INTEGER POINTS OF ANALYTIC FUNCTIONS IN A HALF-PLANE

ALASTAIR N. FLETCHER AND J. K. LANGLEY
School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK (jkl@maths.nott.ac.uk)

(Received 18 October 2007)

Abstract

It is shown that if f is an analytic function of sufficiently small exponential type in the right half-plane, which takes integer values on a subset of the positive integers having positive lower density, then f is a polynomial.

Keywords: analytic functions; integer values; half-plane
2000 Mathematics subject classification: Primary 30D20
Secondary 30D35

1. Introduction

A classical theorem of Pólya (see [13] and [19, p. 55]) shows that 2^{z} is the slowest growing transcendental entire function which takes integer values at the non-negative integers. That is, let f be entire and take integer values on $\mathbb{N} \cup\{0\}$. Pólya shows that if

$$
\limsup _{r \rightarrow \infty} \frac{M(r, f)}{2^{r}}<1, \quad \text { where } M(r, f)=\max \{|f(z)|:|z|=r\}
$$

then f is a polynomial and, further, that if

$$
\begin{equation*}
M(r, f)=O\left(r^{N} 2^{r}\right) \tag{1.1}
\end{equation*}
$$

as $r \rightarrow \infty$ for some $N>0$, then there exist polynomials P_{1} and P_{2} such that $f(z) \equiv$ $P_{1}(z) 2^{z}+P_{2}(z)$. Further results on integer-valued entire functions may be found in $[\mathbf{1}-$ $3,5,10,11,14-18]$.

This paper is concerned with similar results for analytic functions in a half-plane. It was proved in [7, Lemma 5] that if f is analytic of polynomial growth in the right half-plane and takes integer values at the positive integers, then f is a polynomial. This result has several applications to value distribution theory and differential equations [7-9]. In [12], an analogue of Pólya's result for a half-plane is given. That is, let f be analytic in the closed right half-plane $\Omega=\{z \in \mathbb{C}: \operatorname{Re}(z) \geqslant 0\}$ with maximum modulus

$$
\begin{equation*}
M_{\Omega}(r, f)=\max \{|f(z)|: z \in \Omega,|z| \leqslant r\} \tag{1.2}
\end{equation*}
$$

and assume that $f(n)$ is an integer for all sufficiently large positive integers n. If f satisfies (1.1) as $r \rightarrow \infty$ for some $N>0$, with $M(r, f)$ replaced by $M_{\Omega}(r, f)$, then again there exist polynomials P_{1} and P_{2} with $f(z) \equiv P_{1}(z) 2^{z}+P_{2}(z)$. Furthermore, if f takes integer values at all the non-negative integers and

$$
\limsup _{|z| \rightarrow \infty, z \in \Omega} \frac{|f(z)|}{2^{|z|}}<1,
$$

then f is a polynomial.
We remark that a result was proved in [20] for functions holomorphic on the product Ω^{n} of n half-planes and taking integer values on \mathbb{N}^{n}. This result contains [7, Lemma 5], but not the theorem from [12]. We are very grateful to the referee for drawing our attention to this reference and to others such as $[\mathbf{1}, \mathbf{2}, \mathbf{2 1}, \mathbf{2 2}]$.

In order to state our result, some terminology will be required. Let f be analytic in Ω, and let $0 \leqslant \lambda<\infty$. Then f is of exponential type λ in Ω if

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{\log ^{+} M_{\Omega}(r, f)}{r}=\lambda, \tag{1.3}
\end{equation*}
$$

where $\log ^{+} x=\max \{0, \log x\}$ and $M_{\Omega}(r, f)$ is as in (1.2). This is of course in direct analogy with the definition of exponential type for entire functions. The main result to be proved is the following half-plane analogue of a theorem of Waldschmidt for entire functions [15].

Theorem 1.1. Let d, J, λ satisfy

$$
\begin{equation*}
0<d<1, \quad J \in \mathbb{N}, \quad \lambda>0, \quad 16\left(\frac{1+\log (1+J / 2)}{J}\right)+8(J-1) \lambda<d^{2} . \tag{1.4}
\end{equation*}
$$

Let $E \subset \mathbb{N}$ have lower linear density

$$
\underline{D}(E)=\liminf _{n \rightarrow \infty} \frac{|E \cap\{1, \ldots, n\}|}{n}>d,
$$

where $|X|$ denotes the number of elements of the set X. Let the function f be analytic of exponential type less than λ in the closed right half-plane Ω, and assume that $f(n) \in \mathbb{Z}$ for every $n \in E$. Then f is a polynomial.

2. Lemmas used in the proof of Theorem 1.1

2.1. Linear forms

The following lemma is a slight modification of [$\mathbf{5}$, Lemma I, p. 11]: a proof is given for completeness.

Lemma 2.1. Let $A \geqslant 1$ and $N \geqslant 2$ be integers. Suppose that L_{1}, \ldots, L_{m} are linear forms in the n variables x_{1}, \ldots, x_{n}, with real coefficients $a_{j, k}$ for $j=1, \ldots, m$ and $k=$ $1, \ldots, n$, that is,

$$
L_{j}=a_{j, 1} x_{1}+\cdots+a_{j, n} x_{n} .
$$

Suppose further that $n>m$ and

$$
\max _{j, k}\left|a_{j, k}\right| \leqslant A
$$

Then there exist integers x_{1}, \ldots, x_{n}, not all zero, such that

$$
\left|L_{j}\right| \leqslant \frac{1}{N}
$$

for $j=1, \ldots, m$, and

$$
\left|x_{k}\right| \leqslant 2(2 n A N)^{m /(n-m)}
$$

for $k=1, \ldots, n$.
Proof. Define X by

$$
X=\left[(2 n A N)^{m /(n-m)}\right]
$$

where $[x]$ denotes the greatest integer not exceeding x. An n-tuple of integers $\left(x_{1}, \ldots, x_{n}\right)$, in which each x_{k} has absolute value no greater than X, gives rise to a point $\left(L_{1}, \ldots, L_{m}\right)$ lying in the closed m-dimensional cube of centre $(0, \ldots, 0)$ and side length $2 n A X$. Divide this cube into $(2 n A X N)^{m}$ closed subcubes, each of side length $1 / N$. The number of distinct n-tuples $\left(x_{1}, \ldots, x_{n}\right)$ is evidently

$$
(2 X+1)^{n} \geqslant\left(2(2 n A N)^{m /(n-m)}-1\right)^{n}>(2 n A N)^{n m /(n-m)} \geqslant(2 n A X N)^{m}
$$

since if this is not the case, we get

$$
(2 n A N)^{n}<(2 n A X N)^{n-m} \leqslant(2 n A N)^{n-m}(2 n A N)^{m}
$$

which is impossible. Hence, there are distinct n-tuples giving rise to points $\left(L_{1}^{\prime}, \ldots, L_{m}^{\prime}\right)$ and $\left(L_{1}^{\prime \prime}, \ldots, L_{m}^{\prime \prime}\right)$ lying in the same subcube. But then we may write

$$
\left|\sum_{k=1}^{n} a_{j, k}\left(x_{k}^{\prime}-x_{k}^{\prime \prime}\right)\right|=\left|L_{j}^{\prime}-L_{j}^{\prime \prime}\right| \leqslant \frac{1}{N}
$$

for $j=1, \ldots, m$, where

$$
\left|x_{k}^{\prime}-x_{k}^{\prime \prime}\right| \leqslant 2 X \leqslant 2(2 n A N)^{m /(n-m)}
$$

and $x_{k}=x_{k}^{\prime}-x_{k}^{\prime \prime} \neq 0$ for at least one k. This completes the proof.

2.2. An application of the maximum principle

Lemma 2.2. Let d, M, L, K satisfy

$$
\begin{equation*}
0<d<1, \quad M>0, \quad 1<K<L<\infty, \quad M L^{2} K<d^{2}(L-K) \tag{2.1}
\end{equation*}
$$

Let $G \subseteq \mathbb{N}$ and let F be analytic in the closed right half-plane Ω such that $F(z) \in \mathbb{Z}$ for all $z \in G$. Let $s>0$ be such that $M_{\Omega}(L s, F) \leqslant \mathrm{e}^{M L s}$ and F has $m \geqslant d s$ distinct zeros in $G \cap[1, s]$. Then $F(z)=0$ for all $z \in G \cap[s, K s]$.

Proof. Let x_{1}, \ldots, x_{m} be distinct zeros of F in $G \cap[1, s]$. For $0<x \leqslant s$ let

$$
p(z)=p(z, x)=\frac{z-x}{z+x}
$$

Then p satisfies

$$
|p(z)| \begin{cases}=1, & z \in \mathrm{i} \mathbb{R} \\ \geqslant \frac{L s-x}{L s+x}, & |z|=L s \\ \leqslant \frac{K s-x}{K s+x}, & z \in[s, K s] \subseteq \mathbb{R}\end{cases}
$$

the last estimate following from monotonicity. Next, let

$$
g(x)=\log \left[\left(\frac{L s+x}{L s-x}\right)\left(\frac{K s-x}{K s+x}\right)\right]
$$

Then, for $0 \leqslant x \leqslant s$,

$$
\begin{aligned}
g^{\prime}(x) & =\frac{1}{L s+x}+\frac{1}{L s-x}-\frac{1}{K s+x}-\frac{1}{K s-x} \\
& =\frac{2 L s}{L^{2} s^{2}-x^{2}}-\frac{2 K s}{K^{2} s^{2}-x^{2}} \\
& =\frac{2 s^{3} K L(K-L)+2 x^{2} s(K-L)}{\left(L^{2} s^{2}-x^{2}\right)\left(K^{2} s^{2}-x^{2}\right)} \\
& \leqslant \frac{2(K-L)}{L K s}
\end{aligned}
$$

and hence

$$
g(x) \leqslant \frac{2 x(K-L)}{L K s}
$$

The function

$$
F_{1}(z)=F(z) \prod_{j=1}^{m} \frac{1}{p\left(z, x_{j}\right)}
$$

is analytic in Ω and satisfies

$$
\left|F_{1}(z)\right| \leqslant M_{\Omega}(L s, F) \prod_{j=1}^{m} \frac{L s+x_{j}}{L s-x_{j}}
$$

on the boundary of the region given by $z \in \Omega,|z| \leqslant L s$, and this estimate also holds for $z \in[s, K s]$, by the maximum principle. For $z \in[s, K s]$ it therefore follows that

$$
\begin{aligned}
|F(z)| & \leqslant M_{\Omega}(L s, F) \prod_{j=1}^{m}\left[\left(\frac{L s+x_{j}}{L s-x_{j}}\right)\left(\frac{K s-x_{j}}{K s+x_{j}}\right)\right] \\
& =M_{\Omega}(L s, F) \exp \left(\sum_{j=1}^{m} g\left(x_{j}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant M_{\Omega}(L s, F) \exp \left(\frac{2(K-L)}{L K s} \sum_{j=1}^{m} x_{j}\right) \\
& \leqslant M_{\Omega}(L s, F) \exp \left(\frac{2(K-L)}{L K s} \cdot \frac{m(m+1)}{2}\right) \\
& \leqslant \exp \left(M L s+\frac{d^{2}(K-L) s}{L K}\right) \\
& <1
\end{aligned}
$$

using (2.1) and the fact that the x_{j} are distinct positive integers, which proves the lemma.

In order to apply Lemma 2.2 , it is necessary for a given d to choose M, L and K with (2.1) in mind. Evidently, if

$$
M L^{2}<d^{2}(L-1)
$$

then K may be chosen with $K-1$ small and positive so that (2.1) is satisfied. Since elementary calculus gives

$$
q(L)=\frac{L-1}{L^{2}} \leqslant q(2)=\frac{1}{4}
$$

for $1<L<\infty$, the appropriate condition is $4 M<d^{2}$.
Lemma 2.3. Let $0<d<1$ and $0<4 M<d^{2}$. Let $G \subseteq \mathbb{N}$ and let F be analytic in Ω such that $F(z) \in \mathbb{Z}$ for all $z \in G$. Let $S>0$ be such that

$$
Q(r)=|G \cap[0, r]| \geqslant d r \quad \text { and } \quad M_{\Omega}(r, F) \leqslant \mathrm{e}^{M r}
$$

for all $r \geqslant S$, and assume that $F(z)=0$ for all z in $G \cap[1, S]$. Then $F(z)=0$ for all $z \in G$.

Proof. Choose $L=2$ and $K \in(1,2)$ such that (2.1) is satisfied. Then F has at least $d S$ distinct zeros in $G \cap[1, S]$. Applying Lemma 2.2 with $s=S$ then shows that $F(z)=0$ for all $z \in G \cap[S, K S]$, from which it follows at once that F has at least $Q(K S) \geqslant d K S$ distinct zeros in $[1, K S]$. Hence, Lemma 2.2 may again be applied, this time with $s=K S$. Repetition of this argument proves Lemma 2.3.

2.3. The Nevanlinna characteristic in a half-plane

This section provides a brief overview of a half-plane characteristic analogous to the Nevanlinna characteristic in the plane, the details of which may be found in [6, p. 38]. Let f be meromorphic in the closed upper half-plane

$$
\overline{\mathbb{H}}=\{z \in \mathbb{C}: \operatorname{Im}(z) \geqslant 0\}
$$

with poles at $\rho_{n} \mathrm{e}^{\mathrm{i} \psi_{n}}$, where $\rho_{n} \geqslant 0$ and $0 \leqslant \psi_{n} \leqslant \pi$. The counting function of the poles is

$$
c(r, f)=\sum_{1<\rho_{n} \leqslant r} \sin \psi_{n},
$$

and the integrated counting function takes the form

$$
C(r, f)=2 \int_{1}^{r} c(t, f)\left(\frac{1}{t^{2}}+\frac{1}{r^{2}}\right) \mathrm{d} t=2 \sum_{1<\rho_{n} \leqslant r}\left(\frac{1}{\rho_{n}}-\frac{\rho_{n}}{r^{2}}\right) \sin \psi_{n}
$$

The analogue of the Nevanlinna proximity function consists of the following two functions:

$$
\begin{aligned}
& A(r, f)=\frac{1}{\pi} \int_{1}^{r}\left(\frac{1}{t^{2}}-\frac{1}{r^{2}}\right)\left[\log ^{+}|f(t)|+\log ^{+}|f(-t)|\right] \mathrm{d} t \\
& B(r, f)=\frac{2}{\pi r} \int_{0}^{\pi} \log ^{+}\left|f\left(r \mathrm{e}^{\mathrm{i} \phi}\right)\right| \sin \phi \mathrm{d} \phi
\end{aligned}
$$

The half-plane characteristic is then given by

$$
S(r, f)=A(r, f)+B(r, f)+C(r, f)
$$

and satisfies, for non-constant f and $a \in \mathbb{C}$,

$$
\begin{equation*}
S\left(r, \frac{1}{f-a}\right)=S(r, f)+O(1) \tag{2.2}
\end{equation*}
$$

as $r \rightarrow \infty$.
The following lemma uses the half-plane characteristic and is in the spirit of Carlson's theorem [4]. For generalizations in other directions see $[\mathbf{2 1}, \mathbf{2 2}]$.

Lemma 2.4. Let $E \subseteq \mathrm{i} \mathbb{N}=\{\mathrm{i}, 2 \mathrm{i}, \ldots\}$ have lower density D. Let f be analytic in $\overline{\mathbb{H}}$, of exponential type $\lambda<\pi D$, with $f(z)=0$ for all $z \in E$. Then $f \equiv 0$.

Here the lower density of E and exponential type relative to the upper half-plane are defined in straightforward analogy with $\S 1$.

Proof. Assume that f is not identically zero. As $r \rightarrow \infty$,

$$
B(r, f) \leqslant \frac{2}{\pi r} \int_{0}^{\pi}(\lambda+o(1)) r \sin \phi \mathrm{~d} \phi=O(1)
$$

and

$$
A(r, f) \leqslant \frac{1}{\pi} \int_{1}^{r}\left(\frac{1}{t^{2}}-\frac{1}{r^{2}}\right) 2(\lambda+o(1)) t \mathrm{~d} t+O(1) \leqslant \frac{2(\lambda+o(1))}{\pi} \log r
$$

Since f has no poles in $\overline{\mathbb{H}}$, applying (2.2) with $a=0$ now gives

$$
\begin{equation*}
S\left(r, \frac{1}{f}\right) \leqslant A(r, f)+B(r, f)+O(1) \leqslant \frac{2(\lambda+o(1))}{\pi} \log r \tag{2.3}
\end{equation*}
$$

But since the lower density of E is D we have

$$
c\left(r, \frac{1}{f}\right) \geqslant \sum_{n \in \mathbb{N} \cap(1, r], \text { in } n \in E} 1 \geqslant(D-o(1)) r
$$

as $r \rightarrow \infty$. Integrating this yields

$$
S\left(r, \frac{1}{f}\right) \geqslant C\left(r, \frac{1}{f}\right) \geqslant 2 \int_{1}^{r}(D-o(1)) t\left(\frac{1}{t^{2}}+\frac{1}{r^{2}}\right) \mathrm{d} t \geqslant 2(D-o(1)) \log r
$$

as $r \rightarrow \infty$, which, on combination with (2.3), gives $\lambda \geqslant \pi D$, a contradiction. Therefore, f must be identically zero.

2.4. A class of polynomials

The following lemma summarizes some basic facts from [15] concerning a class of polynomials which are key to the proof of Theorem 1.1.

Lemma 2.5. Define polynomials p_{0}, p_{1}, \ldots by

$$
\begin{equation*}
p_{0}(z)=1, \quad p_{1}(z)=z, \quad p_{h}(z)=\frac{z(z-1) \cdots(z-h+1)}{h!}, \quad h=2,3, \ldots \tag{2.4}
\end{equation*}
$$

Then $p_{h}(\mathbb{Z}) \subseteq \mathbb{Z}$, and for $R>0$ and $H \in \mathbb{N}$ we have

$$
\begin{equation*}
\left|p_{h}(z)\right| \leqslant \mathrm{e}^{H}\left(\frac{R}{H}+1\right)^{H} \quad \text { for }|z| \leqslant R, h=0, \ldots, H \tag{2.5}
\end{equation*}
$$

Proof. It is easy to check that $p_{h}(\mathbb{Z}) \subseteq \mathbb{Z}$. To prove (2.5) we write, following [15],

$$
\left|p_{h}(z)\right| \leqslant \frac{(R+H)^{h}}{h!} \leqslant \frac{H^{h}}{h!}\left(\frac{R}{H}+1\right)^{H} \leqslant \mathrm{e}^{H}\left(\frac{R}{H}+1\right)^{H}
$$

2.5. Algebraic functions mapping integers to integers

Proposition 2.6. Let the algebraic function f be analytic in Ω and let it satisfy $f(E) \subseteq \mathbb{Z}$ for some set $E \subseteq \mathbb{N}$ of positive lower density. Then f is a polynomial.

To prove Proposition 2.6, let E and f be as in the hypotheses, and assume that the lower density of E exceeds $D>0$. We assert that f maps the positive real axis into \mathbb{R}. To see this, observe that the functions $\overline{f(\bar{z})}$ and $f(z)-\overline{f(\bar{z})}$ are algebraic because f is algebraic. Since $f(z) \in \mathbb{R}$ for $z \in E$ and since an algebraic function having a sequence of zeros tending to infinity must vanish identically, the assertion follows.

Again since f is algebraic, there exists a positive integer m such that, for all sufficiently large r,

$$
\begin{equation*}
M_{\Omega}(r, f) \leqslant r^{m} \tag{2.6}
\end{equation*}
$$

Let n and N be integers with n / m and N / n large, and in particular with

$$
\begin{equation*}
D N \geqslant n+1 \tag{2.7}
\end{equation*}
$$

Lemma 2.7. There exist arbitrarily large $r \in \mathbb{N}$ such that

$$
\begin{equation*}
|E \cap\{r, r+1, \ldots, r+N-1\}| \geqslant n+1 \tag{2.8}
\end{equation*}
$$

Proof. Assume that there exists $p_{0} \in \mathbb{N}$ such that, for every $p \geqslant p_{0}$,

$$
|E \cap\{N p, \ldots, N(p+1)-1\}| \leqslant n
$$

Since the lower density of E exceeds D, for large p, this gives

$$
D N p \leqslant|E \cap\{1, \ldots, N p\}| \leqslant\left(p-p_{0}\right) n+O(1) \leqslant(n+o(1)) p
$$

which contradicts (2.7).
Let ε be small and positive and choose a large positive integer r satisfying (2.8). Let $\Gamma=\Gamma_{r}$ be the circle of centre r, radius εr, described once anticlockwise. Choose distinct

$$
\begin{equation*}
a_{0}, \ldots, a_{n} \in E \cap\{r, r+1, \ldots, r+N-1\} \tag{2.9}
\end{equation*}
$$

Then a_{0}, \ldots, a_{n} lie inside Γ, since r is large.
For $k=0, \ldots, n$ it follows from Cauchy's integral formula and the identity

$$
\frac{1}{t-z}=\frac{1}{t-a_{0}}+\frac{z-a_{0}}{\left(t-a_{0}\right)\left(t-a_{1}\right)}+\cdots+\frac{\left(z-a_{0}\right) \cdots\left(z-a_{k}\right)}{\left(t-a_{0}\right) \cdots\left(t-a_{k}\right)(t-z)}
$$

which is easily proved by induction, that

$$
\begin{equation*}
f(z)=P_{k}(z)+\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{\left(z-a_{0}\right) \cdots\left(z-a_{k}\right) f(t) \mathrm{d} t}{\left(t-a_{0}\right) \cdots\left(t-a_{k}\right)(t-z)} \tag{2.10}
\end{equation*}
$$

for z inside Γ, where

$$
\begin{equation*}
P_{k}(z)=A_{0}+A_{1}\left(z-a_{0}\right)+\cdots+A_{k}\left(z-a_{0}\right) \cdots\left(z-a_{k-1}\right) \tag{2.11}
\end{equation*}
$$

is given by

$$
\begin{equation*}
A_{j}=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{f(t) \mathrm{d} t}{\left(t-a_{0}\right) \cdots\left(t-a_{j}\right)} \tag{2.12}
\end{equation*}
$$

Thus, $P_{k}(z)$ is the interpolating polynomial of degree at most k which equals $f(z)$ at the $k+1$ points a_{0}, \ldots, a_{k} [5, p. 103].

Next, let

$$
\begin{equation*}
Q=\prod_{0 \leqslant j<k \leqslant n}\left|a_{k}-a_{j}\right| \leqslant C=N^{(n+1)^{2}} \tag{2.13}
\end{equation*}
$$

and observe that C is independent of r. Since $f\left(a_{j}\right) \in \mathbb{Z}$ for $j=0, \ldots, n$, it follows from (2.12) and the residue theorem that

$$
\begin{equation*}
Q A_{j} \in \mathbb{Z} \quad \text { for } j=0, \ldots, n \tag{2.14}
\end{equation*}
$$

On the other hand, since r is large, (2.9) gives

$$
\left|t-a_{j}\right| \geqslant \frac{1}{2} \varepsilon r
$$

for $t \in \Gamma$. Thus, combining (2.6), (2.12) and (2.13) yields, for $m<j \leqslant n$, again since r is large,

$$
\left|Q A_{j}\right| \leqslant \frac{C(\varepsilon r)(2 r)^{m}}{(\varepsilon r / 2)^{j+1}}<\frac{1}{2}
$$

which in conjunction with (2.14) gives $A_{j}=0$.
Recalling (2.10) and the definition (2.11) of P_{k}, it now follows that $P_{m}=P_{n}$ and that $f-P_{m}$ has $n+1$ zeros a_{0}, \ldots, a_{n} in the interval $[r, r+N-1]$. Hence, $f^{(n)}=\left(f-P_{m}\right)^{(n)}$ has a zero in the same interval, using Rolle's theorem. Since r may be chosen arbitrarily large, the algebraic function $f^{(n)}$ must vanish identically, and f is a polynomial. This proves Proposition 2.6.

3. Proof of Theorem 1.1

Let $E \subseteq \mathbb{N}$ and let d, J, λ, f be as in the hypotheses. Label the elements of E as $1 \leqslant \alpha_{1}<\alpha_{2}<\cdots$. Let R be a large positive integer such that

$$
\begin{equation*}
H=\frac{n}{J} \in \mathbb{N}, \quad \text { where } m=|E \cap[1, R]| \text { and } n=2 m \tag{3.1}
\end{equation*}
$$

Define the functions

$$
\begin{equation*}
q_{\mu, \nu}(z)=p_{\mu}(z) f(z)^{\nu}, \quad \mu=0,1, \ldots, H-1, \nu=0,1, \ldots, J-1 \tag{3.2}
\end{equation*}
$$

where p_{μ} is defined as in (2.4). This gives $H J=n$ functions, which we label g_{1}, \ldots, g_{n}, where

$$
g_{k}(z)=p_{\mu(k)}(z) f(z)^{\nu(k)}
$$

In order to prove Theorem 1.1, it suffices to show that the functions g_{1}, \ldots, g_{n} are linearly dependent over \mathbb{C}. Once such a relation

$$
\sum_{k=1}^{n} B_{k} g_{k}(z) \equiv 0
$$

is established with the B_{k} constants, not all zero, then it cannot be the case that there is an integer q such that $B_{k} \neq 0$ implies $\nu(k)=q$, because p_{h} has degree h in (2.4). Hence, it follows that f is algebraic, and Proposition 2.6 shows that f is a polynomial.

In order to prove that the g_{k} are linearly dependent, observe first that

$$
a_{j, k}=g_{k}\left(\alpha_{j}\right) \in \mathbb{Z}
$$

using Lemma 2.5. Moreover, we have, for $j=1, \ldots, m$,

$$
\begin{align*}
\left|a_{j, k}\right| & \leqslant \mathrm{e}^{H}\left(\frac{R}{H}+1\right)^{H}\left(1+M_{\Omega}(R, f)\right)^{J-1} \\
& \leqslant \mathrm{e}^{H}\left(\frac{R}{H}+1\right)^{H} \mathrm{e}^{(J-1) \lambda R} \\
& =J(R) \leqslant A=[J(R)]+1 \tag{3.3}
\end{align*}
$$

by (2.5), (3.2) and the fact that R is large. Applying Lemma 2.1 with $N=2$ yields integers A_{1}, \ldots, A_{n}, not all zero, such that

$$
\begin{equation*}
\sum_{k=1}^{n} A_{k} g_{k}\left(\alpha_{j}\right)=0 \tag{3.4}
\end{equation*}
$$

for $j=1, \ldots, m$, and

$$
\begin{equation*}
\left|A_{k}\right| \leqslant 8 n A \tag{3.5}
\end{equation*}
$$

since $n=2 m$. Set

$$
\begin{equation*}
F(z)=\sum_{k=1}^{n} A_{k} g_{k}(z) \tag{3.6}
\end{equation*}
$$

Lemma 3.1. Choose a real number M with

$$
\begin{equation*}
4\left(\frac{1+\log (1+J / 2)}{J}\right)+2(J-1) \lambda<M<\frac{1}{4} d^{2} \tag{3.7}
\end{equation*}
$$

using (1.4). Provided that R is chosen large enough, we have

$$
\begin{equation*}
|E \cap[1, r]| \geqslant d r \quad \text { and } \quad \log ^{+} M_{\Omega}(r, F) \leqslant M r \quad \text { for } r \geqslant R \tag{3.8}
\end{equation*}
$$

Proof. The first inequality of (3.8) holds provided, R is chosen large enough, since E has lower density greater than d. Let c denote positive constants which do not depend on r or R. Then we have

$$
\begin{aligned}
M_{\Omega}(r, F) & \leqslant 8 n^{2} A \mathrm{e}^{H}\left(\frac{r}{H}+1\right)^{H}\left(1+M_{\Omega}(r, f)\right)^{J-1} \\
& \leqslant c r^{2} \mathrm{e}^{2 H}\left(\frac{r}{H}+1\right)^{2 H} \mathrm{e}^{2(J-1) \lambda r}
\end{aligned}
$$

using (2.5), (3.3), (3.5) and the fact that R is large. Now (3.1) gives

$$
\frac{r}{H} \geqslant \frac{R}{H}=\frac{R J}{n} \geqslant \frac{J}{2}
$$

Since the function

$$
\frac{1+\log (x+1)}{x}
$$

is decreasing for $x>0$ this yields, for $r \geqslant R$,

$$
\begin{aligned}
\log ^{+} M_{\Omega}(r, F) & \leqslant 2 r\left(\frac{H}{r}\right)\left(1+\log \left(\frac{r}{H}+1\right)\right)+2(J-1) \lambda r+O(\log r) \\
& \leqslant 4 r\left(\frac{1+\log (1+J / 2)}{J}\right)+2(J-1) \lambda r+O(\log r) \\
& <M r
\end{aligned}
$$

provided R is chosen large enough.

The function F satisfies $F(z) \in \mathbb{Z}$ for all $z \in E$, and $F(z)=0$ for all $z \in E \cap[1, R]$ by (3.4) and (3.6). It then follows from (3.7), (3.8) and Lemma 2.3, with $S=R$ and $G=E$, that $F(z)=0$ for all $z \in E$. But (3.7) also gives

$$
4 M<d^{2}<d, \quad M<\pi d
$$

and so (3.8) and Lemma 2.4, applied to the function $F(-\mathrm{i} z)$, show that $F(z)$ vanishes identically, which completes the proof of Theorem 1.1.

Acknowledgements. Both authors were supported by EPSRC Grant no. EP/ D065321/1.

References

1. J.-P. BÉzivin, Sur les points où une fonction analytique prend des valeurs entières, Annales Inst. Fourier 40 (1990), 785-809.
2. J.-P. BÉzivin, Suites d'entiers et fonctions entières arithmétiques, Annales Fac. Sci. Toulouse Math. 3 (1994), 313-334.
3. R. C. Buck, Integral valued entire functions, Duke Math. J. 15 (1948), 879-891.
4. W. H. J. Fuchs, A generalization of Carlson's theorem, J. Lond. Math. Soc. 21 (1946), 106-110.
5. A. O. Gelfond, Transcendental and algebraic numbers (Dover, New York, 1960).
6. A. A. Gol'dberg and I. V. Ostrovskir, Distribution of values of meromorphic functions (Nauka, Moscow, 1970).
7. J. K. Langley, On second order linear differential polynomials, Results Math. 26 (1994), 51-82.
8. J. K. Langley, Two results related to a question of Hinkkanen, Kōdai Math. J. 19 (1996), 52-61.
9. J. K. Langley, Quasiconformal modifications and Bank-Laine functions, Arch. Math. 71 (1998), 233-239.
10. J. K. Langley, Integer points of meromorphic functions, Computat. Meth. Funct. Theory 5 (2005), 253-262.
11. J. K. Langley, Integer points of entire functions, Bull. Lond. Math. Soc. 38 (2006), 239-249.
12. J. K. LANGLEY, Integer-valued analytic functions in a half-plane, Computat. Meth. Funct. Theory 7 (2007), 433-442.
13. G. Pólya, Über ganze ganzwertige Funktionen, Nachr. Ges. Wiss. Göttingen, Math.Phys. Cl. (1920), pp. 1-10.
14. R. M. Robinson, Integer-valued entire functions, Trans. Am. Math. Soc. 153 (1971), 451-468.
15. M. Waldschmidt, Integer valued entire function on Cartesian products, in Number theory in progress, Volume 1, pp. 553-576 (de Gruyter, Berlin, 1999).
16. R. V. WALLISER, On entire functions assuming integer values in a geometric sequence, in Theorie des nombres, pp. 981-989 (de Gruyter, Berlin, 1989).
17. M. Welter, Ensembles régulièrement lacunaires d'entier et fonctions entières arithmetiques, J. Number Theory 109 (2004), 163-181.
18. M. Welter, A new class of integer-valued entire functions, J. Reine Angew. Math. 583 (2005), 175-192.
19. J. M. Whittaker, Interpolatory function theory, Cambridge Tracts, No. 33 (Cambridge University Press, 1935).
20. K. Yoshino, Pólya's theorem for nonentire functions, Rend. Circ. Mat. Palermo 2 (1984), 385-395.
21. K. Yoshino, On Carlson's theorem for holomorphic functions, in Algebraic analysis, Volume II, pp. 943-950 (Academic Press, 1988).
22. K. Yoshino, Arithmetic holomorphic functions of exponential type on the product of half planes, Tokyo J. Math. 18(1) (1995), 147-150.
