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1. Introduction

The Berger spheres S
3
ε are homogeneous Riemannian spaces diffeomorphic to the three-

dimensional sphere. These spaces, found by Berger [3] in his classification of all simply
connected normal homogeneous Riemannian manifolds of positive sectional curvature,
have non-constant curvature, and their metrics are obtained from the round metric on
S

3 by deforming it along the fibres of the Hopf fibration S
3 → S

2 by ε. These spaces are
of great interest in Riemannian geometry and provide nice examples; for instance, they
served as counterexamples to a conjecture of Klingenberg about closed geodesics (see,
for example, [17, p. 160]) and to conjectures on the first eigenvalue of the Laplacian on
spheres [2,19].

On the other hand, Cartan’s classical characterization of Riemannian symmetric spaces
as the spaces of parallel curvature (under certain conditions) is well known. This char-
acterization was extended by Ambrose and Singer [1] to the homogeneous Riemannian
case; they proved that a connected, simply connected and complete Riemannian manifold
(M, g) is homogeneous if and only if there exists a (1, 2)-tensor field S on M satisfying
certain properties; this tensor field is called a homogeneous Riemannian structure by
Tricerri and Vanhecke in [18]. Moreover, a homogeneous almost contact metric mani-
fold (M, ϕ, ξ, η, g) is called homogeneous if there exists a connected Lie group G acting
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transitively on (M, g) as a group of isometries which leave the almost contact struc-
ture (ϕ, ξ, η) invariant; a homogeneous Riemannian structure satisfying an additional
condition characterizes such a property.

The purpose of the present paper is to study the homogeneous Riemannian structures
on the Berger 3-spheres. After some preliminaries (§ 2), we obtain all the homogeneous
Riemannian structures on the Berger spheres (§ 3). These structures define Lie algebras
with reductive decompositions, which have associated Lie groups with isometric actions
on the spheres (§ 4). Finally, in § 5, we consider natural almost contact metric structures
on the Berger spheres S

3
ε, which are α-Sasakian [11], α =

√
ε, and we obtain that these

spheres are homogeneous almost contact metric manifolds.

2. Preliminaries

2.1. Homogeneous Riemannian structures

Let (M, g) be a connected Riemannian manifold. Let ∇ be the Levi-Civita connection of
g and let R be its curvature tensor field, for which we adopt the conventions

RXY Z = ∇[X,Y ]Z − ∇X∇Y Z + ∇Y ∇XZ, RXY ZW = g(RXY Z, W ),

for all vector fields X, Y , Z, W on M . A homogeneous Riemannian structure on (M, g)
is [18] a tensor field S of type (1, 2) on M such that the connection ∇̃ = ∇ − S satisfies

∇̃g = 0, ∇̃R = 0, ∇̃S = 0. (2.1)

We also denote by S the associated tensor field of type (0, 3) on M defined by SXY Z =
g(SXY, Z).

Suppose that (M, g) is a homogeneous Riemannian manifold, that is M = G/H,
where G is a connected Lie group acting transitively and effectively on M as a group of
isometries and H is the isotropy group at a point o ∈ M . Then the Lie algebra g of G may
be decomposed into a vector space direct sum g = h⊕m, where h is the Lie algebra of H

and m is an Ad(H)-invariant subspace of g. If H is connected, the invariance condition
Ad(H)m ⊂ m is equivalent to [h,m] ⊂ m. The vector space m is identified with To(M)
through the isomorphism

µ : m → To(M),

X �→ X∗
o ,

}
(2.2)

where X∗ is the Killing vector field generated on M by the one-parameter subgroup
{exp sX} of G acting on M . Then, the canonical connection ∇̃ of M = G/H (with
regard to the reductive decomposition g = h ⊕ m) is determined by

(∇̃X∗Y ∗)o = −([X, Y ]m)∗
o, X, Y ∈ m, (2.3)

and S = ∇ − ∇̃ is the homogeneous Riemannian structure associated with the reductive
decomposition g = h ⊕ m.

Conversely, consider a homogeneous Riemannian structure S on a connected, sim-
ply connected and complete Riemannian manifold (M, g), fix a point o ∈ M and put

https://doi.org/10.1017/S0013091504000422 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000422


Homogeneous Riemannian structures on Berger 3-spheres 377

m̃ = To(M). If R̃ is the curvature tensor of the connection ∇̃ = ∇ − S, the holonomy
algebra h̃ of ∇̃ is the Lie subalgebra (of the Lie algebra of antisymmetric endomorphisms
of (m̃, go)) generated by the operators R̃XY , where X, Y ∈ m̃. Then, a Lie bracket is
defined on the vector space direct sum g̃ = h̃ ⊕ m̃ by

[U, V ] = UV − V U, U, V ∈ h̃,

[U, X] = U(X), U ∈ h̃, X ∈ m̃,

[X, Y ] = R̃XY + SXY − SY X, X, Y ∈ m̃,

⎫⎪⎪⎬
⎪⎪⎭ (2.4)

and (g̃, h̃) is the reductive pair associated with the homogeneous Riemannian structure
S. Let G̃ be the connected simply connected Lie group whose Lie algebra is g̃ and let
H̃ be the connected Lie subgroup of G̃ whose Lie algebra is h̃. Then G̃ acts transitively
by isometries on M and M is diffeomorphic to G̃/H̃. If Γ is the set of the elements of
G̃ which act trivially on M , then Γ is a discrete normal subgroup of G̃, and the Lie
group G = G̃/Γ acts transitively and effectively on M as a group of isometries, with
isotropy group H = H̃/Γ . Then M is diffeomorphic to the homogeneous Riemannian
manifold G/H.

2.2. The Berger spheres

As usual, we identify the sphere S
3 and the Lie group SU(2) by the map that sends

(z, w) ∈ S
3 ⊂ C

2 to ( z w
−w̄ z̄ ) ∈ SU(2). We consider the basis {X1, X2, X3} of the Lie

algebra su(2) of SU(2) given by

X1 =

(
i 0
0 −i

)
, X2 =

(
0 1

−1 0

)
, X3 =

(
0 i
i 0

)
. (2.5)

Then

[X1, X2] = 2X3, [X2, X3] = 2X1, [X3, X1] = 2X2. (2.6)

The one-parameter family {gε : ε > 0} of left-invariant Riemannian metrics on S
3 =

SU(2) given at the identity element I ∈ SU(2), with respect to the basis of left-invariant
vector fields X1, X2, X3, by

gε =

⎛
⎜⎝ε 0 0

0 1 0
0 0 1

⎞
⎟⎠ ,

are called the Berger metrics on S
3; if ε = 1 we have the canonical (bi-invariant)

metric. The Berger spheres are the simply connected complete Riemannian manifolds
S

3
ε = (S3, gε), ε > 0.
The Levi-Civita connection of gε is given by

2gε(∇XY, Z) = gε([X, Y ], Z) − gε([Y, Z], X) + gε([Z, X], Y ),
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for all X, Y, Z ∈ su(2). So, the covariant derivatives between generators are given by
∇Xi

Xi = 0 and

∇X1X2 = (2 − ε)X3, ∇X1X3 = (ε − 2)X2,

∇X2X1 = −εX3, ∇X2X3 = X1,

∇X3X1 = εX2, ∇X3X2 = −X1.

⎫⎪⎬
⎪⎭ (2.7)

The components of the curvature tensor field are given by

RX1X2X1 = ε2X2, RX1X2X2 = −εX1, RX1X2X3 = 0,

RX1X3X1 = ε2X3, RX1X3X2 = 0, RX1X3X3 = −εX1,

RX2X3X1 = 0, RX2X3X2 = (4 − 3ε)X3, RX2X3X3 = (3ε − 4)X2.

3. Homogeneous Riemannian structures on S
3
ε

If S is a homogeneous Riemannian structure on S
3
ε and ∇̃ = ∇ − S, the condition ∇̃g = 0

in (2.1) is equivalent to SXY Z + SXZY = 0 for all X, Y, Z ∈ su(2). Then, if {α1, α2, α3}
is the basis of left-invariant forms dual to X1, X2, X3, the tensor field S of type (0, 3)
can be written as

S = ρ ⊗ (α1 ∧ α2) + σ ⊗ (α1 ∧ α3) + τ ⊗ (α2 ∧ α3), (3.1)

where
ρ(Z) = SZX1X2 , σ(Z) = SZX1X3 , τ(Z) = SZX2X3 , (3.2)

for each vector field Z on S
3.

Moreover, the condition ∇̃R = 0 is equivalent to

(∇ZR)XY V W = −RSZXY V W − RXSZY V W − RXY SZV W − RXY V SZW , (3.3)

for all Z, X, Y, V, W ∈ su(2). Replacing (X, Y, V, W ) in (3.3) by (X1, X3, X2, X3) and
(X1, X2, X2, X3), respectively, we obtain that

(ε − 1)ρ = ε(ε − 1)α3, (ε − 1)σ = −ε(ε − 1)α2. (3.4)

It is easy to see that the condition ∇̃R = 0 holds if and only if Equations (3.4) are
satisfied. In the case of the canonical metric (ε = 1) this condition holds automatically.

In order to determine the conditions for the 1-forms ρ, σ, τ such that ∇̃S = 0, we first
compute the connections forms ω̃ij of ∇̃, defined by ∇̃ZXj =

∑3
i=1 ω̃ij(Z)Xi. They are

given by ω̃ii = 0 and

ω̃21 = εα3 − ρ, ω̃31 = −εα2 − σ,

ω̃12 = −α3 +
1
ε
ρ, ω̃32 = (2 − ε)α1 − τ,

ω̃13 = α2 +
1
ε
σ, ω̃23 = (ε − 2)α1 + τ.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.5)
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Since SZXX = 0, by using these last equations, from (3.2) we obtain that

(∇̃ZS)V X1X2 = (∇̃Zρ)(V ) − (εα2 + σ)(Z)τ(V ) + ((ε − 2)α1 + τ)(Z)σ(V ), (3.6)

(∇̃ZS)V X1X3 = (∇̃Zσ)(V ) − (εα3 − ρ)(Z)τ(V ) + ((2 − ε)α1 − τ)(Z)ρ(V ), (3.7)

(∇̃ZS)V X2X3 = (∇̃Zτ)(V ) +
(

α3 − 1
ε
ρ

)
(Z)σ(V ) +

(
α2 +

1
ε
σ

)
(Z)ρ(V ). (3.8)

In particular, if ε = 1 we have the following theorem.

Theorem 3.1. The homogeneous Riemannian structures on the sphere S
3 with the

canonical metric are given by (3.1), where ρ, σ and τ are differential 1-forms on S
3

satisfying

∇̃ρ = (α1 − τ) ⊗ σ + (α2 + σ) ⊗ τ,

∇̃σ = (α3 − ρ) ⊗ τ − (α1 − τ) ⊗ ρ,

∇̃τ = −(α2 + σ) ⊗ ρ − (α3 − ρ) ⊗ σ.

Suppose now that ε 
= 1. By (3.4), the condition ∇̃R = 0 is equivalent to ρ = εα3 and
σ = −εα2. Then, Equations (3.5) reduce to

ω̃23 = (ε − 2)α1 + τ = −ω̃32, ω̃ij = 0 in all other cases. (3.9)

Since (∇̃Zαi)(Xj) = −ω̃ij(Z), by (3.9) we have

∇̃Zα1 = 0, ∇̃Zα2 = ((2−ε)α1−τ)(Z)α3, ∇̃Zα3 = ((ε−2)α1+τ)(Z)α2, (3.10)

and by (3.6), (3.7) and (3.10), we have (∇̃ZS)V X1X2 = (∇̃ZS)V X1X3 = 0, and hence,
by (3.8), ∇̃S = 0 if and only if ∇̃τ = 0. Now, if we put τ = f1α

1 + f2α
2 + f3α

3, by
using (3.10), the equation ∇̃τ = 0 is equivalent to the equations

Z(f1) = 0, Z(f2) + f3((ε − 2)α1 + τ)(Z) = 0, Z(f3) + f2((2 − ε)α1 − τ)(Z) = 0,

for every vector field Z on S
3. Then f1 is a constant. Replacing Z by X2 and X3 in each

one of the last two equations above and using the structure equations (2.6), we obtain
that f2 = f3 = 0. So, τ is a scalar multiple of α1, and we conclude with the following
theorem.

Theorem 3.2. For ε 
= 1, the homogeneous Riemannian structures on the Berger
sphere S

3
ε are given by

Sε,t = εα3 ⊗ (α1 ∧ α2) − εα2 ⊗ (α1 ∧ α3) + tα1 ⊗ (α2 ∧ α3), t ∈ R. (3.11)

As a consequence, the components of the (1, 2)-tensor field corresponding to S = Sε,t

in (3.11) are given by

SX1X1 = 0, SX1X2 = tX3, SX1X3 = −tX2,

SX2X1 = −εX3, SX2X2 = 0, SX2X3 = X1,

SX3X1 = εX2, SX3X2 = −X1, SX3X3 = 0.

⎫⎪⎬
⎪⎭ (3.12)
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Remark 3.3. In [18], Tricerri and Vanhecke gave a classification of homogeneous
Riemannian structures into eight different classes, which are provided by the decompo-
sition of the space of the tensors S of type (0, 3) satisfying SXY Z + SXZY = 0 into three
irreducible components Ti, invariant under the action of the orthogonal group. Now, for
each p ∈ S

3, let c12(S)p be the map defined on the tangent space Tp(S3) by

c12(S)p(Z) =
3∑

i=1

SeieiZ ,

where {ei} is an orthonormal basis of Tp(S3). If we choose e1 =
√

ε
−1

X1|p, e2 = X2|p,
e3 = X3|p, we see that c12(S)p vanishes for every S = Sε,t. According to Tricerri–
Vanhecke’s classification, this implies that each S = Sε,t is of type T2 ⊕ T3. Moreover, if
t = ε, we have SXY + SY X = 0, then Sε,ε is of type T3, which means that S

3
ε is a natu-

rally reductive Riemannian space. If t = −2ε, we have that each cyclic sum SXY ZSXY Z

vanishes, and hence Sε,−2ε is of type T2, which may be also expressed by saying that S
3
ε

is a cotorsionless manifold (see [9]).

Remark 3.4. If ε = 1, particular solutions (ρ, σ, τ) of equations in Theorem 3.1 are
(α3,−α2, tα1), (α3,−tα2, α1), (tα3,−α2, α1) and (tα3,−tα2, tα1), t ∈ R. They give rise
to four one-parameter families of homogeneous Riemannian structures on the standard
sphere S

3. The first of them is given by (3.11). If t = 0 in the fourth family, we get the
solution S = 0; this is equivalent to saying that ∇R = 0 and it expresses the well-known
fact that the standard sphere is a Riemannian symmetric space.

4. Reductive decompositions and isometric actions on Berger spheres

We shall determine the reductive decompositions associated with the homogeneous
Riemannian structures on the Berger spheres S

3
ε given by (3.11). We fix the point

o = (1, 0) ∈ S
3 ⊂ C

2, which corresponds to the identity matrix I ∈ SU(2), and set
m̃ = To(S3) = TI(SU(2)) ≡ su(2).

If S = Sε,t is the homogeneous Riemannian structure defined by (3.11), then the
connection ∇̃ = ∇̃ε,t = ∇ − S is given, with respect to the basis {X1, X2, X3} of su(2),
by

∇̃X1X2 = (2 − ε − t)X3, ∇̃X1X3 = (ε − 2 + t)X2, (4.1)

with the rest vanishing, and the components of the curvature tensor are

R̃X1X2 = R̃X1X3 = 0 and R̃X2X3 = 2(2 − ε − t)(α2 ⊗ X3 − α3 ⊗ X2).

The holonomy algebra h̃ = h̃ε,t of ∇̃ is the Lie algebra of antisymmetric endomorphisms of
m̃ ≡ su(2) generated by the curvature operators R̃XiXj

, and the reductive pair associated
with the homogeneous Riemannian structure S = Sε,t is (g̃, h̃), where g̃ = g̃ε,t = h̃ ⊕ m̃

is a Lie algebra with structure equations defined by (2.4).
If t = 2 − ε, the holonomy algebra h̃ of ∇̃ is trivial and the reductive decomposition

associated with the homogeneous Riemannian structure S = Sε,2−ε is g̃ ≡ {0} ⊕ su(2)
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with structure equations (2.6). Then g̃ε,2−ε ≡ su(2) and the isometry group associated
with S = Sε,2−ε is SU(2), acting on itself by left translations.

Suppose now that t 
= 2 − ε. We put at = (2 − ε − t)/2, bt = (ε + t)/2 = 1 − at. Then
U = (1/(2at))R̃X2X3 = 2(α2 ⊗ X3 − α3 ⊗ X2) generates the holonomy algebra h̃ = h̃ε,t of
∇̃ = ∇̃ε,t and the reductive decomposition associated with the homogeneous Riemannian
structure S = Sε,t is g̃ε,t ≡ h̃ε,t ⊕ su(2) = 〈{U, X1, X2, X3}〉, with structure equations,
by (2.4), given by

[X1, X2] = 2btX3, [X2, X3] = 2atU + 2X1, [X3, X1] = 2btX2,

[U, X1] = 0, [U, X2] = 2X3, [U, X3] = −2X2.

If we set Û = btU − X1, X̂1 = atU + X1, X̂2 = X2, X̂3 = X3, then

[X̂1, X̂2] = 2X̂3, [X̂2, X̂3] = 2X̂1, [X̂3, X̂1] = 2X̂2, [Û , X̂j ] = 0 (1 � j � 3),

so g̃ε,t is the direct product of the Lie algebra r = 〈{Û}〉 of R and su(2) = 〈{X̂1, X̂2, X̂3}〉.
The corresponding connected simply connected Lie group is G̃ = R × SU(2).

Now, G̃ = R × SU(2) acts transitively and almost effectively on each Berger sphere by

((s, g), p) �→ gp

(
e−is 0
0 eis

)
. (4.2)

The isotropy group at the point o = I ∈ S
3 = SU(2) is

H̃ =

{(
s,

(
eis 0
0 e−is

) )
: s ∈ R

}
.

Let ψ : G̃ → U(2) be the covering homomorphism defined by ψ(s, g) = e−isg. It induces
a twofold covering homomorphism S

1 × SU(2) → U(2). The normal subgroup N =
{(2kπ, I) : k ∈ Z} of G̃ acts trivially on SU(2) and the action (4.2) induces a transitive
and almost effective isometric action of G̃/N ∼= S

1 × SU(2) on S
3
ε. The set Γ of all the

elements of G̃ which act trivially on S
3 is the discrete normal subgroup of G̃ given by

Γ = {(kπ, (−1)kI) : k ∈ Z} = ker ψ ⊂ H̃

and G = G̃/Γ ∼= U(2) acts transitively and effectively on S
3
ε as a group of isometries.

Moreover, H = H̃/Γ ∼= ψ(H) = {1}×U(1) ⊂ U(2) is the isotropy group at o = (1, 0) ≡ I

of the action of U(2) induced by (4.2).
We will show that these actions define reductive decompositions whose canonical con-

nection, given by (2.3), defines the homogeneous Riemannian structures in (3.11). The
Lie algebras of the groups G̃, G̃/N and G̃/Γ are isomorphic to the direct product Lie
algebra g = R × su(2). We consider the basis {B0, B1, B2, B3} of g given by B0 = (D, 0),
B1 = (0, X1), B2 = (0, X2), B3 = (0, X3), where D is the canonical base vector of
R = T0(R) and X1, X2, X3 ∈ su(2) are again given by (2.5). Each one-parameter group
{exp sBj} generates a Killing vector field B∗

j (1 � j � 4) on the sphere: B∗
0 = −X1
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is left invariant and, for 1 � j � 3, B∗
j is the right-invariant vector field on SU(2)

defined by Xj|I . On the other hand, if U0 = B0 + B1 and we consider the exponen-
tial map exp : g → G̃ = R × SU(2), then {exp sU0 : s ∈ R} = H̃. We set h = 〈{U0}〉,
Et = −atB0 + btB1, and m = 〈{Et, B2, B3}〉; we have [U0, Et] = 0, [U0, B2] = 2B3,
[U0, B3] = −2B2, and so g = h ⊕ m is a reductive decomposition. The isomorphism
µ : m → To(S3) = TI(SU(2)) ≡ su(2) in (2.2) satisfies

µ(Et) = (at + bt)X1|I ≡ X1, µ(B2) = X2|I ≡ X2 and µ(B3) = X3|I ≡ X3.

Moreover, [Et, B2] = 2btB3, [Et, B3] = 2atU0 + 2Et, [Et, B3] = −2btB2, and, by (2.3),
we get

(∇̃E∗
t
E∗

t )I = 0, (∇̃E∗
t
B∗

2)I = −2btX3|I , (∇̃E∗
t
B∗

3)I = 2btX2|I ,

(∇̃B∗
2
E∗

t )I = 2btX3|I , (∇̃B∗
2
B∗

2)I = 0, (∇̃B∗
2
B∗

3)I = −2X1|I ,

(∇̃B∗
3
E∗

t )I = −2btX2|I , (∇̃B∗
3
B∗

2)I = 2X1|I , (∇̃B∗
3
B∗

3)I = 0.

⎫⎪⎪⎬
⎪⎪⎭ (4.3)

For each

p = (z, w) ≡
(

z w

−w̄ z̄

)
∈ S

3 = SU(2),

we can write the left-invariant vector fields X1, X2, X3 in terms of the fundamental
vector fields B∗

1 , B∗
2 , B∗

3 as

X1|p = (|z|2 − |w|2)B∗
1|p + 2 Im(zw)B∗

2|p − 2 Re(zw)B∗
3|p,

X2|p = 2 Im(zw̄)B∗
1|p + Re(z2 + w2)B∗

2|p + 2 Im(z2 + w2)B∗
3|p,

X3|p = 2 Re(zw̄)B∗
1|p + Im(w2 − z2)B∗

2|p + 2 Re(z2 − w2)B∗
3|p.

⎫⎪⎪⎬
⎪⎪⎭ (4.4)

Applying now (4.4) and (4.3), some computations show that

(∇̃X1X2)I = (∇̃E∗
t
B∗

2)I + 2B∗
3|I = (2 − 2bt)X3|I = 2atX3|I ,

(∇̃X1X3)I = −2B∗
2|I + (∇̃E∗

t
B∗

3)I = (−2 + 2bt)X2|I = −2atX2|I ,

and the remaining (∇̃Xj Xk)I vanish. As a consequence, using (2.7), we see that the
homogeneous Riemannian structure S = ∇ − ∇̃ is given by Equations (3.12). Now, if
ψ∗ : g = R × su(2) → u(2) is the Lie algebra isomorphism induced by the covering
homomorphism ψ, then

ψ∗(U0) =

(
0 0
0 −2i

)
, ψ∗(Et) =

(
i 0
0 (1 − ε − t)i

)
,

ψ∗(B2) =

(
0 1

−1 0

)
, ψ∗(B3) =

(
0 i
i 0

)
,

and u(2) = ψ∗(h) ⊕ ψ∗(m) is the reductive decomposition of S
3
ε = U(2)/U(1) associated

with Sε,t. We conclude with the following theorem.
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Theorem 4.1. Let S = Sε,t be the homogeneous Riemannian structure on the Berger
sphere S

3
ε defined by (3.11). If t = 2− ε, the associated reductive decomposition is trivial

and the corresponding group of isometries is SU(2) acting on itself by left translations.
The group S

1 × SU(2) acts transitively and almost effectively on S
3 = SU(2) by

((eis, g), p) �→ gp

(
e−is 0
0 eis

)
,

and induces a transitive and effective action of U(2) on S
3
ε as a group of isometries, whose

reductive decomposition

u(2) =

〈{ (
0 0
0 i

) }〉⊕ 〈{ (
i 0
0 (1 − ε − t)i

)
,

(
1 0
0 −1

)
,

(
0 i
i 0

) }〉

is the associated one with the homogeneous Riemannian structure S if t 
= 2 − ε; if t = ε

it is a naturally reductive decomposition.

Remark 4.2. In the case of the standard sphere (ε = 1), S = 0 is a homogeneous
Riemannian structure, the associated canonical connection is ∇̃ = ∇, the holonomy alge-
bra is h̃ ≡ so(3), the corresponding reductive decomposition is g̃ ≡ so(4) ≡ so(3) ⊕ m̃,
and it defines the representation of S

3 as the symmetric space S
3 = SO(4)/SO(3).

As we noticed in Remark 3.4, different families of homogeneous Riemannian struc-
tures on the standard sphere S

3 are also given by putting (ρ, σ, τ) = (α3,−α2, tα1),
(α3,−tα2, α1) or (tα3,−α2, α1) in Equation (3.1); if t 
= 1, all of them correspond
to the isometric action of U(2) on S

3, with different reductive decompositions of
S

3 = U(2)/U(1); if t = 1, all of them define the same homogeneous Riemannian structure
S = α3 ⊗ (α1 ∧α2)−α2 ⊗ (α1 ∧α3)+α1 ⊗ (α2 ∧α3), which corresponds to the isometric
action of SU(2) on itself by left translations.

Remark 4.3. Tricerri and Vanhecke pointed out the following facts in [18]. Given a
homogeneous Riemannian manifold (M, g) with a group G of isometries, the Ambrose–
Singer method determines a tensor field S. This determines conversely a group G′ of
isometries which is in general not isomorphic to G. A simple but interesting example
is the Euclidean plane R

2; from the connected group of isometries G = SO(2) · R
2 one

obtains S = 0; now, the construction of G′ starting from S = 0 gives only the group of
translations of R

2, since R
2 is flat. So an interesting problem is to understand for which

spaces one has G = G′ (see [14,18]). We note that the discussion in the present section
shows that Berger spheres provide examples of such spaces.

5. The Berger spheres as homogeneous almost contact metric manifolds

An almost contact structure on a (2n + 1)-dimensional manifold M is a triple (ϕ, ξ, η),
where ϕ is a tensor field of type (1, 1), ξ a vector field (called the characteristic vector
field), and η a differential 1-form on M such that

ϕ2 = − id +η ⊗ ξ, η(ξ) = 1.
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Then ϕξ = 0, η ◦ ϕ = 0, and ϕ has rank 2n. If g is a Riemannian metric on M such that
g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y ) for all vector fields X and Y on M , then (ϕ, ξ, η, g) is
said to be an almost contact metric structure on M and g is called a compatible metric;
in this case, g(X, ξ) = η(X) and ξ has length 1. If

dη(X, Y ) = Xη(Y ) − Y η(X) − η([X, Y ])

is equal to 2g(X, ϕY ) for all vector fields X and Y on M , then (η, g) is called a contact
metric (or contact Riemannian) structure; in particular, η ∧ (dη)n 
= 0, that is, η is a
contact form on M . If

(∇Xϕ)Y = α(g(X, Y )ξ − η(Y )X)

for a function α on M , then (ϕ, ξ, η, g) is called α-Sasakian, and the manifold M with such
a structure is an α-Sasakian manifold. If α = 1, then it is Sasakian. Sasakian manifolds
can also be characterized as normal contact metric manifolds and they are in some sense
odd-dimensional analogues of Kähler manifolds (see Blair [4,5]).

If (ϕ, ξ, η, g) is an almost contact metric structure on M and (M = G/H, g) is a homo-
geneous Riemannian manifold such that ϕ is invariant under the action of the connected
Lie group G (and hence so are ξ and η), then (M, ϕ, ξ, η, g) is called a homogeneous
almost contact metric manifold (see [6,10] and also [13]). From the results of Kiric̆enko
in [12] it follows that if (M, g) is a connected, simply connected and complete Riemannian
manifold and (ϕ, ξ, η) is an almost contact structure on M such that g is a compatible
metric, then (M, ϕ, ξ, η, g) is a homogeneous almost contact metric manifold if and only
if there exists a tensor field S of type (1, 2) on M satisfying (2.1) and the additional
condition ∇̃ϕ = 0 (and hence ∇̃ξ = 0 and ∇̃η = 0), where ∇̃ = ∇ − S. Such a homoge-
neous Riemannian structure S is called a homogeneous almost contact metric structure
on (M, ϕ, ξ, η, g).

For each ε > 0, we will define an almost contact structure (ϕ, ξ, η) on the sphere S
3

such that the Berger metric gε may be compatible. In order to get that (ϕ, ξ, η, gε) can
be homogeneous, the characteristic vector field ξ must be invariant by the isometries
defined by the action of SU(2) on itself, then ξ must be left invariant; and by (4.1), in
order to have ∇̃ξ = 0 for each homogeneous Riemannian structure Sε,t, t 
= 2 − ε, the
vector field ξ must be a scalar multiple of X1; furthermore, it must have length 1, then
ξ =

√
ε

−1
X1; moreover, in order to obtain g(X, ξ) = η(X) for each vector field X, the

distribution defined by η = 0 must be generated by the left-invariant vector fields X2,
X3. We set

ϕ = α2 ⊗ X3 − α3 ⊗ X2, ξε =
1√
ε
X1, ηε =

√
εα1.

Remark 5.1. Notice that ηε ∧ dηε = −2εα1 ∧ α2 ∧ α3 
= 0, so ηε is a contact form
on the 3-sphere, and, moreover, dηε(X, Y ) = 2

√
εgε(X, ϕY ); in particular, (η1, g1) is a

contact Riemannian structure. The simply connected 3-manifolds which admit homoge-
neous Riemannian contact structures (that is, those for which there exists a connected Lie
group acting transitively as a group of isometries which leave the contact form invariant)
have been classified by Perrone in [16].
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The Levi-Civita connection ∇ of gε satisfies

(∇X2ϕ)X1 = −εX2, (∇X3ϕ)X1 = −εX3, (∇X2ϕ)X2 = (∇X3ϕ)X3 = X1,

and (∇Xiϕ)Xj = 0 in the other cases. So, we have

(∇Xϕ)Y =
√

ε(gε(X, Y )ξ − ηε(Y )X)

for all vector fields X and Y on S
3, hence (ϕ, ξε, ηε, gε) is a

√
ε-Sasakian structure on S

3.
If ε 
= 1, each homogeneous Riemannian structure S = Sε,t on S

3
ε is given by (3.11)

and the canonical connection ∇̃ = ∇ − S satisfies (4.1). This implies ∇̃ϕ = 0, and we
have the following theorem.

Theorem 5.2. If ε 
= 1, all the homogeneous Riemannian structures on S
3
ε are homo-

geneous almost contact metric structures on the
√

ε-Sasakian manifold S
3(ϕ, ξε, ηε, gε).

Suppose now that ε = 1. Each homogeneous Riemannian structure S on the standard
sphere S

3 is given by (3.1), where ρ, σ and τ are 1-forms on S
3 satisfying the equations

in Theorem 3.1. If ∇̃ = ∇ − S, then

∇̃ZX1 = ∇ZX1 − ρ(Z)X2 − σ(Z)X3,

∇̃ZX2 = ∇ZX2 + ρ(Z)X1 − τ(Z)X3,

∇̃ZX3 = ∇ZX3 + σ(Z)X1 + τ(Z)X2,

and as a consequence we have that ∇̃ϕ = 0 if and only if ρ = α3 and σ = −α2; if this is
the case, the first and second equations in Theorem 3.1 are automatically satisfied and
the third equation remains ∇̃τ = 0. We find that this is equivalent to requiring that τ be
a scalar multiple of α1 (such as in the case that ε 
= 1 in § 3). Then we have the following
theorem.

Theorem 5.3. The homogeneous almost contact metric structures on the Sasakian
manifold S

3(ϕ, ξ1, η1, g1) are given by

St = α3 ⊗ (α1 ∧ α2) − α2 ⊗ (α1 ∧ α3) + tα1 ⊗ (α2 ∧ α3), t ∈ R.

If t 
= 1, the corresponding group of isometries leaving invariant the almost contact
structure (ϕ, ξ1 = X1, η1 = α1) is U(2) and the associated reductive decomposition is

u(2) =

〈{ (
0 0
0 i

) }〉⊕ 〈{ (
i 0
0 −ti

)
,

(
1 0
0 −1

)
,

(
0 i
i 0

) }〉
.

If t = 1, the associated reductive decomposition is trivial and the corresponding group
of isometries is SU(2).

Remark 5.4. In [15], Padrón, Chinea and González have given a classification
of homogeneous almost contact metric structures. They give a decomposition of the
space of the tensors S of type (0, 3) on a (2n + 1)-dimensional vector space satisfying
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SXY Z + SXZY = 0 into 18 irreducible components Hi, invariant under the action of the
group U(n) × 1. Moreover, in [8], Fino has given two classifications of homogeneous
almost contact metric structures: one refines the Tricerri–Vanhecke classification in [18];
the other is concerned with the classification of almost contact metric structures found
by Chinea and González in [7], and it coincides with the one obtained in [15]. Now,
one can see that any homogeneous almost contact metric structure S on S

3(ϕ, ξε, ηε, gε)
satisfies

SXY Z = ηε(X)SξεY Z + ηε(Y )SXξεZ + ηε(Z)SXY ξε
.

This implies that S belongs to the class H5 ⊕ H6 ⊕ H9 in [15] (which is isomorphic to
the class 2R ⊕ [[σ2,0]] given in [8]).
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