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Abstract.—Strata in the Central Alborz Mountains, northern Iran, are interpreted to show continuous sedimentation from
Ediacaran through Cambrian times. The Soltanieh Formation consists of five members: Lower Dolomite, Lower Shale,
Middle Dolomite, Upper Shale and Upper Dolomite members. The clastic units (Lower and Upper Shale members)
represent sedimentation in distal marine settings, ranging from the shelf to offshore, and contain abundant trace fossils of
biostratigraphic utility. Four ichnozones have been recognized. Ichnozone 1, containing Helminthoidichnites tenuis,
Helminthopsis tenuis, and Cochlichnus anguineus, is early Fortunian based on small shelly fossils, and is interpreted as a
distal expression of the Treptichnus pedum zone. Ichnozone 2, comprising the first occurrence of T. pedum, is middle
Fortunian, and is best regarded as the upper half of the Treptichnus pedum Zone. Ichnozone 3 is late Fortunian–Cam-
brian Age 2, characterized by a sudden change in abundance and complexity of trace fossils. Main elements in this ich-
nozone include Cruziana problematica, Curvolithus isp., Phycodes isp., Treptichnus pedum, Treptichnus pollardi, and
Treptichnus isp. Ichnozone 4 is of Cambrian Age 2–Age 3 and marked by the first appearances of Psammichnites gigas,
Rusophycus avalonensis, and Didymaulichnus miettensis. Integration of trace fossils with small shelly fossils suggests
that the Ediacaran–Cambrian boundary should be placed at the base of the Soltanieh Formation or within the Lower
Dolomite Member. The delayed appearance of T. pedum and the low ichnodiversity in the Lower Shale and lower inter-
val of the Upper Shale reflect limited colonization of settings below storm wave base during the early Fortunian.

Introduction

Defining the Ediacaran-Cambrian boundary and the precise
timing of the Cambrian explosion has occupied the attention of
paleontologists for decades. A very good measure of this inter-
est is the considerable amount of work performed by the IUGS
Cambrian Subcommission to settle a reference standard for the
base of the Cambrian and internationally accepted series and
stage subdivisions of the Cambrian system, which still are in
progress (Narbonne et al., 1987; Brasier et al., 1994; Terfelt and
Ahlberg, 2010; Babcock et al., 2011; Harvey et al., 2011; Peng
and Babcock, 2011; Ahlberg and Terfelt, 2012; Ahn et al., 2012;
Moczydlowska and Yin, 2012; Peng et al., 2012a, 2012b;
Landing et al., 2013). Defining reference standards for the base
of Cambrian and its subdivisions has promoted understanding
of the successive stages of the Cambrian evolutionary radiation
(Landing, 1998; Landing et al., 2013).

A number of biostratigraphic and geochronologic techni-
ques are used for correlation of the Ediacaran-Cambrian
boundary and subdivision of pre-trilobitic lower Cambrian.
Traditionally, biostratigraphy of the lower Cambrian has been
based on small shelly fossils (SSFs) and trace fossils. Small
shelly fossils are largely found in carbonates, whereas trace
fossils are more common in siliciclastics (Narbonne et al.,
1987). Despite that, both groups are common, diverse, and show

rapid changes during this critical time of Earth history
(Narbonne et al., 1987), Accordingly, they represent important
biostratigraphic tools for the subdivision and correlation of
pre-trilobitic strata of the Cambrian (e.g., Steiner et al., 2007).

In spite of the various attempts to settle internationally
accepted series and stage subdivisions of the Cambrian system, the
Ediacaran-Cambrian boundary and the subdivision of pre-trilobitic
lower Cambrian strata require continued attention. In northern Iran,
the Ediacaran–Cambrian Soltanieh Formation is well exposed
across the Alborz Mountains, and thus has the potential to illumi-
nate some of these issues. In comparisonwith Ediacaran–Cambrian
successions elsewhere, the ichnologic content of the Soltanieh
Formation is poorly known. The aims of this study are to: (1)
document the Soltanieh Formation ichnofauna, (2) propose a bio-
zonation scheme for the Soltanieh Formation based on trace fossils,
(3) suggest the most plausible position for the Ediacaran-Cambrian
boundary in northern Iran by using integration of trace fossil and
SSF biostratigraphy, and (4) assess the implications of this ich-
nostratigraphic scheme with respect to global schemes establishing
biostratigraphic zonations for the lowermost Cambrian.

Geological setting

The Soltanieh Formation of the Alborz Mountains, northern
Iran, regarded as Ediacaran–lower Cambrian, formed in the
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Proto-Paleotethys passive margin of northwestern Gondwana
(Alavi, 1996). Stöcklin et al. (1964) originally divided the
Soltanieh Formation at the type section into three major
subdivisions, from bottom to top: the Lower Dolomite Member
(123m), the Chopoghloo Shale Member (247m), and the
Upper Dolomite Member (790m). This division was later
revised by Hamdi et al. (1989), who divided the Soltanieh
Formation into five members, in ascending order; the Lower
Dolomite (165m), the Lower Shale (120m), the Middle Dolo-
mite (180m), the Upper Shale (90m), and the Upper Dolomite
(580m) members.

In addition to its type section in the Soltanieh Mountains,
the Soltanieh Formation can be traced to several other localities,
including Garmab, Vali-Abad, and the Dalir area along the
Tehran–Chalous road, north of Tehran (Fig. 1.1). The Soltanieh
Formation overlies the Bayandor Formation in the Soltanieh
Mountains and the Kahar Formation in the Alborz Mountains.
An Ediacaran age is indicated for the Bayandor and Kahar
formations based on stratigraphic relationships in the case of the
former and the presence of acritarchs in the latter (Hamdi et al.,
1989). The Soltanieh Formation is replaced upwards into the
overlying Barut Formation (Cambrian Age 3), which is a

succession of greenish and reddish shale and siltstone alternat-
ing with dark dolomites and chert (Salehi, 1989).

This study is mainly based on the well-exposed Garmab
section, along the Tehran–Chalous road, 97 km northwest of
Tehran (36.040900° N 51.310767° E, WGS84) (Fig. 1.1, 1.2),
where a more diverse and abundant ichnofauna has been
reported. At the Garmab section, the Lower Dolomite Member
is a 60m thick succession of yellowish brown-blue dolomite,
the Lower Shale Member is a 192m thick succession of black
shale and silty shale, the Middle Dolomite Member is a 90m
thick succession of well bedded grayish-green dolomite, the
Upper Shale Member is a 180m thick succession of silty shale
and sandstone, and the Upper Dolomite Member is a 600m
thick succession light blue dolomite.

Sedimentary facies and depositional environment

Eight facies have been recognized in Soltanieh Formation,
which are grouped into siliciclastic-dominated and carbonate-
dominated facies associations (Shahkarami et al., 2017).
The siliciclastic-dominated Facies Association comprises Facies

Figure 1. Location of study area and general geology. (1) Map showing the location of the studied section. Insert shows the location of Fig. 1.2;
(2), Geological map of Garmab, Tehran-Chalous road, north of Tehran, Iran (modified from Aghanabati et al., 2005). Upper Tuff Member (UTM), Asara Shale
Member (ASM), Middle Tuff Member (MTM).
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1–4, whereas the carbonate-dominated Facies Association
includes Facies 5–8.

Facies 1 consists of coarsening-upward cycles of inter-
bedded greenish-gray silty shale and erosionally based, very
fine- to medium-grained sandstone and sandy dolomite. This
facies forms a discrete package in the uppermost part of the
Upper Shale Member. It records deposition in the upper
offshore, reflecting the alternation of suspension fallout during
fair-weather times and storm deposition. Facies 2 consists of
parallel-laminated, greenish-gray silty shale with mm-scale
lenses and laterally discontinuous laminae of erosionally based,
very fine-grained sandstone. This facies comprises most of the
Upper Shale Member. It records deposition immediately above
storm wave base, in the lower offshore. Facies 3 is characterized
by parallel-laminated to massive, dark-gray shale and thinly
bedded shale-siltstone alternations. This facies is present in the
uppermost interval of the Lower Shale Member and the lower-
most interval of the Upper Shale Member. It records deposition
immediately below storm wave base in the proximal shelf.
Facies 4 is characterized by laterally extensive, dark-gray par-
allel-laminated and massive shale. This facies constitutes most
of the Lower Shale Member. It reflects deposition from sus-
pension fallout in the distal shelf.

Facies 5 consists of laterally continuous, gray-to-blue
dolomite with desiccation cracks, peloids, and fenestral struc-
tures. This facies comprises most of the Lower and Upper
Dolomite members, and records deposition in the upper inter-
tidal to supratidal zones. Facies 6 is characterized by well-
bedded to massive, gray-to-blue, moderately sorted peloidal and
intraclastic dolo-grainstone. This facies is present in the Middle
Dolomite Member and records deposition in the intertidal to
shallow subtidal zones. Facies 7 consists of parallel-laminated,

current-rippled and low-angle cross-laminated limestone
(packstone and wackestone) and intercalated dark-gray massive
calcareous shale and silty shale. This facies occurs in the low-
ermost interval of the Lower Shale Member and records
deposition in a shallow low-energy subtidal setting. Facies 8
consists of black phosphatic limestone with diverse SSF
assemblages, this facies is absent in the Garmab section.

The carbonate-dominated facies association represents
deposition in very shallow water (shallow subtidal to peritidal),
whereas the siliciclastic-dominated facies association mostly
comprises deposition below storm wave base (i.e., shelf), and
immediately above storm wave base (i.e., lower and upper
offshore) (see environmental subdivisions in Buatois and
Mángano, 2011).

Materials and methods

Repository and institutional abbreviation.—The trace fossils
described herein were all collected in the Garmab section,
Soltanieh Formation, northern Iran. Ichnotaxa are listed alpha-
betically. Specimens are housed at the Royal Saskatchewan
Museum, Regina, Canada.

Systematic paleontology

Ichnogenus Cochlichnus Hitchcock, 1858
Cochlichnus anguineus Hitchcock, 1858

Figure 2.1

Materials.—Four slabs (P3309.1, P3311.15, P3311.17,
P3311.19) containing four specimens.

Figure 2. Trace fossils from the Soltanieh Formation, Garmab section. (1) Cochlichnus anguineus from the Lower Shale Member (black arrows) (P3309.2)
preserved as positive hyporelief; scale bar is 0.5 cm; (2) Curvolithus isp. from the Upper Shale Member (P3311.19) preserved as positive epirelief; scale bar is
0.25 cm; (3) Cruziana isp., from the Upper Shale Member (P3313.10) preserved as positive hyporelief; scale bar is 0.5 cm; (4) Didymaulichnus miettensis from
the Upper Shale Member (P3313.8) preserved as positive hyporelief; scale bar is 1 cm; (5) Cruziana problematica from the Upper Shale Member (P3311.13)
preserved as positive hyporelief; scale bar is 0.5 cm.
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Description.—Simple, small unbranched horizontal, sinusoidal
trails. Trail width is 1.0–1.7mm; maximum preserved length is
36.5mm. Infill is massive. Preserved as positive hyporelief or
negative epirelief.

Remarks.—Cochlichnus anguineus Hitchcock, 1858 is the type
ichnospecies of Cochlichnus, and differs from the two other
Cochlichnus ichnospecies, C. annulatus Orłowski, 1989, and
C. antarcticus, Tasch, 1968, by lack of annulations or lateral
markings and having the same filling as the host rock, respec-
tively (Buatois and Mángano, 1993a; Keighley and Pickerill,
1997). Cochlichnus is a grazing trail (pascichnion) produced by
many different invertebrates, including annelids and nematodes
(Fillion and Pickerill, 1990; Lucas et al., 2010). It ranges from
the Cambrian to Holocene (Mángano and Buatois, 2014), and
occurs in a great variety of marine and non-marine environ-
ments (Fillion and Pickerill, 1990).

Occurrence.—Lower and Upper Shale members.

Ichnogenus Cruziana d’Orbigny, 1842

Remarks.—The ichnogenus Cruziana is mostly represented by a
bilobate and elongated trail covered by transverse or herringbone-
shaped ridges. Trails may be bounded by lateral outer zones with
or without ridges (Häntzschel, 1975; Fillion and Pickerill, 1990).
Cruziana comprises over 30 ichnospecies mostly separated based
onmorphologic features resulting from the leg morphology of the
producer (Seilacher, 1970, 1992). Cruziana is best interpreted as
related to combined locomotion and feeding strategy (pascichnia)
(Seilacher, 2007). It is widely accepted that the main producers of
Cruziana in the marine Paleozoic were trilobites or trilobito-
morphs (Seilacher, 1970, 1985, 1992; Hofmann et al., 2012).
Cruziana ranges in age from early Cambrian to Holocene
(Seilacher, 1970; Muñiz Guinea et al., 2015), and has been
reported from a varied spectrum of paleoenvironments, ranging
from typical shallow-water marine to freshwater settings (Bromley
and Asgaard, 1979; Crimes, 1987).

Cruziana problematica Schindewolf, 1921
Figure 2.5

Materials.—Two slabs (P3311.13, P3313.10) containing two
specimens.

Description.—Horizontal, gently winding, strongly convex,
small, parallel-sided trails with transverse striation, and central
groove dividing the trace longitudinally into two lobes. Width is
2.1–3.5mm; maximum preserved length is 44.5mm. Preserved
as positive hyporelief.

Remarks.—Relatively small, simple Cruziana with transverse
to nearly transverse scratch marks are traditionally included in
Cruziana problematica (e.g., Schindewolf, 1921; Bromley and
Asgaard, 1979; Fillion and Pickerill, 1990). Jensen (1997)
regarded C. problematica as a junior synonym of Cruziana
tenella (Linnarsson, 1871). However, C. problematica is widely
reported and is considered the most stable ichnospecies (e.g.,
Mángano et al., 2002b). The specimens documented here are

very similar to C. tenella described by Jensen (1997) from
the Mickwitzia Sandstone, south-central Sweden and
C. problematica described by Keighley and Pickerill (1996)
from eastern Canada. The name C. problematica is preferred
here over C. tenella for reasons of nomenclatural stability
(Mángano et al., 2002b).

Occurrence.—Upper Shale Member.

Cruziana isp.
Figure 2.3

Materials.—Five slabs (P3310.2, P3311.3, P3311.12,
P3311.19, P3313.10) containing six specimens.

Description.—Small, horizontal, slightly oblique, unbranched,
trails with bilobate lower surface, and poorly preserved scratch
marks. Width is 2.3–5.2mm; maximum preserved length is
46.50mm. Preserved as positive hyporelief and negative epirelief.

Remarks.—Poor preservation does not allow determining the
pattern of transverse striation, which therefore prevents
ichnospecific assessment.

Occurrence.—Lower and Upper Shale members.

Ichnogenus Curvolithus Fritsch, 1908
Curvolithus isp.

Figure 2.2

Materials.—Three slabs (P3311.19, P3317.2, P3319.1) con-
taining four specimens.

Description.—Horizontal, straight to slightly oblique, unbran-
ched trails with trilobate upper surface consisting of two outer
narrow lobes (each 1.7–2.6mm wide) and one broad, flat central
lobe (4.2–5.6mm wide). The marginal outer lobes are
discontinuous along the structure. Width of the trace is
6.8–10.8mm; maximum preserved length is 89.0mm. Pre-
served as positive epirelief and full relief.

Remarks.—Curvolithus comprises two ichnospecies: Curvolithus
multiplex and Curvolithus simplex (Buatois et al., 1998b).
Curvolithus multiplex has a smooth, trilobate upper surface and a
convex, quadra-lobate lower surface; in contrast to C. multiplex, C.
simplex does not have a quadra-lobate lower surface. The speci-
mens documented here are assigned to Curvolithus isp. due to
uncertainties in the number of lobes on the lower surface.
Curvolithus has been interpreted as the locomotion trace (Repich-
nia) of predators, including gastropods, flatworms, or nemerteans
(Buatois et al., 1998b).Curvolithus ranges in age from Cambrian to
Miocene and has been recorded from shallow-marine siliciclastic
successions (Buatois et al., 1998b; Mángano and Buatois, 2014).

Occurrence.—Upper Shale Member.

Ichnogenus Didymaulichnus Young, 1972
Didymaulichnus miettensis Young, 1972

Figure 2.4
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Materials.—Four slabs (P3313.4, P3313.8, P3313.10, P3317.1)
containing fourteen specimens.

Description.—Horizontal, straight or curving bilobate trails.
The trails have a shallow median groove, which divides the trail
into two parts, and gently sloping peripheral discontinuous
bevels. Overlap among specimens is common. Overall width
is 15.2–20.5mm. The median groove is 2.5–3.4mm wide.
The double-furrow is 10.2–12.7mm wide. The outer bevels
vary in width along the length of the trail, but where well
preserved are 2.5–4.4mm; maximum preserved length
is 143.0mm. Preserved as positive hyporelief and full relief.

Remarks.—There are four accepted ichnospecies of Didymau-
lichnus: D. lyelli (Rouault, 1850); D. tirasensis Palij, 1974;
D. miettensis Young, 1972; and D. alternatus Pickerill,
Romano, and Melendez, 1984. Didymaulichnus miettensis dif-
fers from other Didymaulichnus ichnospecies by the presence of
lateral bevels (Young, 1972; Jensen and Mens, 2001). The
specimens from the Soltanieh Formation closely resemble the
type material of D. miettensis described by Young (1972) from
the upper Miette Group, western Canada. Didymaulichnus is

interpreted as locomotion traces (Repichnia) of gastropods,
bivalves, or arthropods (Hakes, 1977; Bradshaw, 1981), and
ranges from Cambrian to Cretaceous (Vossler et al., 1989).
Didymaulichnus miettensis is restricted to early Cambrian
(Jensen and Mens, 2001). A partially preserved specimen from
the Soltanieh Formation illustrated by CiabeGhodsi (2007) was
referred to Didymaulichnus miettensis.

Occurrence.—Upper Shale Member.

Ichnogenus Gordia Emmons, 1844
Gordia marina Emmons, 1844

Figure 3.2

Materials.—One slab (P3311.5) containing a single specimen.

Description.—Horizontal, non-branching, winding and curving,
small trail with self-overcrossing. Width is 2.7mm; maximum
preserved length is 44.0mm. Preserved as positive hyporelief.

Remarks.—There are five recognized ichnospecies of Gordia:
the type ichnospecies G. marina Emmons, 1844; G. arcuata

Figure 3. Trace fossils from the Soltanieh Formation, Garmab section. (1) Helminthoidichnites tenuis from Upper Shale Member (P3311.5) preserved as
negative epirelief; scale bar is 0.25 cm; (2) Gordia marina from the Upper Shale Member (P3311.5) preserved as positive hyporelief; scale bar is 0.25 cm;
(3) Helminthopsis tenuis from Upper Shale Member (P3311.18) preserved as positive hyporelief; scale bar is 0.25 cm; (4) Palaeophycus tubularis from the Upper
Shale Member (P3319.3) preserved as positive hyporelief; scale bar is 0.5 cm.
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Książkiewicz, 1977; G. maeandria Jiang in Jiang, Luo, and
Zhang, 1982; G. nodosa Pickerill and Peel, 1991; and
G. indianaensis (Miller, 1889). Gordia marina can be easily
differentiated from the other ichnospecies of Gordia because it
lacks the annulations of G. nodosa, the angled turns of
G. indianaensis, the apical arcuate bends of G. arcuata, and the
guided meanders of G. maeandria (Fillion and Pickerill, 1990;
Buatois et al., 1998a). Fillion and Pickerill (1990) questioned
the validity of G. maeandria in that guided meander is not
typical of Gordia. Gordia differs from Helminthopsis in its
looped form, having overcrossing and never showing meanders
(Pickerill and Peel, 1991). The ethology of Gordia and its pos-
sible producers are not well constrained. Książkiewicz (1977)
suggested that it might be a feeding burrow or trail produced by
polychaetes. Yang (1984) considered it as a locomotion trace
produced by worms or gastropods. Other authors (e.g., Aceño-
laza and Buatois, 1993; McCann, 1993; Geyer and Uchman,
1995) have considered this ichnogenus as a pascichnia produced
by worms or worm-like organisms. The ichnogenus Gordia
ranges in age from Ediacaran to Holocene (Fillion and Pickerill
1990; Mángano and Buatois, 2014), and is known from non-
marine, and shallow- to deep-marine deposits (Narbonne, 1984;
Fillion and Pickerill, 1990; Norman, 1996). The ichnospecies
Gordia arcuata has been documented in the Soltanieh Forma-
tion by CiabeGhodsi (2007).

Occurrence.—Upper Shale Member.

Ichnogenus Helminthoidichnites Fitch, 1850
Helminthoidichnites tenuis Fitch, 1850

Figure 3.1

Materials.—Seven slabs (P3309.1, P3309.2, P3311.5, P3311.9,
P3311.11, P3311.15, P3311.19) containing ten specimens.

Description.—Simple, unbranched, horiztontal, mostly straight
to slightly bent, nonmeandering trails. Diameter is 0.9–1.9mm
and may slightly vary along the course of individual trails.
Maximum observed length is 83.8mm. Overlapping among
different individuals is common, but there is no self over
crossing. Trace fill is identical to the host rock. Preserved as
positive hyporelief and negative epirelief.

Remarks.—Helminthoidichnites tenuis is interpreted as a graz-
ing trace, most likely produced by vermiform animals (Buatois
et al., 1998a). Helminthoidichnites comprises only one ichnos-
pecies, H. tenuis, although the case may be made that a review
of this ichnogenus may result in recognition of additional ich-
nospecies. Helminthoidichnites differs from Gordia by lacking
self-overcrossing and from Helminthopsis by having a non-
meandering course (Hofmann and Patel, 1989; Buatois et al.,
1998a). The ichnogenus ranges in age from Ediacaran to
Holocene (Mángano and Buatois, 2014).

Occurrence.—Lower and Upper Shale members.

Ichnogenus Helminthopsis Heer, 1877
Helminthopsis tenuis Książkiewicz, 1968

Figure 3.3

Materials.—Four slabs (P3309.1, P3309.2, P3311.17,
P3311.18) containing eight specimens.

Description.—Horizontal, smooth, unbranched, unlined, irre-
gular, high-amplitude meandering trails. Width is 1.0–1.8mm;
maximum preserved length is 49.0mm. Preserved as positive
hyporelief and negative epirelief.

Remarks.—There are three ichnospecies of Helminthopsis,
separated based on their geometrical pattern (Wetzel and
Bromley, 1996): H. abeli Książkiewicz, 1977; H. hieroglyphica
Wetzel and Bromley, 1996; and H. tenuis Książkiewicz, 1968.
Helminthopsis tenuis is distinguished from H. abeli and
H. hieroglyphica by the lack of horseshoe-like turns and its
high-amplitude winding (Wetzel and Bromley, 1996), and from
Helminthoidichnites by its meandering course (Hofmann and
Patel, 1989). Helminthopsis is thought to be a grazing trace
(pascichnion) produced by deposit-feeding organisms in
brackish to fully marine environments; polychaete annelids
are regarded as potential tracemakers (Ksiazkiewicz, 1977).
Helminthopsis ranges in age from Ediacaran to Holocene
(Buatois et al., 1998a).

Occurrence.—Lower and Upper Shale members.

Ichnogenus Palaeophycus Hall, 1847
Palaeophycus tubularis Hall, 1847

Figure 3.4

Materials.—Seventeen slabs (P3311.1, P3311.4, P3311.7,
P3311.10, P3311.12, P3311.14, P3311.19, P3311.20, P3312.1,
P3313.1, P3313.3, P3313.9, P3313.10, P3314.1, P3315.1,
P3316.1, P3318.1) containing thirty five specimens.

Description.—Horizontal, branched and unbranched, straight
to slightly curved, unornamented, thinly lined cylindrical
burrows. Burrow-fill is similar to the host rock. Width is
2.6–13.4mm; maximum preserved length is 172.5mm. Pre-
served as positive hyporelief.

Remarks.—Palaeophycus is distinguished from Planolites
primarily by the presence of wall linings and a burrow-fill
identical to the host rock. Infills of Palaeophycus represent
passive, gravity-induced sedimentation within open, lined bur-
rows; collapse features show that some segments were incom-
pletely filled by this process. The fillings, therefore, tend to be of
the same composition as the surrounding matrix (Pemberton and
Frey, 1982). Seven ichnospecies of Palaeophycus are currently
accepted: P. tubularis Hall, 1847; P. heberti (Saporta, 1872);
P. striatus Hall, 1852; P. sulcatus (Miller and Dyer, 1878);
P. alternatus Pemberton and Frey, 1982; P. bolbitermilus Kim,
Pickerill, and Wilson, 2000; and P. imbricatus (Torell, 1870).
Palaeophycus tubularis is distinguished from the other
Palaeophycus ichnospecies by its thin wall and the absence of
striations (Pemberton and Frey, 1982). Palaeophycus is inter-
preted as dwelling burrows (dominichnia) of suspension feeders
or predators, such as polychaetes (Osgood, 1970; Pemberton
and Frey, 1982), and ranges in age from Ediacaran to Holocene
(Häntzschel, 1975). Palaeophycus is a facies-crossing
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ichnotaxon found in almost every depositional environment
(Pemberton and Frey, 1982).

Occurrence.—Lower and Upper Shale members.

Ichnogenus Phycodes Richter, 1850
Phycodes isp.
Figure 4.4

Materials.—Two slabs (P3311.1, P3319.3) containing two
specimens.

Description.—Horizontal, broomlike structure without spreite,
consisting of four branches originated from the same point
of a thick, slightly curved single stem. Width of the branches
is 4.2–8.2mm, whereas the main tube is 7.1–9.0mm in
diameter. Maximum length preserved is 79.9mm. Preserved as
full relief.

Remarks.—Thirteen ichnospecies of Phycodes have been
described in the literature, based on their overall pattern and
size, nature, style, disposition and degree of branching, and
presence or absence of spreite (Han and Pickerill, 1994):
P. antecedensWebby, 1970; P. auduni Dam, 1990; P. bromleyi

Figure 4. Trace fossils from the Soltanieh Formation, Garmab section. (1) Psammichnites gigas from the Upper Shale Member (P3317.1) preserved as positive
epirelief; scale bar is 0.5 cm; (2) Rusophycus avalonensis from the Upper Shale Member (P3313.9) preserved as positive hyporelief; scale bar is 0.25 cm;
(3) Planolites montanus from the Upper Shale Member (P3313.8) preserved as positive hyporelief; scale bar is 0.25 cm; (4) Phycodes isp. from the Upper Shale
Member (P3319.3) preserved as full relief; scale bar is 0.5 cm.
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Dam, 1990; P. circinatum Richter, 1853; P. coronatum Crimes
and Anderson, 1985; P. curvipalmatum Pollard, 1981;
P. flabellum (Miller and Dyer, 1878); P. fusiforme Seilacher,
2000; P. templus Han and Pickerill, 1994; P. parallelum
Seilacher, 2000; P. reniforme Hofmann, 1979; P. ungulatus
Fillion and Pickerill, 1990; and P. wabanensis Fillion and
Pickerill, 1990. Some forms of Phycodes consist of a few main
branches showing a spreite-like structure, which distally give
rise to numerous free branches. In other forms, the spreite are
lacking, and branches tend to be more random (Osgood, 1970).
Phycodes reflects a variety of behavioral activities by the tra-
cemaker (Han and Pickerill, 1994), but two basic interpretations
are a feeding trace (fodinichnion) produced by an organism
that systematically mines a nutrient-rich layer along a silt-mud
surface, most likely annelids (Seilacher, 1955), or a structure
produced by an organism that burrowed outwards from a single
point and then withdrew to a ‘home-case’ only to re-burrow
outwards again through the previously excavated tunnel
(Marintsch and Finks, 1982; Singh et al., 2008). Phycodes
ranges in age from Cambrian (Crimes and Anderson, 1985) to
Miocene (Bradley, 1981). Phycodes has been reported from
shallow-marine, deep-marine (Crimes et al., 1977; Bradley,
1981; Narbonne, 1984), and brackish-water (Hakes, 1985)
environments. Non-marine examples are in need of re-
evaluation (Pollard, 1985). Although the Soltanieh specimen
supports placement in Phycodes, poor preservation prevents an
ichnospecific assessment.

Occurrence.—Upper Shale Member.

Ichnogenus Planolites Nicholson, 1873
Planolites montanus Richter, 1937

Figure 4.3

Materials.—Five slabs (P3311.8, P3311.11, P3311.17,
P3311.19, P3313.8) containing thirteen specimens.

Description.—Horizontal, unbranched, straight to slightly
curved, unornamented, cylindrical burrows. Burrow-fill similar
to the host rock. Width is 0.6–2.8mm; maximum preserved
length is 47.1mm. Preserved as positive and negative
hyporelief.

Remarks.—Four ichnospecies of Planolites are currently
recognized based on size, curvature, and wall characteristics:
P. beverleyensis (Billings, 1862); P. annularis Walcott, 1890;
P.montanus Richter, 1937; and P. constriannulatus Stanley and
Pickerill, 1994. Planolites montanus comprises small, curved to
tortuous burrows. Planolites beverleyensis comprises large,
straight to gently curved burrows. Planolites annularis consists
of transversely annulated burrows, and Planolites
constriannulatus is comprised of a burrow with both long-
itudinal striations and transverse annulation. Planolites is
interpreted as feeding burrows (fodinichnia) of deposit-feeders
(Pemberton and Frey, 1982), and ranges in age from Cambrian
to Holocene (Häntzschel, 1975; Mángano and Buatois, 2014).
Planolites is found in almost every depositional environment
(Pemberton and Frey, 1982).

Occurrence.—Upper Shale Member.

Ichnogenus Psammichnites Torell, 1870
Psammichnites gigas (Torell, 1868)

Figure 4.1

Materials.—Six slabs (P3313.2, P3313.5, P3313.6, P3313.7,
P3317.1, P3317.2) containing fifteen specimens.

Description.—Large, unbranched, horizontal, straight to
slightly curved bilobate trails. The burrow-fill is finer-grained
and darker in color compared to the host sediment. Width is
6.7–20.0mm; maximum length preserved is 148.8mm. Overlap
among specimens is locally common. Preserved as negative
hyporelief and positive epirelief. Negative hyporeliefs are
gently concave, with a median ridge. Positive epireliefs are
gently convex with a shallow, straight median groove of vari-
able width and depth.

Remarks.—There is general agreement that the ichnogenus
Olivellites Fenton and Fenton, 1937 is a junior synonym of
Psammichnites (Chamberlain, 1971; D’Alessandro and Brom-
ley, 1987; Maples and Suttner, 1990; Seilacher, 1997; Zhu,
1997; Mángano et al., 2002a). The ichnotaxonomic status of the
lower Cambrian ichnospecies Taphrhelminthopsis circularis
Crimes et al., 1977 is more uncertain. Uchman (1995a)
demonstrated that the ichnogenus Taphrhelminthopsis is a
preservational variant of Scolicia and, therefore, its junior
synonym. Taphrhelminthopsis circularis is most likely a pre-
servational variant of Psammichnites (Mángano and Buatois,
2016). Psammichnites is distinguished from Didymaulichnus
by lack of median groove on the lower side and by its
overall more complex internal structure (Seilacher, 2007).
Psammichnites gigas Torell, 1870 is the type ichnospecies of
Psammichnites; other ichnospecies include P. plummeri
(Fenton and Fenton, 1937); P. grumula (Romano and
Meléndez, 1979); P. implexus (Rindsberg, 1994); and P.
saltensis (Aceñolaza and Durand, 1973). The Soltanieh
specimens are very similar in overall shape and size to
Psammichnites gigas, as described and illustrated by Hofmann
and Patel (1989) from the lower Cambrian of New Brunswick,
Canada. Psammichnites is interpreted as a back-filled structure
representing the feeding activities of a subsurface vagile animal
using a siphon-like device (Mángano et al., 2002a; Jago and
Gatehouse, 2007). The ichnogenus Psammichnites ranges in age
from early Cambrian to Permian (Mángano et al., 2002a), and
the type ichnospecies, Psammichnites gigas, is of early
Cambrian age (Jago and Gatehouse, 2007). Psammichnites
gigas was first recorded in the Soltanieh Formation by
CiabeGhodsi (2007).

Occurrence.—Upper Shale Member.

Ichnogenus Rusophycus Hall, 1852
Rusophycus avalonensis Crimes and Anderson, 1985

Figure 4.2

Materials.—One slab containing one specimen (P3313.9).
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Description.—Short, horizontal, bilobate trace consisting of few
scratch marks (6–7) arranged transversely to the median furrow.
Width is 23.8mm; maximum length preserved is 17.6mm.
Preserved as positive hyporelief.

Remarks.—Rusophycus comprises several ichnospecies,
including 21 listed just for the lower Cambrian (Mángano and
Buatois, 2016); its type ichnospecies is Rusophycus biloba
(Fillion and Pickerill, 1990). Rusophycus is distinguished from
Cruziana by its length-to-width ratio; only specimens with the
length-to-width ratio less than two are placed in Rusophycus
(Keighley and Pickerill, 1996). The specimens analyzed here
are similar to Rusophycus avalonensis Crimes and Anderson,
1985 because of the overall shape and the divided ridges, but
the ridges are not arranged in bundles. Paleozoic marine
Rusophycus are widely accepted as resting traces (cubichnia)
made by trilobites (Osgood, 1970; Crimes, 1975).

Occurrence.—Upper Shale Member.

Ichnogenus Treptichnus Miller, 1889

Remarks.—Treptichnus is a burrow consisting of segments
connected at their ends, each one to the next, characteristically
but not invariably in a zigzag pattern. At present, there are ten
ichnospecies of Treptichnus: the type ichnospecies, T. bifurcus
Miller, 1889; T. pedum (Seilacher, 1955); T. triplex Palij, 1976;
T. coronatum (Crimes and Anderson, 1985); T. lublinensis
Paczesna, 1986; T. pollardi Buatois and Mángano, 1993b;
T. tripleurum (Geyer and Uchman, 1995); T. rectangularis
Orłowski and Zylińska, 1996; T. meandrinus Uchman, Brom-
ley, and Leszczyński, 1998; and T. apsorum Rindsberg and
Kopaska-Merkel, 2005. Treptichnus is interpreted as feeding
structures (fodinichnia) produced by vermiform animals or
insect larvae, the latter in the case of non-marine occurrences
(Uchman, 2005). Treptichnus has been recorded from non-
marine (Buatois and Mángano, 1993a, 1993b; Buatois et al.,
2000), marginal-marine (Archer and Maples, 1984; Buatois
et al., 1998a), shallow-marine (Fedonkin, 1977; Geyer and
Uchman, 1995), and deep-marine (Crimes et al., 1981; Uchman
et al., 1998) environments. Treptichnus is considered to range in
age from Cambrian to Holocene (Crimes, 1987; Geyer and
Uchman, 1995; Muñiz-Guinea et al., 2014). However, reports of
treptichnid trace fossils from terminal Ediacaran rocks in the
Nama Group of Namibia and the GSSP section in Newfound-
land suggest that Treptichnus may extend back into the late
Ediacaran (Jensen et al., 2000; Gehling et al., 2001; Högström
et al., 2013). Further work on the relationship between the
so-called treptichnids and Treptichnus is pending.

Treptichnus pedum (Seilacher, 1955)
Figure 5.1

Materials.—Five slabs (P3310.2, P3311.2, P3311.8, P3311.11,
P3311.15,) containing nine specimens.

Description.—Straight or curved sets of individual burrows of
similar length connected to one another at their lower parts. The
burrows alternate in direction, forming a zigzag pattern; where

the burrows are arranged in a nearly straight succession, the
segments generally are aligned, and the zigzag pattern is rarely
developed. In curved portions of the burrow, the segments
generally project outwards. Width is 2.9–6.7mm; maximum
preserved length is 25.2mm. Preserved as positive hyporelief.

Remarks.—Treptichnus pedum was originally described as
Phycodes pedum, but Osgood (1970) noted that P. pedum dif-
fers from other ichnospecies of Phycodes, such as the type ich-
nospecies Phycodes circinatum Richter, 1853, and that it
merited a new ichnogeneric designation. Treptichnus pedum, as
described by Seilacher (2007), includes straight, sinusoidal,
curved, or looping burrows constructed from upward curving
segments. Treptichnus pedum is a feeding burrow (Crimes et al.,
1977) with several morphological variants (Seilacher, 2007),
ranges in age from the early Cambrian to Holocene (Crimes
et al., 1977; Muñiz Guinea et al., 2014), and is restricted to
normal-marine salinity conditions (Buatois et al., 2013). There
is general agreement that the T. pedum tracemaker was a motile
bilaterian animal that lived below the sediment-water interface,
propelling itself forward in upward curving projections that
breached the sediment surface (Seilacher, 1955; Geyer and
Uchman, 1995; Jensen, 1997; Dzik, 2005). Dzik (2005) argued
that the T. pedum animal was a priapulid worm, a conclusion
supported by Vannier et al. (2010) based on neoichnologic
experiments. Although it is sometimes referred to as Tricho-
phycus pedum (e.g., Geyer and Uchman, 1995; Peng et al.,
2012a), the overall morphology of Trichophycus is remarkably
different, consisting of a U-shaped burrow with a retrusive
spreite (Mángano and Buatois, 2011). Treptichnus pedum
has been reported as Trichophycus pedum from the Soltanieh
Formation by CiabeGhodsi et al. (2006) and CiabeGhodsi
(2007).

Occurrence.—Lower and Upper Shale members.

Treptichnus pollardi Buatois and Mángano, 1993b
Figure 5.3

Materials.—Six slabs (P3318.1, P3311.6, P3311.16, P3311.18,
P3311.20, P3313.01) containing ten specimens.

Description.—Horizontal, simple, straight burrows with knots
or shafts at semi-regular intervals. Width is 1.3–4.6mm; indi-
vidual segments length is 2.6mm. Spacing between segments is
7.5–15.9mm. The maximum number of burrow segments is six.
Preserved as positive hyporelief.

Remarks.—Treptichnus pollardi is distinguished from
T. bifurcus by the presence of surficial pits, absence of twiglike
projections, more irregular pattern, and longer individual
segments. Treptichnus pollard differs from T. lublinensis and
T. triplex by the absence of terminations projecting past the
zigzags, the presence of pits associated with the horizontal
burrow segment, and its thinner segments (Buatois and
Mángano, 1993b). Although distinction from the ichnogenera
Saerichnites and Ctenopholeus may be unclear depending on
preservation (e.g., Buatois and Mángano, 2004; Fürsich et al.,
2006), the overall morphology of the Soltanieh Formation
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Figure 5. Trace fossils from the Soltanieh Formation, Garmab section. (1) Treptichnus pedum from the Upper Shale Member (P3311.11); scale bar is 0.25 cm;
(2) Treptichnus isp. from the Upper Shale Member (P3319.2); scale bar is 0.5 cm; (3) Treptichnus pollardi from the Upper Shale Member (P3311.20); scale bar
is 0.5 cm. All specimens preserved as positive hyporelief.
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favors inclusion in T. pollardi. Treptichnus pollardi has been
typically, though not exclusively (e.g., Geyer and Uchman,
1995), recorded from freshwater environments (Buatois and
Mángano, 1993a, 1993b; Fregenal-Martinez et al., 1995; Metz,
1995; Buatois et al., 2000).

Occurrence.—Upper Shale Member.

Treptichnus isp.
Figure 5.2

Materials.—Four slabs (P3310.1, P3310.2, P3311.9, P3319.2)
containing seven specimens.

Description.—Horizontal, gently curved, branching burrows.
The burrows occasionally exhibit a short projection. Width is
1.1–2.6mm. Preserved as positive hyporelief.

Remarks.—Lack of zigzag pattern and regular projection does
not allow ichnospecific assignment.

Occurrence.—Upper Shale Member.

Previous work

In order to contextualize the new trace-fossil data reported here
and to define a biozonation for the Soltanieh Formation, pre-
viously published reports of trace fossils and SSFs from this unit
are briefly reviewed and critically re-evaluated.

Lower Dolomite Member.—Hamdi et al. (1989) reported
phosphatic tubes, including Hyolithellus sp. along with others
resembling Rugatotheca sp., fragments of the protoconodont
Protohertzina sp., and globomorphs of the Olivooides
multisulcatus Qian, 1977 group in the upper part of the Lower
Dolomite Member in the Vali-Abad area.

Lower Shale Member.—Hamdi et al. (1989) and CiabeGhodsi
(2007) recorded large discoidal algal vesicles assigned to
Chuaria sp. from the lower interval of the Lower Shale Member
in the Vali-Abad area, and the type section, respectively. Hamdi
et al. (1989) compared their material with larger ellipsoidal
vesicles of Shouhsienia sp. from the Sinian System in China.
CiabeGhodsi (2007) reported Diplocraterion isp., Planolites
vulgaris, Skolithos isp., and Treptichnus pedum from the upper
interval of the Lower Shale Member. Planolites vulgaris needs
re-evaluation because the type specimen of this ichnospecies
has been regarded as inorganic (Pemberton and Frey, 1982).
Based on the illustration provided, an affinity with Hel-
minthoidichnites cannot be disregarded. In addition, specimens
attributed to Diplocraterion isp. and Skolithos isp. are based on
bedding-plane expressions, so their true morphology cannot be
confirmed.

Middle Dolomite Member.—Hamdi et al. (1989) reported the
tubular fossil Hyolithellus vladimirovae and protoconodonts of
the Protohertzina anabarica Missarzhevsky, 1969 group from
the lower interval of the Middle Dolomite Member. Less com-
mon elements include the tubular fossils Anabarites trisulcatus

Missarzhevsky in Voronova and Missarzhevsky, 1969; Cam-
brotubulus decurvatus Missarzhevsky in Rozanov et al., 1969;
siphogonuchitids; Palaeosulcachites sp.; Siphogonuchites sp.;
and globomorphs. These authors mentioned that beds near the
top of the Middle Dolomite Member contain a similar assem-
blage, but with more abundant A. trisulcatus,C. decurvatus, and
Siphogonuchites sp., in addition to the primitive mollusks
Maikhanella multa and Purella sp., and the tubular fossils
Tiksitheca licis Missarzhevsky in Rozanov et al., 1969;
Circotheca sp.; and Ladatheca isp.; as well as hyolithids.
Tashayoee et al. (2012) recently reported Anabarites latus
Val’kov and Sysoev, 1970; A. rectus Vasil’eva in Rudavskaya
and Vasil’eva, 1984; A. tripartitus Missarzhevsky in Rozanov
et al., 1969; A. trisulcatus; Cambrotublus isp.; Conotheca sub-
curvata Yu, 1974; Drepanochites dilatatus Qian and Jiang in
Luo et al., 1982; Hyolithellus vladimirovae Missarzhevsky in
Rozanov and Missarzhevsky, 1966; Jakutiochrea lenta
Val’kov, 1987; Protohertzina anabarica Missarzhevsky, 1969;
P. siciformis Missarzhevsky, 1973; P. unguliformis Mis-
sarzhevsky, 1973; Siphogonuchites triangularis Qian, 1977;
Siphogonuchites sp.; and Yunnanodus dolerus Wang and Jiang
in Jiang, 1980 from the Garmab section. CiabeGhodsi (2007)
documented the ichnotaxa Bergaueria perata Prantl, 1945;
Circulichnus montanus (Vyalov, 1971); and Gordia arcuata
from the lower interval of the Middle Dolomite Member at the
type section. However, specimens assigned to Bergaueria
perata and Circulichnus montanus are unconvincing based on
the available material.

Upper Shale Member.—Hamdi et al. (1989) mentioned that at
the Vali-Abad section the lower interval of the Upper Shale
Member contains abundant and diverse phosphatized mollusks
comparable with those found in the upper interval of the Middle
Dolomite Member. These authors also reported Anabarites cf.
trisulcatus Missarzhevsky, 1969; allathecidae hyoliths; and
pelagiellids from the Dalir section. The upper interval in the
Vali-Abad section contains specimens of the Latouchella
korobkovi (Vostokova, 1962) group of monoplacophorans,
including ‘close-coiled’ Yangtzespira sp., ‘lax coiled’ Bemella
sp., ‘uncoiled’ Ceratoconus sp., and Obtusoconus sp., which
appear approximately 20m from the top of the unit. Other
typical elements at this level include Purella tianzhushanensis
Yu, 1979 and broad monoplacophorans resembling Proto-
wenella sp.; pelagiellids of the Pelagiella lorenzi (Kobayashi,
1939) occur in the top 10m. CiabeGhodsi (2007) added Lopo-
chites latazonalis Qian, 1977; Igorella emeiensis (Yu, 1987);
Igorella sp.; Purella squamulosa Qian and Bengtson, 1989;
Bemella simplex Yu, 1979; and Lapworthella sp. to this group.
CiabeGhodsi (2007) described several trace fossils from the
Garmab section, namely Chondrites furcatus Sternberg, 1833;
Didymaulichnus miettensis; Diplichnites isp.; Diplocraterion
isp; Hormosiroidea isp.?; Monomorphichnus lineatus Crimes
et al., 1977; Neonereites uniserialis Seilacher, 1960; Palaeo-
phycus alternatus; Paleodictyon croaticum Uchman, 1995b;
Plagiogmus arcuatus Glaessner, 1969; Psammichnites gigas;
and Protovirgularia dichotoma? M’Coy, 1850. However, many
of these ichnotaxa lack diagnostic features and have been
excluded from the list of trace fossils used in this study. Struc-
tures assigned to Chondrites furcatus do not display the classic
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dichotomic branching of this ichnogenus (Fu, 1991). The spe-
cimen attributed to Diplichnites isp. appears to consist of a
string of pits rather than appendage imprints and in fact, a sec-
ond string of pits is apparent on the same slab, which may
suggest an affinity with Saerichnites. The specimen attributed to
Diplocraterion is only seen on bedding-plane view, so their
U-shaped morphology cannot be confirmed. The ichnotax-
onomy of Hormosiroidea is in need of revision (Gaillard and
Olivero, 2009). In addition, the specimen illustrated lacks the
morphologic features typically present in this ichnogenus.
Based on the illustrations provided, the presence of scratch
marks cannot be confirmed in the specimens assigned to
Monomorphichnus lineatus. Neonereites uniserialis has been
regarded as a preservation variant of Nereites (Uchman, 1995a).
However, the specimen illustrated from the Soltanieh Formation
lacks the diagnostic features of Nereites, actually resembling a
simple grazing trail, such as Helminthoidichnites. The specimen
figured as Paleodictyon croaticum does not display the typical
morphology of this ichnotaxon; an affinity with Multina cannot
be disregarded. Plagiogmus arcuatus is now considered a pre-
servational variant of Psammichnites gigas by some (McIlroy
and Heys, 1997; Mángano et al., 2002a). The structures figured
as Protovirgularia dichotoma? do not show the diagnostic
chevronate pattern characteristic of Protovirgularia (e.g., Seilacher
and Seilacher, 1994; Mángano et al., 1998).

Upper Dolomite Member.—Meyer (1967) noted that the stro-
matolites Collenia spissa Fenton and Fenton, 1939 and
Hadrophycus immanis Fenton and Fenton, 1939 are moderately
common in the upper interval of this member. Problematic
records of Salterella have also been reported (Assereto, 1963;
Stöcklin et al., 1964). CiabeGhodsi (2007) and Tashayoee et al.
(2012) also reported Hyolithellus filiformis Bengtson in Bengt-
son et al., 1990; Conotheca subcurvata (Yu, 1974); Igorella sp.;
Latouchella krobkovi Vostokova, 1962; Latouchella
maidipingensis (Yu, 1974); and Obtusoconus rostriptutea Qian
in Qian et al., 1978 from this unit.

Ichnostratigraphy of the Soltanieh Formation

Several ichnostratigraphic schemes have been proposed for the
Ediacaran-Cambrian boundary (Alpert, 1977; Crimes, 1987,
1992; MacNaughton and Narbonne, 1999; Jensen, 2003). The
latter two schemes have been recently adapted (Buatois and
Mángano, 2011; Mángano et al., 2012), and two Ediacaran
zones and three early Cambrian zones are considered. The lower
Ediacaran zone includes simple grazing trails, such as
Helminthoidichnites, Helminthopsis, Gordia, and Archae-
onassa, together with Epibaion and Kimberichnus. The age of
this interval is ca. 560–550 Myr (Jensen et al., 2006). The upper
Ediacaran zone includes the oldest branching-burrow systems,
represented by treptichnids. The age of this zone is 550–541
Myr (Grotzinger et al., 1995; Jensen et al., 2006; Schmitz,
2012). The lowermost early Cambrian zone, or the Treptichnus
pedum Zone, is of Fortunian age and defined by the first
appearance of T. pedum, as well as other complex forms
(Narbonne et al., 1987; Landing et al., 2013, 2015). The
Rusophycus avalonensis Zone contains the oldest bilobate,
trilobite-type resting traces (R. avalonensis) and the bilobate

epichnial trail Taphrelminthopsis circularis (Narbonne et al.,
1987; Jensen et al., 2006). The age of this zone ranges from
Fortunian to Cambrian Age 2. The Cruziana problematica Zone
(= C. tenella Zone), which contains the oldest bilobate,
trilobite-like trails (Cruziana problematica) associated with
Psammichnites gigas, is Cambrian Age 2.

The application of the lowest appearance of SSFs for global
correlation of Ediacaran-Cambrian boundary was first proposed
at the Bristol plenary session in 1983 (Narbonne et al., 1987).
Biozonations based on SSFs are available in Siberia and South
China (Peng et al., 2012a). In Siberia, SSF zonation comprises,
in ascending order, the Anabarites trisulcatus and Purella
antiqua assemblage zones of the Fortunian, and Watsonella
crosbyi and Aldanella operosa assemblage zones of Cambrian
Age 2–Age 3 (Khomentovsky and Karlova, 1993, 2002; Peng
et al., 2012a). The SSF zonation of south China comprises the
assemblage zones Anabarites trisulcatus-Protohertzina
anabarica (SSF1) of the lower Meishucunian Stage (= For-
tunian), Paragloborilus subglobosus-Purella squamulosa
(SSF2), and Watsonella crosbyi (SSF3) of the middle Meishu-
cunian Stage (= lower part of Cambrian Age 2). The upper
Meishucunian (= upper part of Cambrian Age 2) strata comprise
the Sinosachites flabelliformis-Tannuolina zhangwentangi
Assemblage Zone (SSF4) (Steiner et al., 2007), which directly
underlies the trilobitic interval of the Cambrian in the shallow-
water realm of the Yangtze Platform.

Non-biostratigraphic techniques used for correlation of the
Ediacaran-Cambrian boundary include chemostratigraphic
techniques, such as the measurement of carbon and sulfur
isotopes (Magaritz et al., 1986; Tucker, 1986; Magaritz, 1989;
Brasier et al., 1992; Brasier, 1993; Shen and Schidlowski, 2000;
Ru et al., 2011). The carbon isotopic curve emerges as an
increasingly important tool for intercontinental and intraconti-
nental correlation, especially in regions where the primary
biologic marker for a key horizon is absent. The results obtained
by applying chemostratigraphic techniques, however, may be
influenced by provenance and diagenetic alteration, and most
importantly they still require biostratigraphy for final calibration
(Rozanov et al., 2008). In any case, biostratigraphy remains a
cost-effective means of correlating the Ediacaran–Cambrian
transition.

The biostratigraphy of the Soltanieh Formation is poorly
known and largely based on shelly fossils (Hamdi et al., 1989;
Tashayoee et al., 2012) with very little published on ichnos-
tratigraphy (CiabeGhodsi et al., 2006; Tashayoee et al., 2012).
Small shelly fossils reported from the Soltanieh Formation are
comparable with skeletal assemblages recorded in China and
northern Siberia (Hamdi et al., 1989), containing elements of
A. trisulcatus-P. anabarica andW. crosbyi assemblage zones of
Meishucunian Stage, and the Pelagiella subangulata Taxon
Zone of Qiongzhusian Stage (Steiner et al., 2007).

Although the carbonate intervals (Lower, Middle and
Upper Dolomite members) do not contain trace fossils, the
clastic deposits of the Soltanieh Formation (Lower and Upper
Shale members) are host to trace fossils of biostratigraphic
utility, which have largely been overlooked. The Lower Shale
Member contains ichnotaxa that are known from both Ediacaran
and early Cambrian rocks and those that are only known from
the Phanerozoic. The former group includes the simple grazing
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trail, namely Helminthoidichnites tenuis and Helminthopsis
tenuis, whereas the second group consists of the grazing trail
Cochlichnus anguineus, and the bilobate trail Cruziana isp. The
latter occurs on the same bed as the branching burrow
Treptichnus pedum. The Upper Shale Member contains fifteen
ichnospecies, including Cochlichnus anguineus, Cruziana pro-
blematica, Curvolithus isp., Didymaulichnus miettensis, Gordia
marina, Helminthoidichnites tenuis, Helminthopsis tenuis,
Palaeophycus tubularis, Phycodes isp., Planolites montanus,
Psammichnites gigas, Rusophycus avalonensis, Treptichnus
pedum, Treptichnus pollardi, and Treptichnus isp.

Our study indicates that four distinctive trace-fossil zones
can be recognized in the Soltanieh Formation, all belonging to
the early Cambrian (Fig. 6). Ichnozone 1 characterizes the
middle interval of the Lower Shale Member (157–171m above
its base). This ichnozone is of low ichnodiversity, containing
only three ichnotaxa of simple horizontal trails, namely Hel-
minthoidichnites tenuis, Helminthopsis tenuis, and Cochlichnus
anguineus, collected 157m above the base of the Lower Shale
Member (Fig. 7). A wrinkled surface associated with these
specimens suggests the presence of microbial mats (Fig. 2.1),
which allowed the superb preservation of these delicate struc-
tures. Cochlichnus anguineus, Helminthoidichnites tenuis, and
Helminthopsis tenuis commonly occur in direct association with
the microbial mat and record microbial grazing as one of the
most widespread feeding strategies across the Ediacaran-
Cambrian boundary (Buatois et al., 2014).

Although this ichnofauna shows similarities with that of the
Ediacaran (Fedonkin, 1985; Narbonne et al., 1987; Jensen,
1997; MacNaughton and Narbonne, 1999; Gehling et al., 2005;

Buatois and Mángano, 2011; Mángano et al., 2012), the
presence of the Anabarites trisulcatus-Protohertzina anabarica
Zone (Hamdi et al., 1989) in the dolomites below and above the
Lower Shale indicates a Fortunian age. Also, uncontroversial
exmples of Cochlichnus have not been recorded in the
Ediacaran (Buatois and Mángano, 2016). The most likely
interpretation is to consider this ichnofauna as the distal
expression of those that characterize the Treptichnus pedum
Zone (see Discussion). Previous reports of Chuaria sp. from the
lower interval of the Lower Shale Member at Vali-Abad and
Soltanieh Mountains (Hamdi et al., 1989; CiabeGhodsi, 2007)
indicate that Chuaria persisted into the lowermost Cambrian.
A similar situation has been observed in the Heziao and Jijiapo
sections, Hubei province, southern China, where Chuaria sp.
has been reported from siltstone and chert from the lower
Cambrian Yanjahe Formation (Steiner, 1994). Amard (1997)
also suggested an early Cambrian age for Chuaria from the
Pendjari Formation of West Africa. These findings question the
utility of Chuaria for global correlation of Proterozoic succes-
sions. If this is the case, then either the whole Soltanieh
Formation is of early Cambrian age, or the Ediacaran-Cambrian
boundary is placed within the Lower Dolomite Member below
the oldest occurrence of SSF.

Ichnozone 2 represents the uppermost interval of the Lower
Shale Member, the Middle Dolomite Member, and the lower
interval of the Upper Shale Member (171m above the base of
the Lower Shale Member to 80m above the base of the Upper
Shale Member). A total of six ichnospecies occur in this zone
including, Cruziana isp., Gordia arcuata, Helminthoidichnites
tenuis, Helminthopsis tenuis, Palaeophycus tubularis, and

Figure 6. Stratigraphic column of the Soltanieh Formation, showing distribution of trace fossils, small shelly fossils, biozonation based on trace fossils and
small shelly fossils, and correlation in relation to the Yangtze platform, China. Small shelly fossil data based on Hamdi et al. (1989), CiabeGhodsi (2007), and
Tashayoee et al. (2012).

1190 Journal of Paleontology 91(6):1178–1198

https://doi.org/10.1017/jpa.2017.72 Published online by Cambridge University Press

https://doi.org/10.1017/jpa.2017.72


Figure 7. Distribution of sedimentary facies in the Soltanieh Formation, with a detail on trace-fossil distribution in the siliciclastic units indicating the location
where the ichnofossiliferous samples were collected. Cochlichnus (Co), Cruziana (Cr), Curvolithus (Cu), Didymaulichnus (Di), Gordia (Go),
Helminthoidichnites (Hi), Helminthopsis (He), Palaeophycus (Pa), Planolites (Pl), Phycodes (Py), Psammichnites (Ps), Rusophycus (Ru), Treptichnus (Tr).
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Treptichnus pedum, indicating higher ichnodiversity than in the
underlying ichnozone 1. The presence of Cruziana isp. in these
strata is particularly significant because it reinforces evidence
for the presence of arthropod-produced trace fossils in the
Treptichnus pedum Zone. Most of the trace fossils appear in the
lowermost interval of the zone (171–173m above the base of
Lower Shale Member) (Fig. 7). This ichnozone is defined by the
first appearance of T. pedum, and is regarded as Fortunian in age
(Jensen, 2003; Buatois and Mángano, 2011), being referred to
as Ichnozone II in the global ichnostratigraphic scheme or
T. pedum Zone (Narbonne et al., 1987; MacNaughton and
Narobonne, 1999; Jensen, 2003). This is consistent with the
presence of the Anabarites trisulcatus-Protohertzina anabarica
Zone (Hamdi et al., 1989). In strict ichnologic terms, the first
occurrence of Treptichnus pedum together with the first bilobate
trace Cruziana isp. may be taken as evidence that the Ediacaran-
Cambrian boundary is placed within the Lower Shale Member,
171m above its base. As discussed above, however, integration
with small shelly fossils and evaluation of environmental con-
straints suggest placing the Ediacaran-Cambrian boundary at the
base of the Soltanieh Formation or within the Lower Dolomite
Member, rather than within the Lower Shale Member.

Ichnozone 3 characterizes the middle interval of the Upper
Shale Member (80–178m above its base; Fig. 7). This ichno-
zone is defined by a sudden increase in the abundance of trace
fossils and the occurrence of more complex burrows, including
Cruziana problematica, Phycodes isp., and Treptichnus
pollardi. The other elements of this ichnozone are Cochlichnus
anguineus, Curvolithus isp., Gordia marina, Helminthoi-
dichnites tenuis, Helminthopsis tenuis, Palaeophycus tubularis,
Planolites montanus, Treptichnus pedum, and Treptichnus isp.
This ichnozone corresponds to ichnozone III of the global
ichnofossil scheme, encompassing the lower half of the
Rusophycus avalonensis Zone of the Chapel Island Formation,
which represents the upper half of Member 2 and higher strata of
the Chapel Island Formation, Burin Peninsula (Narbonne et al.,
1987), and the lower half of the Rusophycus avalonensis Zone
of the Mackenzie Mountains, which characterizes the Backbone
Ranges Formation and the lower interval of the Vampire
Formation (MacNaughton and Narbonne, 1999). However,
R. avalonensis has not been found at comparable levels in the
Soltanieh Formation. Ichnozone 3 is interpreted as late
Fortunian–Cambrian Age 2 (Buatois and Mángano, 2011).

Ichnozone 4 represents the uppermost interval of the Upper
Shale Member (178m above its base to the base of the Upper
Dolomite Member; Fig. 7). This zone is based on the first
appearance of large back-filled trace fossils (Psammichnites
gigas), together with bilobate, trilobite-like resting trace fossils
(Rusophycus avalonensis), and large locomotion trace fossils
(Didymaulichnus miettensis). The other elements of this ichno-
zone are Cruziana isp., Curvolithus isp., Palaeophycus
tubularis, Phycodes isp., Planolites montanus, and Treptichnus
pedum. Ichnozone 4 corresponds to ichnozones III and IV of the
global scheme, encompassing both the upper half of the
Rusophycus avalonensis Zone of Burin Peninsula (Narbonne
et al., 1987) and the Mackenzie Mountains (MacNaughton and
Narbonne, 1999), and the Cruziana tenella Zone of the latter
region, which characterizes the upper interval of the Vampire
Formation (MacNaughton and Narbonne, 1999). This zone is

regarded as Cambrian Age 2–3 (Buatois and Mángano, 2011).
This is supported by the presence of Pelagiella lorenzi
(Pelagiella subangulata; Steiner et al., 2007).

Discussion

The Ediacaran-Cambrian boundary is globally defined by a
point placed with specific reference to the first appearance of
T. pedum in the global stratotype section in Newfoundland
(Narbonne et al., 1987) and in other regions, including the
Mackenzie Mountains of Canada (MacNaughton and Narbonne,
1999; Carbone and Narbonne, 2014), the Flinders Ranges of
South Australia (Jensen et al., 1998), eastern Finnmark, Norway
(Føyn and Glaessner, 1979; Högström et al., 2013), Sonora,
Mexico (Stewart et al., 1984; Sour-Tovar et al., 2007), and
Death Valley, Eastern California (Jensen et al., 2002), among
many other areas. In the Alborz Mountains of northern Iran,
however, the first appearance datum of Treptichnus pedum
occurs stratigraphically higher in the section. Although
ichnozone 1 consists of grazing trails, which are common in
Ediacaran strata elsewhere, these trace fossils are also abundant
in Fortunian deposits in Burin Peninsula, in connection with
microbially stabilized surfaces (Buatois et al., 2014). In contrast
to the Fortunian of Burin Peninsula, arthropod trackways are
absent in ichnozone 1 in the Soltanieh Formation. We hypo-
thesize that the presence of an ichnofauna of “Ediacaran aspect”
and the late appearance of Treptichnus pedum in the Soltanieh
Formation is due to environmental constraints. Buatois et al.
(2013) noted that this ichnotaxon has a broad environmental
tolerance, albeit displaying a preference for sandy substrates.
The shelf shales of the Soltanieh Formation may have
represented the seaward limit of the T. pedum producer.
Alternatively, because T. pedum is typically preserved along
lithologic interfaces, its absence in the shelfal shale may simply
reflect a taphonomic constraint. Therefore, ichnozone 1 in the
Alborz Mountains may be understood as a distal expression of
the Treptichnus pedum Zone, which is commonly recognized in
settings above storm wave base (Buatois et al., 2013). A similar
situation has been noted in the Ediacaran–Cambrian succession
of eastern Yunnan Province, South China (Zhu, 1997), western
Mongolia (Smith et al., 2015), Lesser Himalaya, India (Singh
et al., 2014), and southeastern Kazakhstan (Weber et al., 2013),
where the first appearance of the trace-fossil T. pedum postdates
the Ediacaran–Cambrian transition.

Ichnozone 2 of the Soltanieh Formation corresponds in part
to ichnozone III of global ichnofossil zones and the Treptichnus
pedum Zone of the Chapel Island Formation, Burin Peninsula,
which characterizes the lower part of Member 2, from 2.4 to
133m above its base (Narbonne et al., 1987; Landing, 1996).
This ichnozone is also represented in the upper interval of the
Ingta Formation in the Mackenzie Mountains (MacNaughton
and Narbonne, 1999) and the Nomtsas Formation of Namibia
(Crimes and Germs, 1982; Geyer and Uchman, 1995), among
other areas. Integration of trace fossils and small shelly faunas
suggests that ichnozone 2 of the Soltanieh Formation is best
regarded as the upper half of the global Treptichnus pedum Zone
to accommodate the shelf deposits of early Fortunian age that
make up the lower interval of the Lower Shale Member.
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In sections worldwide, Cruziana and Rusophycus com-
monly occur stratigraphically below the first occurrence of
trilobite body fossils, and above the first appearance of
Treptichnus pedum (Crimes, 1987). In the Chapel Island For-
mation in Newfoundland, for example, Rusophycus avalonensis
appears ~250 meters up-section from T. pedum, and in current
global ichnostratigraphic schemes this ichnotaxon first appears
below the Cruziana problematica Zone. In the Soltanieh
Formation, however, R. avalonensis has been collected above
Cruziana problematica and together with Psammichnites gigas
within ichnozone 4. In this formation, the first appearance of
bilobate cruzianid traces occurs at the base of the ichnozone 2,
whereas Cruziana problematica first appears in ichnozone 3,
considerably above (172m) the first appearance of T. pedum. In
strict sense, because Cruziana and Rusophycus are both pro-
duced by trilobites or trilobitomorph arthropods, there is no a
priori reason why Cruziana should occur stratigraphically
above Rusophycus.

Finally, Hamdi et al. (1989) noted that the phosphatic lay-
ers near the base of the Upper Shale Member might be part of a
contemporaneous event across the Palaeotethyan belt, under-
scoring similarities with successions in China, India, Pakistan,
Kazakhstan, and Mongolia. However, correlations suggest a
more complicated pattern. In South China, the phosphate layers
of the Upper Phosphate Member occur within the R. avalonensis
and Paragloborilus subglobosus-Purella squamulosa biozones
(Zhu, 1997; Steiner et al., 2007). In southeastern Kazakhstan,
the phosphate deposits of the Aksai Member occur below the
R. avalonensis Zone, and within the Purella antigua assemblage
zone (Weber et al., 2013). In western Mongolia, the phosphate
layers at the base of Member 2 of the Bayangol Formation occur

within the Anabarites trisulcatus-Protohertzina anabarica
Assemblage Zone and below the R. avalonensis Zone (Smith
et al., 2015). The Chert-Phosphate Member of Northern India
occurs within the Anabarites trisulcatus-Protohertzina
anabarica Assemblage Zone, below the R. avalonensis Zone
(Desai et al., 2010). In northern Pakistan, the phosphate-bearing
deposits at the top of Abbottabad Formation are believed to be
of earliest early Cambrian age (Latif, 1972; Hasan, 1986).
However, due to lack of biostratigraphic and geochronological
constraints, the age of the Abbottabad Formation is in dispute.

Therefore, the phosphatic layers of the Upper Shale
Member are most likely coeval with those in the Upper
Phosphate Member in Yunnan and the Karatau Member in
Southeastern Kazakhstan, whereas Member 2 of the Bayangol
Formation of western Mongolia, the Chert-Phosphate Member
in India, and the upper Abbottabad Formation in Pakistan seem
to be older (Fig. 8). To summarize, the integration of strati-
graphic, sedimentologic, and biostratigraphic data suggests two
phosphatic events (early Fortunian and late Fortunian) rather
than one.

Conclusion

Trace-fossil assemblages recorded from the Soltanieh Forma-
tion in northern Iran are characterized by low to moderate
diversity, dominance of very simple forms, and a combination
of locomotion, grazing, and dwelling structures. Ichnodiversity
increases towards the top of the unit. An analysis of the
Soltanieh ichnofauna indicates that four ichnozones may be
recognized. Ichnozone 1 is of early Fortunian age and is char-
acterized by low diversity of simple grazing traces. Ichnozone 2

Figure 8. Stratigraphic column of the Soltanieh Formation, showing distribution of trace fossils, small shelly fossils, biozonation based on trace fossils and
small shelly fossils, and correlation in relation to the Yangtze platform, China. Sources: Latif (1972), Hasan (1986), Hamdi et al. (1989), Zhu (1997), Steiner
et al. (2007), Desai et al. (2010), Weber et al. (2013), and Smith et al. (2015).
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is of middle Fortunian age, and is defined based on the first
appearance of Treptichnus pedum and the earliest bilobate trace
Cruziana isp. Ichnozone 3 is late Fortunian–Cambrian Age 2,
and is marked by sudden change in abundance and complexity
of trace fossils and the first appearance of Cruziana pro-
blematica. Ichnozone 4 is Cambrian Ages 2–3, and is char-
acterized by the first appearance of Psammichnites gigas,
Rusophycus avalonensis, and Didymaulichnus miettensis. An
integration of trace fossils with small shelly fossils and evalua-
tion suggest that the Ediacaran-Cambrian boundary should be
placed at the base of the Soltanieh Formation or within the
Lower Dolomite Member.
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