut singularity of the function is characterized by the
discontinuity across the cut:

ΔA(z) =
1
2i
[
A(z + i0) −A(z − i0)

]
.
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z A(z + i0)

z0 A(z − i0)

This is what we use to call the ‘imagi-
nary part ’, cf. (2.20). The name is jus-
tified when the function below z=z0

is real ; hence it assumes complex con-
jugate values on the sides of the cut:
A(z − i0) = [A(z + i0)]∗.

Integrating over energy components of n− 1 loop momenta, we may
close the contours around the positive energy poles of all but one inter-
mediate state particles:

p

kn

∝ 1
m2

n − k2
0n + k2

n

. (2.55)

The last line we must also put on the mass shell by replacing the remaining
propagator (2.55) by 2πδ(m2

n − k2
n). Using the energy conservation, k0n =

p0 −
∑n−1

i=1 k0i > 0, this procedure is equivalent to evaluating discontinuity
of the amplitude with respect to the incoming energy p0:

1
2i

[
1

m2
n − (p0 + iε−∑ k0i)2 + k2

n

− 1
m2

n − (p0 − iε−∑ k0i)2 + k2
n

]
.

The amplitude (2.54) has symbolically the structure of the product:

A(s) =
∞∑
n=1

F1 · F2 · · · · · Fn .

To find the discontinuity of the iterated amplitude,

= + + + . . .Δ

we must calculate

An(s + i0) −An(s− i0) = (F+)n − (F−)n, with F± = F (s± i0).

An evaluation of the discontinuity of the product of functions is alge-
braically similar to taking a derivative:

Δ(AB) = A · (ΔB) + (ΔA) ·B∗;

iterating this rule we obtain

ΔA =
∑
i,k=1

F+
1 · · ·F+

i

[ ]
F−

1 · · ·F−
k = A(s + i0)

[ ]
A(s− i0).
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The r.h.s. of this expression is real, correcting (2.53).
Summing together the discontinuities of the amplitude across n-particle

threshold branchings, we finally derive

ΔA2→2(s) =
∑
n

τn(s)A2→n(s)A∗
2→n(s) , (2.56)

which is nothing but the unitarity relation, with τn the n-particle phase
space volume.

2.6 Checking analytic properties of physical amplitudes

We will conclude the discussion of analyticity in this lecture by considering
two practically important examples.

2.6.1 Dispersion relation for forward πN scattering

Consider pion–nucleon scattering. Due to
the isotopic symmetry of strong interac-
tions, πN interaction amplitude depends
on the total isospin of the system, rather
than on the individual isospin state (electric
charge) of each of the participating particles. p p

k kp

N
Pions π+, π0, π− form an isotopic triplet (I = 1), and nucleons p, n – the
doublet (I = 1

2). Therefore, the full amplitude contains two independent
functions describing the interaction: 1 ⊗ 1

2 = 1
2 ⊕ 3

2 , or, from the t-channel
point of view, ππ = 1 ⊗ 1 = 0 ⊕ 1 (the N̄ + N pair cannot have isospin
2).

We will study the forward pion–nucleon scattering, t = 0:

s = (p + k)2 = M2 + μ2 + 2Mν,

u = (p− k′)2 = M2 + μ2 − 2Mν = 2(M2 + μ2) − s,

with ν the energy of the pion, p0 = p′0, in the rest frame of the target
nucleon.

Let U denote the dublet of nucleons, and φα the isovector pion field,
α = 1, 2, 3. The general form of the scattering amplitude is

A = U(p′)φα(k′)
(
f+(ν)δαβ · I + f−(ν)εαβγ · τ γ

)
φβ(k)U(p), (2.57)

where εαβγ is the anti-symmetric unit tensor, and τα is the triplet of
Pauli matrices in the 2 × 2 space of nucleon isospinors. The diagonal term
proportional to the unit matrix I takes care of elastic scattering, while
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n

n0−n 0 m−m

Fig. 2.9 Complex pion energy plane for forward πN scattering amplitude.

the τ term anti-symmetric in isospin indices is responsible for reactions
with electric charge transfer, like π+n → π0n.

The variable

ν =
s− u

2M
=

s− (M2 + μ2)
M

changes sign under the permutation of the initial and final pions, s ↔ u.
Therefore, since pions are Bose particles, the amplitudes f± in (2.57) are,
correspondingly, even and odd with respect to the crossing:

f+(−ν) = f+(ν), f−(−ν) = −f−(ν).

We will study the symmetric part, f+. The amplitude has a nucleon pole,

s = M2 =⇒ ν0 = −μ2

M
,

and the branch cut that starts from the πN threshold:

s = (M + μ)2 =⇒ νthresh = μ.

The u-channel singularities mirror the s-channel ones on the complex
plane of the variable ν, see Fig. 2.9. Let us try to write down the dispersion
relation for f = f+ as a function of the complex variable ν:

f(ν) =
r

ν0 − ν
+

1
π

∫ ∞

μ

dν ′ Im f(ν ′)
ν ′ − ν

+
r

ν0 + ν
+

1
π

∫ −∞

−μ

dν ′ Im f(ν ′)
ν ′ − ν

.

(2.58a)

Combining the contributions of two poles and s- and u-channel cuts, with
account of f(−ν) = f(ν), we get a more compact expression

f(ν) =
2r ν0

ν2
0 − ν2

+
1
π

∫ ∞

μ

dν ′2 Im f(ν ′)
ν ′2 − ν2

. (2.58b)
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This relation makes sense only if the integral converges at ν ′ → ∞. The
optical theorem (1.32) tells us that

ImA(ν) = 1
2Jσtot(ν) = 2M |k| · σtot(ν), |k| =

√
ν2 − μ2,

where we have calculated the invariant flux (1.26) in the nucleon rest
frame, J = 4M |kπ|. We conclude that the amplitude actually grows as
A ∝ ν, since the total cross section is approximately constant at large
collision energies. Therefore we must modify the dispersion relation by
performing the subtraction, f → f(ν) − f(0):

f(ν) = f(0) +
2r
ν0

ν2

ν2
0 − ν2

+
ν2

π

∫ ∞

μ

dν ′2

ν ′2
Im f(ν ′)

(ν ′2 − ν2)
. (2.59)

Since the imaginary part of the amplitude is directly related to the total
cross section, Im f = 2Mk σtot, once we have measured the total cross
section, we know the integrand and may restore the amplitude which is a
measurable quantity itself.

Importantly, information about the amplitude and cross section comes
from essentially different sources. The total cross section σtot(ν) can be

accessed by observing the loss of particles by an
incident beam. On the other hand, the amplitude is
extracted from a completely different experiment.

One measures differential angular distribution of the elastic scattering
and reconstructs the amplitude from the Legendre expansion:

f(ν,Θ) =
∞∑
�=1

f�(ν)P�(cos Θ).

The integral of the cross section converges, so that the main contribution
comes from not too large energies.

Confronting the experimental information on the forward amplitude,
f(ν, 0), and σtot(ν) the relation (2.59) was found to hold. This is a verifi-
cation of the analyticity.

The dispersion relation allows one to determine experimentally the
value of the residue r. But the residue in the pole of the amplitude is
the renormalized coupling constant, in the field-theory framework.

Let us take a neutral meson π0 and try to model the pion–nucleon
interaction vertex in the QFT language:

k

p2
p1 g

= g · U(p2) iγ5U(p1) · φ(k).
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(We have included into the vertex the factor iγ5 since π is pseudoscalar.)
The pole diagram constructed on the base of this vertex reads

Apole =
pp

k
= −g2 U(p′)γ5

1

M − (p̂ + k̂)
γ5U(p)

= −g2U
γ5(M + p̂ + k̂)γ5

M2 − s
U = −g2U

M − p̂− k̂

M2 − s
U.

(2.60)

Using the Dirac equation, (M − p̂)U(p) = 0,

Apole = U(p′)
k̂

M2 − s
U(p) . (2.61)

The pole amplitude has an interesting feature: why there is only a pion
momentum in the numerator of the amplitude? The pion has a negative
internal parity; to be allowed to fuse
into a nucleon, the incident pion has
to have an odd orbital momentum,
L = 1, in order to match the spatial
parity of the πN pair, PπPN (−1)L,
to that of the nucleon, PN . The p-wave

P = −1

P = +1

P = +1L = 1

amplitude must be proportional to k, explaining the structure of the pole
amplitude (2.61).

In the forward scattering limit, p � p′, we have

U(p)γμU(p) = 2pμ,

U(p)k̂U(p) ≡ kμ U(p)γμU(p) = 2kp = s−M2 − μ2,
(2.62)

and in the numerator of the Born amplitude there appears the combina-
tion s−M2 which cancels the pole. The remaining true pole contribution
becomes

Apole =⇒ − g2 μ2

M2 − s
= −g2 μ2

M

1
ν0 − ν

, ν0 = −μ2

M
.

Comparing with the pole term in the dispersion relation (2.58a), we relate
the residue r with the coupling constant g as

r = −g2μ2/M . (2.63)

We may roughly estimate the magnitude of the residue. Since the inter-
action is strong, its cross section is determined by the interaction radius,
the latter being inverse proportional to the mass of the lightest hadron –
the π meson: σtot ∼ μ−2. Taking moderate pion energies of the order of
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its mass, ν ∼ |k| ∼ μ, the estimate follows:

f ∼ Im f = 2M |k|σtot ∼ 2Mμ · 1
μ2

=
2M
μ

.

Suppose that the contributions of the pole and of the cut to the dispersion
relation are of the same order:

r

ν0 − ν
∼ f ; − r

μ
∼ 2M

μ
=⇒ r � −2M.

From (2.63) we then have

g2 � 2M2/μ2 � 100.

Real experimental measurement of the residue r yields

g2/4π � 14.

The closeness of the two numbers shows that indeed the pole term and
the dispersion integral over the cut contribute equally.

Thus, although there is certainly no perturbation theory, we can obtain
the pole term in the dispersion relation from the first graph (2.60).

It should be stressed that the pole term differs essentially from the
Feynman diagram. Indeed, if we did not drop in the numerator of the
Born amplitude (2.62) the piece (s−M2) which cancels the pole,

s−M2 − μ2

M2 − s
= − μ2

M(ν0 − ν)
− 1,

the new estimate based on the full amplitude would have been M/μ � 7
times larger!

Is there a reason why the pure pole term gives a reasonable size contri-
bution while the estimate based on the Feynman diagram fails?

t2t1

Recall the meaning of a Feynman graph, in
the space–time language. The pion–nucleon
interaction graph actually incorporates two
space–time configurations, including the one

with the inverse time ordering, t2 < t1, which
corresponds to three coexisting nucleons. It
is clear, however, that for moderate energies,
such a state has nothing to do with the pro-
cess we are considering. The proton mass is

N

N t1

N

t2

very large (compared to that of the pion) and long before the NNN̄ state
there will be many additional pions present in the intermediate state.

When the coupling of the field theory is small, the expansion of the
amplitude is organized in powers of this coupling. In particular, in QED
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it is easy to verify that the Compton scattering amplitude γe → γe is
dominated just by the ‘time inverted’ Born diagram.

However, if the interaction is strong, so that the coupling is large and
the perturbative expansion makes no sense, it is not the first-order graph
but the nearest singularities that determine the answer.

This observation constitutes the core idea of the dispersive approach.

2.6.2 Chew–Low method

What can we measure directly? We actually have only one stable target –
the proton. Plus a relatively stable neutron. All other hadrons are unsta-
ble. Nevertheless, we are able to prepare a beam of some unstable particles
and scatter them off a proton, for example.

But how to measure an amplitude when the projectile and the target are
both unstable, for example that of ππ scattering? One has to undertake a
flanking manoeuvre in order to extract it from available data (Chew and
Low, 1959).

Suppose a pion scatters off a nucleon, producing some hadron state.
Could we single out some part of the process into which ππ interaction
amplitude, of even cross section, would enter?

Such a diagram is easy to invent:

p

N
=

p

p

N

+

p

N
. (2.64)

The first diagram on the r.h.s. of (2.64) contains
a pion exchanged in the t-channel, and the upper
block of this diagram can be looked upon as pion–
pion scattering amplitude. p

p

The problem is, how to see and extract this particular term from the
background of all other possible contributions. How to do that when the
perturbative approach is not applicable? We must look for specific features
of the pion exchange amplitude that might help us in our task.

Let us square the amplitude and look at the contributions to the cross
section:

k

p
q

p
+ 2 Re q + .
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What is there remarkable about the first graph? If we do not integrate
over the recoil nucleon momentum p′ but measure the differential cross
section in p′, then this graph will contain the square of the pion propagator
at given momentum transfer

dσ

dt
∝
(

1
μ2 − t

)2

, t = (p′ − p)2.

(The interference term contains the pion propagator in the first power,
1/(μ2 − t), and the third one has none.) We may adopt the specific sharp
t-dependence of the cross section as the means for extracting the pion
exchange.

Let us focus on the t dependence in the sense of analytic properties.

Estimate of momentum transfer. For the momentum transfer we have

−q2 = −(p− p′)2 = 2(p0p
′
0 − p · p′ −m2), (2.65)

where we made use of the on-mass-shell conditions p2 = p′2 = m2. Here m
is the proton mass, and the capital M we reserve for the invariant mass of
the produced hadron system (minus the recoil nucleon): M2 = (k + q)2.

It is clear that the physical region corresponds to negative t = q2. In-
deed, since q2 is Lorentz invariant, we can calculate it in an arbitrary
reference frame. In the ‘laboratory frame’ where the nucleon target is at
rest, p = 0, (2.65) reduces to

−q2 = 2m(p′0 −m) > 0,

which expression is obviously positive (the energy p′0 of the recoiling
nucleon cannot be smaller than its mass m).

What is a typical momentum transfer? In particular, how small the
virtuality of the exchanged pion may be? One can derive

∣∣q2
∣∣
min

from the
kinematical relations at our disposal:

s = (k + p)2 = μ2 + m2 + 2(kp);

M2 = (k + q)2 = μ2 + 2(kq) + q2,

m2 = (p− q)2 = m2 − 2(pq) + q2.

The resulting expression is rather cumbersome. It is important, however,
to remark that

∣∣q2
∣∣
min

becomes extremely small at high collision energies.
To see this we introduce the rapidity variable,

p0 = m cosh η, |p| = m sinh η; η = ln
p0 + |p|

m
,
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and represent (2.65) as∣∣q2
∣∣ = 2m2(cosh η cosh η′ − sinh η sinh η′ · cos Θ − 1)

= 4m2
[
cosh2 1

2(η − η′) + sinh η sinh η′ · sin2 1
2Θ
]
,

(2.66)

where Θ is the nucleon scattering angle in the chosen frame of reference.
In the πN centre of mass system the variation of Θ does not affect the
modulus of the nucleon’s three-momentum |p′| = p′c and, therefore, the
rapidity η′. This makes it obvious that the minimum of

∣∣q2
∣∣ in (2.66)

corresponds to Θc = 0. Now we recall the expression (1.27) for the cms
momentum as a function of masses:

pc · 2
√
s =
√

s2 − 2(m2 + μ2)s + (m2 − μ2)2 ,

p′c · 2
√
s =
√

s2 − 2(m2 + M2)s + (m2 −M2)2 .

Calculating the cms energies of the initial- and final-state nucleons,

EN · 2
√
s = s + m2 − μ2, E′

N · 2
√
s = s + m2 −M2,

we then construct the difference of rapidities,

ηc − η′c = ln
EN + pc
E′

N + p′c
= ln

(s + m2 − μ2 + · · · ) + (s−m2 − μ2 + · · · )
(s + m2 −M2 + · · · ) + (s−m2 −M2 + · · · ) .

In the large s limit (s � M2,m2) this gives

ηc − η′c
2

=
M2 − μ2

s
+ O
(
s−2
)
,

so that

∣∣q2
∣∣ ≥ ∣∣q2

∣∣
min

� 4m2

(
M2 − μ2

s

)2

. (2.67)

We see that the virtuality q2 can actually be very small. Still, it is negative
while in order to extract the ππ interaction amplitude we need to find the
residue of the second-order pole at the positive virtuality q2 = μ2. Could
this be done? It is clear that, mathematically speaking, this is not a
well defined problem. We have to find specific conditions under which the
pole diagram gives a significant contribution to the physical cross section,
because if it is small in the physical region, no extrapolation would help
us to extract it!

Pion exchange contribution. We know how to calculate the cross section.
We average over the initial (and sum over final) nucleon spin, sum over
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2.6 Checking analytic properties of physical amplitudes 71

all final states and write

σπN =
1
J

∑
n

∫
d4p′

(2π)3
δ+(p′2 −m2)

∏
i≤n

d4ki
(2π)3

δ+(k2
i −m2

i )

× (2π)4δ

(
p + k − p′ −

∑
i

ki

)
·
(

1
μ2 − q2

)2

· g2
πN (2.68)

× 1
2

Tr
[
(m + p̂) iγ5(m + p̂′) iγ5

]
·Akq({ki})A∗

kq({ki}).

Here Akq marks the amplitude of the ππ interaction with the production
of n particles with momenta {ki}.

The nucleon trace gives
1
2 Tr
[
(m + p̂) iγ5(m + p̂′) iγ5

]
= −q2.

Collecting all the ingredients that depend on the momentum q, we observe
that by virtue of the unitarity relation they combine into the imaginary
part of the forward scattering amplitude of a real pion k and the virtual
pion q:

2 ImAππ =

p

p
=
∑
n

∫ ∏
i≤n

d4ki
(2π)3

δ+(k2
i −m2

i )

× (2π)4δ4

(
q + k −

∑
i

ki

)
·Akq({ki})A∗

kq({ki}).

(2.69)

We may write

dσπN
d4q

=
g2
πN

(2π)3J
δ(q2 − 2pq)

−q2

(μ2 − q2)2
× 2 ImAππ((k + q)2; q2), (2.70)

where (k + q)2 is the invariant energy of the ππ collision. Strictly speak-
ing, we must keep q2 as the argument of the ππ amplitude which may
depend on the pion virtuality. However, in the vicinity of the pole we
may substitute q2 = μ2 everywhere in the numerator of (2.70). Then
enters the true physical pion scattering amplitude, Aππ((k + q)2; q2) →
Aππ((k + q)2;μ2), and we have

dσpole
πN

d4q
=

g2
πN

(2π)3J
δ(q2 − 2pq)

−μ2

(μ2 − q2)2
× 2 ImAππ((k + q)2). (2.71)

The first sad fact: in the physical region we had −q2 > 0, and the cross
section (2.68) was positive, while now we have σ → −∞ in the pole! So
the residue in the form of (2.71) makes little sense.
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Actually, the contribution of the pion exchange vanishes at q2 = 0, as
the original expression (2.70) for the cross section shows. This property
is essential. If in the experiment it were observed that with the decrease
of
∣∣q2
∣∣ the cross section remained large, this would have meant that our

pole graph was insignificant!
Another important property follows from the fact that the exchanged

pion is spinless. Therefore it can transfer no information about the di-
rection of q into the upper block. This means that the distribution of
secondary particles must be isotropic in the cms of the ππ pair (the dis-
tribution in the so-called Treiman–Yang angle).

I have described two checks of whether the one-pion exchange term
σpole contributes significantly in the physical region. If both these criteria
are met, one can write

dσ

dq2 dΩ
· (μ2 − q2)2 � F (s12, q

2), q2 ≤ −
∣∣q2
∣∣
min

,

makes fit to the data for the differential distribution and then extrapolate
into the unphysical point q2 = μ2 where

F (s12, μ
2) = const. · ImAππ(s12).

Strangely enough, this way one obtains reasonably consistent results from
different experiments.

In spite of an error margin of the order of 100%, the knowledge of the
ππ interaction amplitude, so obtained, is nevertheless extremely impor-
tant. From an abstract position, the ππ interaction amplitude could differ
significantly from directly measurable nucleon interaction amplitudes be-
cause, in principle, it could be determined by physical quantities that are
totally different from those that govern the nucleon–nucleon interaction.

The Chew–Low method of studying the ππ interaction constitutes an-
other example of how the knowledge of the analytic properties (pole at
q2 = μ2; distant other singularities) allows us to extract valuable infor-
mation and to verify this way the basic concepts put in the foundation of
the theory.
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