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Abstract It is shown that if f is an analytic function of sufficiently small exponential type in the right
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1. Introduction

A classical theorem of Pólya (see [13] and [19, p. 55]) shows that 2z is the slowest growing
transcendental entire function which takes integer values at the non-negative integers.
That is, let f be entire and take integer values on N ∪ {0}. Pólya shows that if

lim sup
r→∞

M(r, f)
2r

< 1, where M(r, f) = max{|f(z)| : |z| = r},

then f is a polynomial and, further, that if

M(r, f) = O(rN2r) (1.1)

as r → ∞ for some N > 0, then there exist polynomials P1 and P2 such that f(z) ≡
P1(z)2z + P2(z). Further results on integer-valued entire functions may be found in [1–
3,5,10,11,14–18].

This paper is concerned with similar results for analytic functions in a half-plane. It was
proved in [7, Lemma 5] that if f is analytic of polynomial growth in the right half-plane
and takes integer values at the positive integers, then f is a polynomial. This result has
several applications to value distribution theory and differential equations [7–9]. In [12],
an analogue of Pólya’s result for a half-plane is given. That is, let f be analytic in the
closed right half-plane Ω = {z ∈ C : Re(z) � 0} with maximum modulus

MΩ(r, f) = max{|f(z)| : z ∈ Ω, |z| � r}, (1.2)
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and assume that f(n) is an integer for all sufficiently large positive integers n. If f satisfies
(1.1) as r → ∞ for some N > 0, with M(r, f) replaced by MΩ(r, f), then again there
exist polynomials P1 and P2 with f(z) ≡ P1(z)2z +P2(z). Furthermore, if f takes integer
values at all the non-negative integers and

lim sup
|z|→∞,z∈Ω

|f(z)|
2|z| < 1,

then f is a polynomial.
We remark that a result was proved in [20] for functions holomorphic on the product

Ωn of n half-planes and taking integer values on N
n. This result contains [7, Lemma 5],

but not the theorem from [12]. We are very grateful to the referee for drawing our
attention to this reference and to others such as [1,2,21,22].

In order to state our result, some terminology will be required. Let f be analytic in
Ω, and let 0 � λ < ∞. Then f is of exponential type λ in Ω if

lim sup
r→∞

log+ MΩ(r, f)
r

= λ, (1.3)

where log+ x = max{0, log x} and MΩ(r, f) is as in (1.2). This is of course in direct
analogy with the definition of exponential type for entire functions. The main result to
be proved is the following half-plane analogue of a theorem of Waldschmidt for entire
functions [15].

Theorem 1.1. Let d, J , λ satisfy

0 < d < 1, J ∈ N, λ > 0, 16
(

1 + log(1 + J/2)
J

)
+ 8(J − 1)λ < d2. (1.4)

Let E ⊂ N have lower linear density

D(E) = lim inf
n→∞

|E ∩ {1, . . . , n}|
n

> d,

where |X| denotes the number of elements of the set X. Let the function f be analytic of
exponential type less than λ in the closed right half-plane Ω, and assume that f(n) ∈ Z

for every n ∈ E. Then f is a polynomial.

2. Lemmas used in the proof of Theorem 1.1

2.1. Linear forms

The following lemma is a slight modification of [5, Lemma I, p. 11]: a proof is given
for completeness.

Lemma 2.1. Let A � 1 and N � 2 be integers. Suppose that L1, . . . , Lm are linear
forms in the n variables x1, . . . , xn, with real coefficients aj,k for j = 1, . . . , m and k =
1, . . . , n, that is,

Lj = aj,1x1 + · · · + aj,nxn.
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Suppose further that n > m and

max
j,k

|aj,k| � A.

Then there exist integers x1, . . . , xn, not all zero, such that

|Lj | � 1
N

for j = 1, . . . , m, and
|xk| � 2(2nAN)m/(n−m)

for k = 1, . . . , n.

Proof. Define X by
X = [(2nAN)m/(n−m)],

where [x] denotes the greatest integer not exceeding x. An n-tuple of integers (x1, . . . , xn),
in which each xk has absolute value no greater than X, gives rise to a point (L1, . . . , Lm)
lying in the closed m-dimensional cube of centre (0, . . . , 0) and side length 2nAX. Divide
this cube into (2nAXN)m closed subcubes, each of side length 1/N . The number of
distinct n-tuples (x1, . . . , xn) is evidently

(2X + 1)n � (2(2nAN)m/(n−m) − 1)n > (2nAN)nm/(n−m) � (2nAXN)m,

since if this is not the case, we get

(2nAN)n < (2nAXN)n−m � (2nAN)n−m(2nAN)m,

which is impossible. Hence, there are distinct n-tuples giving rise to points (L′
1, . . . , L

′
m)

and (L′′
1 , . . . , L′′

m) lying in the same subcube. But then we may write
∣∣∣∣

n∑
k=1

aj,k(x′
k − x′′

k)
∣∣∣∣ = |L′

j − L′′
j | � 1

N

for j = 1, . . . , m, where

|x′
k − x′′

k | � 2X � 2(2nAN)m/(n−m)

and xk = x′
k − x′′

k �= 0 for at least one k. This completes the proof. �

2.2. An application of the maximum principle

Lemma 2.2. Let d, M , L, K satisfy

0 < d < 1, M > 0, 1 < K < L < ∞, ML2K < d2(L − K). (2.1)

Let G ⊆ N and let F be analytic in the closed right half-plane Ω such that F (z) ∈ Z for
all z ∈ G. Let s > 0 be such that MΩ(Ls, F ) � eMLs and F has m � ds distinct zeros
in G ∩ [1, s]. Then F (z) = 0 for all z ∈ G ∩ [s, Ks].
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Proof. Let x1, . . . , xm be distinct zeros of F in G ∩ [1, s]. For 0 < x � s let

p(z) = p(z, x) =
z − x

z + x
.

Then p satisfies

|p(z)|

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

= 1, z ∈ iR,

� Ls − x

Ls + x
, |z| = Ls,

� Ks − x

Ks + x
, z ∈ [s, Ks] ⊆ R,

the last estimate following from monotonicity. Next, let

g(x) = log
[(

Ls + x

Ls − x

)(
Ks − x

Ks + x

)]
.

Then, for 0 � x � s,

g′(x) =
1

Ls + x
+

1
Ls − x

− 1
Ks + x

− 1
Ks − x

=
2Ls

L2s2 − x2 − 2Ks

K2s2 − x2

=
2s3KL(K − L) + 2x2s(K − L)

(L2s2 − x2)(K2s2 − x2)

� 2(K − L)
LKs

and hence

g(x) � 2x(K − L)
LKs

.

The function

F1(z) = F (z)
m∏

j=1

1
p(z, xj)

is analytic in Ω and satisfies

|F1(z)| � MΩ(Ls, F )
m∏

j=1

Ls + xj

Ls − xj

on the boundary of the region given by z ∈ Ω, |z| � Ls, and this estimate also holds for
z ∈ [s, Ks], by the maximum principle. For z ∈ [s, Ks] it therefore follows that

|F (z)| � MΩ(Ls, F )
m∏

j=1

[(
Ls + xj

Ls − xj

)(
Ks − xj

Ks + xj

)]

= MΩ(Ls, F ) exp
( m∑

j=1

g(xj)
)
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� MΩ(Ls, F ) exp
(

2(K − L)
LKs

m∑
j=1

xj

)

� MΩ(Ls, F ) exp
(

2(K − L)
LKs

· m(m + 1)
2

)

� exp
(

MLs +
d2(K − L)s

LK

)

< 1,

using (2.1) and the fact that the xj are distinct positive integers, which proves the
lemma. �

In order to apply Lemma 2.2, it is necessary for a given d to choose M , L and K with
(2.1) in mind. Evidently, if

ML2 < d2(L − 1),

then K may be chosen with K − 1 small and positive so that (2.1) is satisfied. Since
elementary calculus gives

q(L) =
L − 1
L2 � q(2) = 1

4

for 1 < L < ∞, the appropriate condition is 4M < d2.

Lemma 2.3. Let 0 < d < 1 and 0 < 4M < d2. Let G ⊆ N and let F be analytic in Ω

such that F (z) ∈ Z for all z ∈ G. Let S > 0 be such that

Q(r) = |G ∩ [0, r]| � dr and MΩ(r, F ) � eMr

for all r � S, and assume that F (z) = 0 for all z in G ∩ [1, S]. Then F (z) = 0 for all
z ∈ G.

Proof. Choose L = 2 and K ∈ (1, 2) such that (2.1) is satisfied. Then F has at least
dS distinct zeros in G∩ [1, S]. Applying Lemma 2.2 with s = S then shows that F (z) = 0
for all z ∈ G ∩ [S, KS], from which it follows at once that F has at least Q(KS) � dKS

distinct zeros in [1, KS]. Hence, Lemma 2.2 may again be applied, this time with s = KS.
Repetition of this argument proves Lemma 2.3. �

2.3. The Nevanlinna characteristic in a half-plane

This section provides a brief overview of a half-plane characteristic analogous to the
Nevanlinna characteristic in the plane, the details of which may be found in [6, p. 38].
Let f be meromorphic in the closed upper half-plane

H = {z ∈ C : Im(z) � 0}

with poles at ρneiψn , where ρn � 0 and 0 � ψn � π. The counting function of the poles
is

c(r, f) =
∑

1<ρn�r

sin ψn,
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and the integrated counting function takes the form

C(r, f) = 2
∫ r

1
c(t, f)

(
1
t2

+
1
r2

)
dt = 2

∑
1<ρn�r

(
1
ρn

− ρn

r2

)
sin ψn.

The analogue of the Nevanlinna proximity function consists of the following two functions:

A(r, f) =
1
π

∫ r

1

(
1
t2

− 1
r2

)
[log+ |f(t)| + log+ |f(−t)|] dt,

B(r, f) =
2
πr

∫ π

0
log+ |f(reiφ)| sin φ dφ.

The half-plane characteristic is then given by

S(r, f) = A(r, f) + B(r, f) + C(r, f)

and satisfies, for non-constant f and a ∈ C,

S

(
r,

1
f − a

)
= S(r, f) + O(1) (2.2)

as r → ∞.
The following lemma uses the half-plane characteristic and is in the spirit of Carlson’s

theorem [4]. For generalizations in other directions see [21,22].

Lemma 2.4. Let E ⊆ iN = {i, 2i, . . . } have lower density D. Let f be analytic in H,
of exponential type λ < πD, with f(z) = 0 for all z ∈ E. Then f ≡ 0.

Here the lower density of E and exponential type relative to the upper half-plane are
defined in straightforward analogy with § 1.

Proof. Assume that f is not identically zero. As r → ∞,

B(r, f) � 2
πr

∫ π

0
(λ + o(1))r sin φ dφ = O(1)

and

A(r, f) � 1
π

∫ r

1

(
1
t2

− 1
r2

)
2(λ + o(1))t dt + O(1) � 2(λ + o(1))

π
log r.

Since f has no poles in H, applying (2.2) with a = 0 now gives

S

(
r,

1
f

)
� A(r, f) + B(r, f) + O(1) � 2(λ + o(1))

π
log r. (2.3)

But since the lower density of E is D we have

c

(
r,

1
f

)
�

∑
n∈N∩(1,r], in∈E

1 � (D − o(1))r
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as r → ∞. Integrating this yields

S

(
r,

1
f

)
� C

(
r,

1
f

)
� 2

∫ r

1
(D − o(1))t

(
1
t2

+
1
r2

)
dt � 2(D − o(1)) log r

as r → ∞, which, on combination with (2.3), gives λ � πD, a contradiction. Therefore,
f must be identically zero. �

2.4. A class of polynomials

The following lemma summarizes some basic facts from [15] concerning a class of
polynomials which are key to the proof of Theorem 1.1.

Lemma 2.5. Define polynomials p0, p1, . . . by

p0(z) = 1, p1(z) = z, ph(z) =
z(z − 1) · · · (z − h + 1)

h!
, h = 2, 3, . . . . (2.4)

Then ph(Z) ⊆ Z, and for R > 0 and H ∈ N we have

|ph(z)| � eH

(
R

H
+ 1

)H

for |z| � R, h = 0, . . . , H. (2.5)

Proof. It is easy to check that ph(Z) ⊆ Z. To prove (2.5) we write, following [15],

|ph(z)| � (R + H)h

h!
� Hh

h!

(
R

H
+ 1

)H

� eH

(
R

H
+ 1

)H

.

�

2.5. Algebraic functions mapping integers to integers

Proposition 2.6. Let the algebraic function f be analytic in Ω and let it satisfy
f(E) ⊆ Z for some set E ⊆ N of positive lower density. Then f is a polynomial.

To prove Proposition 2.6, let E and f be as in the hypotheses, and assume that the
lower density of E exceeds D > 0. We assert that f maps the positive real axis into R.
To see this, observe that the functions f(z̄) and f(z) − f(z̄) are algebraic because f is
algebraic. Since f(z) ∈ R for z ∈ E and since an algebraic function having a sequence of
zeros tending to infinity must vanish identically, the assertion follows.

Again since f is algebraic, there exists a positive integer m such that, for all sufficiently
large r,

MΩ(r, f) � rm. (2.6)

Let n and N be integers with n/m and N/n large, and in particular with

DN � n + 1. (2.7)

Lemma 2.7. There exist arbitrarily large r ∈ N such that

|E ∩ {r, r + 1, . . . , r + N − 1}| � n + 1. (2.8)
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Proof. Assume that there exists p0 ∈ N such that, for every p � p0,

|E ∩ {Np, . . . , N(p + 1) − 1}| � n.

Since the lower density of E exceeds D, for large p, this gives

DNp � |E ∩ {1, . . . , Np}| � (p − p0)n + O(1) � (n + o(1))p,

which contradicts (2.7). �

Let ε be small and positive and choose a large positive integer r satisfying (2.8). Let
Γ = Γr be the circle of centre r, radius εr, described once anticlockwise. Choose distinct

a0, . . . , an ∈ E ∩ {r, r + 1, . . . , r + N − 1}. (2.9)

Then a0, . . . , an lie inside Γ , since r is large.
For k = 0, . . . , n it follows from Cauchy’s integral formula and the identity

1
t − z

=
1

t − a0
+

z − a0

(t − a0)(t − a1)
+ · · · +

(z − a0) · · · (z − ak)
(t − a0) · · · (t − ak)(t − z)

,

which is easily proved by induction, that

f(z) = Pk(z) +
1

2πi

∫
Γ

(z − a0) · · · (z − ak)f(t) dt

(t − a0) · · · (t − ak)(t − z)
(2.10)

for z inside Γ , where

Pk(z) = A0 + A1(z − a0) + · · · + Ak(z − a0) · · · (z − ak−1) (2.11)

is given by

Aj =
1

2πi

∫
Γ

f(t) dt

(t − a0) · · · (t − aj)
. (2.12)

Thus, Pk(z) is the interpolating polynomial of degree at most k which equals f(z) at the
k + 1 points a0, . . . , ak [5, p. 103].

Next, let
Q =

∏
0�j<k�n

|ak − aj | � C = N (n+1)2 , (2.13)

and observe that C is independent of r. Since f(aj) ∈ Z for j = 0, . . . , n, it follows from
(2.12) and the residue theorem that

QAj ∈ Z for j = 0, . . . , n. (2.14)

On the other hand, since r is large, (2.9) gives

|t − aj | � 1
2εr
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for t ∈ Γ . Thus, combining (2.6), (2.12) and (2.13) yields, for m < j � n, again since r

is large,

|QAj | � C(εr)(2r)m

(εr/2)j+1 <
1
2
,

which in conjunction with (2.14) gives Aj = 0.
Recalling (2.10) and the definition (2.11) of Pk, it now follows that Pm = Pn and that

f −Pm has n+1 zeros a0, . . . , an in the interval [r, r+N −1]. Hence, f (n) = (f − Pm)(n)

has a zero in the same interval, using Rolle’s theorem. Since r may be chosen arbitrarily
large, the algebraic function f (n) must vanish identically, and f is a polynomial. This
proves Proposition 2.6.

3. Proof of Theorem 1.1

Let E ⊆ N and let d, J , λ, f be as in the hypotheses. Label the elements of E as
1 � α1 < α2 < · · · . Let R be a large positive integer such that

H =
n

J
∈ N, where m = |E ∩ [1, R]| and n = 2m. (3.1)

Define the functions

qµ,ν(z) = pµ(z)f(z)ν , µ = 0, 1, . . . , H − 1, ν = 0, 1, . . . , J − 1, (3.2)

where pµ is defined as in (2.4). This gives HJ = n functions, which we label g1, . . . , gn,
where

gk(z) = pµ(k)(z)f(z)ν(k).

In order to prove Theorem 1.1, it suffices to show that the functions g1, . . . , gn are linearly
dependent over C. Once such a relation

n∑
k=1

Bkgk(z) ≡ 0

is established with the Bk constants, not all zero, then it cannot be the case that there is
an integer q such that Bk �= 0 implies ν(k) = q, because ph has degree h in (2.4). Hence,
it follows that f is algebraic, and Proposition 2.6 shows that f is a polynomial.

In order to prove that the gk are linearly dependent, observe first that

aj,k = gk(αj) ∈ Z,

using Lemma 2.5. Moreover, we have, for j = 1, . . . , m,

|aj,k| � eH

(
R

H
+ 1

)H

(1 + MΩ(R, f))J−1

� eH

(
R

H
+ 1

)H

e(J−1)λR

= J(R) � A = [J(R)] + 1, (3.3)
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by (2.5), (3.2) and the fact that R is large. Applying Lemma 2.1 with N = 2 yields
integers A1, . . . , An, not all zero, such that

n∑
k=1

Akgk(αj) = 0 (3.4)

for j = 1, . . . , m, and
|Ak| � 8nA, (3.5)

since n = 2m. Set

F (z) =
n∑

k=1

Akgk(z). (3.6)

Lemma 3.1. Choose a real number M with

4
(

1 + log(1 + J/2)
J

)
+ 2(J − 1)λ < M < 1

4d2, (3.7)

using (1.4). Provided that R is chosen large enough, we have

|E ∩ [1, r]| � dr and log+ MΩ(r, F ) � Mr for r � R. (3.8)

Proof. The first inequality of (3.8) holds provided, R is chosen large enough, since E

has lower density greater than d. Let c denote positive constants which do not depend
on r or R. Then we have

MΩ(r, F ) � 8n2AeH

(
r

H
+ 1

)H

(1 + MΩ(r, f))J−1

� cr2e2H

(
r

H
+ 1

)2H

e2(J−1)λr

using (2.5), (3.3), (3.5) and the fact that R is large. Now (3.1) gives

r

H
� R

H
=

RJ

n
� J

2
.

Since the function
1 + log(x + 1)

x

is decreasing for x > 0 this yields, for r � R,

log+ MΩ(r, F ) � 2r

(
H

r

)(
1 + log

(
r

H
+ 1

))
+ 2(J − 1)λr + O(log r)

� 4r

(
1 + log(1 + J/2)

J

)
+ 2(J − 1)λr + O(log r)

< Mr,

provided R is chosen large enough. �
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The function F satisfies F (z) ∈ Z for all z ∈ E, and F (z) = 0 for all z ∈ E ∩ [1, R] by
(3.4) and (3.6). It then follows from (3.7), (3.8) and Lemma 2.3, with S = R and G = E,
that F (z) = 0 for all z ∈ E. But (3.7) also gives

4M < d2 < d, M < πd,

and so (3.8) and Lemma 2.4, applied to the function F (−iz), show that F (z) vanishes
identically, which completes the proof of Theorem 1.1.
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13. G. Pólya, Über ganze ganzwertige Funktionen, Nachr. Ges. Wiss. Göttingen, Math.-

Phys. Cl. (1920), pp. 1–10.
14. R. M. Robinson, Integer-valued entire functions, Trans. Am. Math. Soc. 153 (1971),

451–468.
15. M. Waldschmidt, Integer valued entire function on Cartesian products, in Number theory

in progress, Volume 1, pp. 553–576 (de Gruyter, Berlin, 1999).
16. R. V. Walliser, On entire functions assuming integer values in a geometric sequence, in

Theorie des nombres, pp. 981–989 (de Gruyter, Berlin, 1989).
17. M. Welter, Ensembles régulièrement lacunaires d’entier et fonctions entières arithme-

tiques, J. Number Theory 109 (2004), 163–181.
18. M. Welter, A new class of integer-valued entire functions, J. Reine Angew. Math. 583

(2005), 175–192.
19. J. M. Whittaker, Interpolatory function theory, Cambridge Tracts, No. 33 (Cambridge

University Press, 1935).

https://doi.org/10.1017/S0013091507001265 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091507001265


630 A. N. Fletcher and J. K. Langley
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