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Accurate prediction of the hydrodynamic forces on particles is central to the fidelity
of Euler—Lagrange (EL) simulations of particle-laden flows. Traditional EL. methods
typically rely on determining the hydrodynamic forces at the positions of the individual
particles from the interpolated fluid velocity field, and feed these hydrodynamic forces
back to the location of the particles. This approach can introduce significant errors in
two-way coupled simulations, especially when the particle diameter is not much smaller
than the computational grid spacing. In this study, we propose a novel force correlation
framework that circumvents the need for undisturbed velocity estimation by leveraging
volume-filtered quantities available directly from EL simulations. Through a rigorous
analytical derivation in the Stokes regime and extensive particle-resolved direct numerical
simulations (PR-DNS) at finite Reynolds numbers, we formulate force correlations that
depend solely on the volume-filtered fluid velocity and local volume fraction, parametrised
by the filter width. These correlations are shown to recover known drag laws in the appro-
priate asymptotic limits and exhibit a good agreement with analytical and high-fidelity
numerical benchmarks for single-particle cases, and, compared with existing correlations,
an improved agreement for the drag force on particles in particle assemblies. The proposed
framework significantly enhances the accuracy of hydrodynamic force predictions for both
isolated particles and dense suspensions, without incurring the prohibitive computational
costs associated with reconstructing undisturbed flow fields. This advancement lays the
foundation for robust, scalable and high-fidelity EL simulations of complex particulate
flows across a wide range of industrial and environmental applications.
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1. Introduction

Particle-laden flows are prevalent in both natural phenomena and various industrial
processes. Despite extensive research efforts, our comprehension of the collective
behaviour of particles within a fluid flow remains incomplete. Alongside experimental
studies, numerical modelling of particle-laden flows has gained substantial importance
over the past few decades, driven by advancements in computational power and the
development of more efficient and precise numerical methods.

The array of numerical methods available for simulating particle-laden flows spans
from ‘particle-resolved’ methods, such as the immersed-boundary method (IBM), which
resolves the flow around each individual particle on a fine computational mesh (e.g. Peskin
1972), to fully interpenetrating Eulerian approaches, in which both the fluid and particle
phases are treated as continuous media (e.g. Anderson & Jackson 1967). Positioned
between these two extremes is the Euler—Lagrange (EL) approach, which treats the fluid
phase as a continuum, while resolving the trajectories of individual particles.

Euler-Lagrange point-particle methods are particularly effective for simulating fluid
flows laden with up to several millions of particles, providing an accurate, straightforward
and cost-efficient solution. In EL approaches, the fluid phase dynamics is solved using a
classical Eulerian framework, whereas the positions of the particles, treated as Lagrangian
point masses, are evolved based on the computed fluid flow field. The forces acting on
the particles, such as drag, are typically estimated using semi-empirical models (e.g.
Schiller & Naumann 1933; Ergun 1952; Wen & Yu 1966).

Different levels of coupling between the fluid and particulate phases can be considered,
each suitable for different particle volume fraction and mass loading regimes. For very
dilute particle-laden flows with very low particle volume fractions and/or mass loading,
one-way coupling is often assumed. In this scenario, the momentum transfer from the
particles to the fluid phase is negligible, meaning the flow is assumed to be unaffected
by the presence of the particles. However, when the particle volume fraction exceeds
approximately 10~>, the momentum transfer becomes significant and cannot be ignored
(Michaelides, Sommerfeld & van Wachem 2022). In such cases, where two-way coupling
is applied, the particles influence the flow through source terms in the governing fluid
momentum equations.

From a computational perspective, the momentum transfer between the particles and
the fluid in the EL framework is commonly addressed using the particle source-in-cell
(PSIC) model proposed by Crowe, Sharma & Stock (1977). This model has become
a cornerstone in simulating particle-laden flows due to its ability to incorporate the
interactions between discrete particles and the continuous fluid phase effectively and has
been extensively utilised over the past decades to model particle-laden flows (e.g. van
Wachem et al. 2001; Marchioli er al. 2008; Eaton 2009). However, one of the important
assumptions of this approach is that the ratio d,/Ax is very small, where d), is the
particle diameter, and Ax represents the computational mesh spacing. In our recent work
(Evrard, Denner & van Wachem 2021), we show that the error of the PSIC-EL method
in the Stokes regime is linearly proportional to the ratio dj,/Ax, and can be as large as
10 %, even if following the recommendations of commonly used best-practice guidelines
(Sommerfeld, van Wachem & Oliemans 2008), which advises d,,/Ax < 0.1. These errors
have contributed to poor results in several detailed validation studies conducted using
the PSIC-EL framework, and one of them has concluded ‘Two-way coupled Eulerian—
Lagrangian simulations using the point-force technique have not fulfilled their early
promise.” (Eaton 2009).

Recent research efforts have focused on improving the accuracy and extending the PSIC-
EL method to handle particulate flow simulations which do not satisfy the condition

1018 A41-2


https://doi.org/10.1017/jfm.2025.10526

https://doi.org/10.1017/jfm.2025.10526 Published online by Cambridge University Press

Journal of Fluid Mechanics

(a) Disturbed flow, including particle i (b) Undisturbed flow, excluding particle i
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Figure 1. The disturbed flow (a) and undisturbed flow () for particle P; under consideration.

dp < Ax, by modifying the momentum transfer using convolution with smooth kernels
of a certain scale, and by estimating the drag force based on the undisturbed fluid velocity
from the disturbed velocity field available on the Eulerian mesh, along with other flow
parameters. Applying a smooth kernel to the momentum transfer between the particles
and the fluid flow can mitigate some of the errors associated with two-way coupling
between the fluid and particles (e.g. Capecelatro & Desjardins 2013; Evrard, Denner & van
Wachem 2019; Poustis ez al. 2019). Notably, the magnitude of the flow disturbance due to
momentum transfer reaches a plateau as the ratio d,,/ Ax increases, instead of continuing
to grow proportionally with this ratio (Evrard, Denner & van Wachem 2020). The value
of this plateau is directly related to the length scale of the regularisation kernel, which
spreads the transferred momentum over a broader region, resulting in smaller errors.

For a given regularisation length scale, further error reduction in estimating the drag
force necessitates a strategy to improve the estimate of the hydrodynamic forces between
the fluid and the particles. Eulerian—-Lagrangian frameworks require an estimate of the
relative undisturbed velocity between the fluid and the particle, where the undisturbed
fluid velocity is the velocity which the fluid would have at the location of the particle, if
the particle under consideration were not present, see figure 1. For applying this concept,
there are a number of recent research works (e.g. Gualtieri et al. 2015; Evrard et al.
2020; Pakseresht & Apte 2021; Balachandar & Liu 2022; Horwitz et al. 2022; Kim &
Balachandar 2024; Chandran, Evrard & van Wachem 2025; Srinivas & Tomar 2025) which
focus on recovering the undisturbed fluid velocity from the actual (disturbed) fluid velocity
field available, along with other flow parameters. Determining the correct hydrodynamic
forces in a two-way coupled EL framework by estimating the undisturbed fluid velocity
at each particle and subsequently using this undisturbed velocity to accurately determine
the drag force on the particle using an existing drag model has achieved some success,
especially in very dilute flows with low particle Reynolds number. However, there still exist
several fundamental problems to overcome before achieving a general solution following
this route.

Firstly, the concept of the undisturbed fluid velocity, as introduced by Maxey and Riley,
and Gatignol (Maxey & Riley 1983; Gatignol 1983) may not be the correct quantity to
accurately determine the hydrodynamic forces. The undisturbed fluid velocity is the fluid
velocity in which the contribution of the particle under consideration is removed and
replaced by the fluid, see figure 1. This means that the self-induced flow perturbation
by the presence of the particle due to the momentum fed back to the fluid by this particle
is not present in the undisturbed flow. For some cases, this undisturbed fluid velocity is
easily determined and can be used to compute the hydrodynamic forces on the particle.
For instance, when a single particle is falling in a quiescent fluid, the complete motion
of the fluid around the particle is due to the disturbance caused by that particle, and the
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undisturbed fluid velocity should be zero. However, not all possible cases are that easy
to analyse. For instance, when a particle in a flow crosses its own trajectory at a later
instance in time, the disturbance from the first instance of the presence of the particle
should be considered when determining the drag on the particle. The situation gets even
more complicated when multiple particles are present. When estimating the undisturbed
velocity from a simulation in the absence of the particle, by ‘removing’ the particle
under consideration, the secondary effects of this particle, such as the indirect influences
occurring on the neighbouring particles, are also removed, which is likely to lead to an
incorrect drag force prediction. This is visualised in figure 1, where the fluid velocity field
is shown with the particle P; and without it, i.e. the undisturbed velocity field. In the
absence of the particle P;, the flow around the neighbouring particles is altered, which has
an effect on the force experienced by the particle P;. Typically, models to determine the
undisturbed velocity only determine the self-induced velocity disturbance of the particle
under consideration, which does not consider the secondary effects on neighbouring
particles. Neglecting these secondary effects is only acceptable in the very dilute regime.
In the dense regime, force closure models for the estimation of the drag on the particle
should account for the particle-induced self-disturbance, the effect this disturbance has on
the neighbouring particles, and finally the neighbour-induced disturbance accounting for
these secondary effects.

Secondly, accurately determining the undisturbed fluid velocity in practice is generally
very computationally expensive because the velocity disturbance is generally a result of
non-linear interactions with the background flow. The general governing equation for the
disturbance velocity caused by a particle, from which the undisturbed velocity can be
obtained, is very similar to the Navier—Stokes equations (Evrard et al. 2020), with a similar
cost to solve. These equations would need to be solved for every particle in the flow, which
would be tremendously computationally expensive. Therefore, most approaches to deter-
mine the undisturbed fluid velocity assume Stokes or Oseen flow (e.g. Gualtieri et al. 2015;
Ireland & Desjardins 2017; Evrard et al. 2020; Horwitz et al. 2022; Chandran et al. 2025),
or solve an auxiliary set trying to obtain all the particle-induced velocity perturbations
as one, in which particle—particle effects are neglected (e.g. Pakseresht & Apte 2021).
However, these are all approximations of the actual disturbance velocity, and a general
solution to this problem is likely to be far too computationally expensive in practice.

In the present paper, we propose an alternative framework to accurately obtain the
hydrodynamical forces acting on a particle in a flow. This proposed framework does
not rely on the undisturbed fluid velocity, but on quantities directly available in an
EL framework. A consistent coupling between fluid and particles can be obtained by
volume-filtering the Navier—Stokes equations (NSE) (Hausmann et al. 2024a), a concept
introduced by Anderson & Jackson (1967). It is important to note that, in EL simulations,
the accuracy of the filtered velocity field at the particle location depends on the fidelity
of the underlying volume-filtered equations and their associated closures. Next to the
hydrodynamic force model, inaccuracies in the subfilter stress closure or the viscous stress
closure can also lead to deviations in the recovered filtered velocity, and thus introduce
additional error in the predicted hydrodynamic force.

The framework proposed in the present paper links the forces acting on the particles to
the local volume-filtered fluid quantities and the ratio of the filter length and the particle
diameter, both well defined in the volume-filtered framework and independent of the
particle volume fraction or the fluid mesh resolution. We will first illustrate the novel
framework by considering a single particle in a Stokes flow, then extend the framework to
a single particle in higher-Reynolds-number flows, and finally to an assembly of particles
in a flow.
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2. Governing equations

We consider the framework of volume-filtering because it allows the derivation of the
concept of EL point-particle simulations directly from the NSE. Volume-filtering a flow
quantity @ is defined as the following convolution operation over the whole domain £2,
the union of the fluid domain £2 and the particle domain £2:

67 (1) B (x) = / L ®(Me(x — yDdv,, @)
2

where dV indicates an element of volume in the neighborhood of point y, and @ indicates
the filtered quantity, and with the radially symmetrical filter kernel, with a length scale
called the filter width, o, satisfying

/g(lxl)de =1, (2.2)
2

where dV, indicates an element of volume in the neighborhood of x. Although, in
principle, any filter that obeys (2.2) can be used, in this work, we take the filter kernel
to be a Gaussian, as it will enable an analytical treatment of some of the closure terms.
The fluid indicator function, /¢, is defined as

1 ifxeg

2.3
0 else 2:3)

Iy (x) = {
and &f is the fluid volume fraction. The volume-filtered NSE of an incompressible flow

with constant density oy and constant dynamic viscosity ;s may be written as (Hausmann
et al. 2024a)

38f
o (o) = 2.4
ot (f”) 24
38f12,' L 88f]5 92 Sful d
Pr—, +pf§j(efuisfuj)=— ox; +ur F ox;0x; E Sq.i + mr&i = Pfgjfsfs,ij’

(2.5)

where u; is the fluid velocity, p is the fluid pressure, & represents the viscous closure,
and Ty the subfilter stress tensor. Here, £ can be expressed analytically, and g ;;
requires modelling and is important to take into account for larger Reynolds numbers
(Hausmann et al. 2024a). These closures have been derived in Hausmann et al. (2024a),
where their origin and potential impact are also discussed. The particle momentum
source is defined as the following sum of integrals over the surfaces of the particles with

index ¢q:
au du
si=Y / g(lx—yl)< pSij + 1y (8—+8—yl’>> njdA,, (2.6)

‘Q[’q

where n; is the normal vector at the surface of the particle. Since s; depends on the
unfiltered fluid velocity and pressure fields, it typically requires modelling. For large filter
widths, o, to particle diameter, d,, ratios, as it is common for point-particle simulations,
the particle momentum source is typically approximated as (see e.g. Capecelatro &
Desjardins 2013)
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iR Y Fngig(lx —xp4l), 2.7)
q

which has been shown in Hausmann et al. (2024a) to be a reasonable assumption for
o/d, > 1. Here, Fj; is the hydrodynamic force on the particle. In flows with large
particle-to-fluid density ratios, the fluid adjusts rapidly to the particle motion, allowing the
hydrodynamic force to be well approximated by a quasi-steady drag formulation. In this
work, we assume that the dominant hydrodynamic force on the particle is the drag force,
Fj, ~ F,, although the framework can be extended to account for other hydrodynamic
forces as well. The drag model is a crucial aspect when predicting the motion of particles
in a fluid flow. It encompasses a wide range of complexities, from the basic linear drag law
for an isolated particle in Stokes flow, to more sophisticated formulations that consider
various flow regimes and particle interactions.

3. A novel class of hydrodynamic force correlations based on the volume-filtered
fluid velocity

In the hydrodynamic force models used in EL frameworks, the free-stream fluid velocity,
Uso, 18 typically interpreted as the undisturbed fluid velocity. Additionally, in some cases,
self-induced velocity disturbance correction models are used to determine u, from the
volume-filtered fluid velocity which is available in the EL point-particle simulation. The
drawbacks of this procedure have been discussed in § 1. We propose a novel class of
hydrodynamic force correlations, in which the hydrodynamic force depends directly on
the volume-filtered fluid velocity at the particle position and the filter width as inputs. This
requires changing existing force correlations, or even deriving new force correlations.

The principle will be first shown for a single particle in Stokes flow and a single particle
in a finite-Reynolds-number flow, and will also be derived for a flow past particles in
assemblies with varying volume fractions.

3.1. A sphere in Stokes flow

Stokes drag on a sphere is the simplest form of drag force determination, applicable
to small spherical particles moving at low particle Reynolds numbers, Re, < 1, where
inertial effects are negligible compared with viscous forces. The particle Reynolds number
is the Reynolds number based on the particle diameter and the relative velocity between
the fluid and the particle. The expression for Stokes drag for a uniform flow in an infinite
domain is analytically given as

Fq=3m5dpUpl. (3.1)

where U,.; = (U — v) is the relative velocity between the particle and the uniform fluid
velocity very far away from the particle, u, herein referred to as the undisturbed velocity.
The particle velocity is written as v. This linear relationship between the drag force and
undisturbed velocity indicates that the drag force is directly proportional to the particle
velocity. Stokes drag is derived under the assumption of steady, laminar flow with no
significant effects from the particle wake.

In order to obtain the drag force dependence on the volume-filtered fluid velocity at
the particle centre, &7l r@p, and the non-dimensional relative filter width, o'=o/d », the
analytical velocity, u, of the Stokes flow past a sphere moving with a velocity v is volume-
filtered. This can be written as follows:

LY o
Sfﬁf@pZZﬂf / (u—i—v)gr2 sin 6 dr d@, (3.2)
0 Jd,/2
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where g is the Gaussian distribution function with standard deviation o. It should be noted
that u is defined in the reference frame of the moving particle in spherical coordinates
(Batchelor 1967). Utilising the symmetry of u in the azimuthal direction, and integrating
u along the polar (9) and radial () directions, we obtain

1
grlifap = (oo — v)erfc(zﬁa) +é&rv. (3.3)

Substituting (# — v) from (3.3) above into (3.1), the drag force on the particle as a
function of the local filtered velocity is as follows:

fo o STisdp(Ertyap — ErV)

d 1
erfc(zﬁg/)

The resulting expression for the drag force shares a similar functional form with the
correlation proposed by Ireland & Desjardins (2017), and could, in principle, also
be derived within the framework of undisturbed velocity-based models. However, the
conceptual foundation of our approach is fundamentally different. Rather than relying on
an estimate of the undisturbed fluid velocity, we formulate the drag law directly in terms
of the volume-filtered fluid velocity that is readily available in EL simulations.

In the limit of ¢’ — o0, Efll f@p —> Uoo and (3.4) converges to the standard Stokes
drag defined in (3.1). The drag force on the particle, F, is a function of the volume-

filtered velocity at the particle centre, a quantity that can be directly interpolated from the
computational grid in a volume-filtered EL simulation, and the relative filter width.

34

3.2. A sphere in finite-Reynolds-number flow

As the particle Reynolds number increases beyond the Stokes regime, the drag force
no longer remains proportional to the relative velocity. To determine the drag force
for particles with intermediate particle Reynolds numbers, 1 < Re, < 1000, empirical
correlations are often used to account for the increased nonlinearity in the drag force.
One common empirical formula is the correlation of Schiller & Naumann (1933), which
proposes a drag coefficient Cp of

Cp= 2 (1 +0.15 Re,%087), (3.5)
Re,
and the drag force is then given by
1 T 5

where py is the density of the fluid.

Similar to the model proposed for a sphere in Stokes flow, we now seek a relation
between u and the volume-filtered velocity at the centre of the particle, er&t f@p, for
a uniform flow around a sphere at particle Reynolds numbers larger than zero. In this
case, it is impossible to derive an analytical relation between u, and &7t f@p, as the
fluid velocity field around a particle is not known analytically. In order to derive an
empirical relation between u, and &7t @ for the uniform flow around a sphere at finite
Reynolds numbers, we carry out particle-resolved direct numerical simulations (PR-DNS)
of a sphere at Reynolds numbers in the range 1 < Re;, < 200.

Our PR-DNS framework employs a finite-volume approach to solve the incompressible
Navier—Stokes equations with second-order accurate spatiotemporal discretisation over a
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Figure 2. Flow past a single particle at Re, = 100. Top half is coloured by the flow velocity normalised by
the free-stream velocity, u, along with streamlines. Bottom half is coloured by the pressure normalised by

Pritag/2.

mesh. The flow is driven by a body force in the direction of the primary flow, while no-
slip and no-penetration boundary conditions at the particle surface are enforced using a
momentum source term computed via the hybrid IBM (Chéron et al. 2023). The fluid
governing equations are solved numerically on a grid which is refined near the surface of
the particle, achieving a resolution of d,,/Ax ~ 36, where Ax is the cell size of the grid
near the particle surface. In figure 2, a visualisation of the flow past an isolated particle is
shown for the case of particle Reynolds number Re, = 100.

The volume-filtered fluid velocity at the centre of the particle is obtained by explicitly
volume-filtering the velocity field obtained from the PR-DNS, which is done in two
steps. Firstly, the velocity field is multiplied with the fluid indicator function, i.e. the
fluid velocities in the mesh cells inside the particle are multiplied with zero. Secondly,
the convolution integral for the volume-filtered velocity at the centre of the particle is
computed discretely as

Nt
er(xo)u(xe) = / Ir(y)u(y)g(|x. — yphdVy, ~ Z LfnungnAVy, 3.7
o n=1

where I, and u, are the values of the fluid indicator function and the velocity in mesh
cell n, x. indicates the centre of the particle, AV, is the volume of the mesh cell, g, is the
integral contribution of the Gaussian to the mesh cell, and Ny is the total number of mesh
cells in a simulation.

From explicitly volume-filtering the PR-DNS results, pairs of #~ and &rut f@) for
Reynolds numbers in the range of Re, €[1, 10, 50, 100, 200] and for the relative filter
widths o’ €[0.5, 1, 2, 3, 4, 5] are obtained. Note that for values of relative filter widths of
o' >5, erit f@p no longer changes significantly compared with its value obtained with a
relative filter width of 5.

The relation between u, and &t f @, must satisfy two asymptotic limits: (i) (3.3) must
be recovered as Ep — 0 and (ii) &/t f@p — U as 0" — 00. We propose the following
empirical correlation that satisfies these asymptotic limits:

Efll f@p — EFV
Uret =oe —v=T=L2L2 (1 - kakre). (3.8)

(5757
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Table 1. Coefficients for the empirical correlation to determine U,,; for finite Re,, which is given in (3.8).
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o
°
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097 - b

Figure 3. Target undisturbed Reynolds number, Regarg), divided by the predicted undisturbed Reynolds num-
ber, Re?,pmd) , with the empirical correlation for U, as given in (3.8) for different normalised filter widths o”.

with

b 1 ap(c’ —0.5)% | (3.9)
772 1 4ap(c’ —0.5)@ ’

and
1 R
kre =7 (14 erf(azlogig(Rep) — a3)), (3.10)

where Ep =prlefitfap — &rvldy /1y is the filtered particle Reynolds number. The
coefficients of the empirical correlation are given in table 1. After obtaining U,,;, the
drag force on the particle can then be computed with (3.6).

Figure 3 shows the target undisturbed Reynolds number, Regarg), divided by the

predicted undisturbed Reynolds number, Reg,pred), computed with the empirical correlation

for U,,; for different Reynolds numbers. The maximum deviation of approximately 3 %
occurs at a Reynolds number of one for a relative filter width of three. We assume this
deviation to be significantly smaller than the modelling and discretisation errors that
typically arise in EL point-particle simulations.

3.3. Suspension of monodisperse spheres

In particle-laden flows of practical relevance, the individual particles do not experience a
uniform flow field in an unbounded domain; instead, the presence of surrounding particles
alters the local flow so it becomes non-uniform, thereby also influencing the hydrodynamic
forces acting on each particle. There are a number of proposed empirical models (e.g.
Wen & Yu 1966; Gidaspow 1986; Beetstra, Vanderhoef & Kuipers 2007; Tenneti, Garg &
Subramaniam 2011) to predict the drag force on a particle in a suspension. These models
are typically based on the spatial mean of the relative velocity between the fluid and the
particle, the mean particle volume fraction, and the properties of the particle. For instance,
in Tenneti et al. (2011), PR-DNS of various particle assemblies in periodic domains are
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carried out, and the corresponding forces on the particles in the assemblies are averaged
and are used to propose an empirical expression for the drag force, which depends on the
‘global’ fluid velocity and the ‘global’ volume fraction only, where ‘global’ refers to the
average over the periodic domain size in which the simulations are carried out.

However, because the flow around each particle, particularly when surrounded by other
particles, can be highly complex and vary significantly from one particle to another, the
drag force can also exhibit strong particle-to-particle variability. As a result, conventional
drag correlations based solely on global parameters cannot provide accurate predictions
at the individual particle level. More recently, models have been proposed that aim to
predict the deviation of the hydrodynamic force acting on individual particles (e.g. Akiki,
Jackson & Balachandar 2017; Hardy er al. 2022; Siddani et al. 2024; van Wachem,
Elmestikawy & Chéron 2024). These models incorporate, in some form, information about
the relative position of neighbouring particles. When such local structural information
is accounted for, improved accuracy in drag force prediction is possible. However, the
definitions of the superficial velocity and global particle volume fraction, on which these
models also rely, become ambiguous in inhomogeneous flows, such as flows with particle
clustering, since the value of both quantities depends on how large the averaging volume
is, which is an arbitrary choice. Additionally, in particle assemblies, particularly at higher
concentrations, the notion of an undisturbed velocity becomes increasingly ambiguous due
to the complex and overlapping flow disturbances generated by neighbouring particles.
As a result, accurately determining this velocity at the particle location becomes highly
challenging, both conceptually and computationally.

The presently proposed framework, in which the force correlations depend on volume-
filtered quantities, can be extended to particle suspensions. Since the flow is more
complicated than the uniform flow around a single particle, additional uniquely defined
volume-filtered quantities that are accessible in EL simulations have to be considered to
predict the hydrodynamic force accurately. Independent of the complexity of the particle-
laden flow, the hydrodynamic force on particle ¢ is expressed as a function of the pressure
and velocity field as

u;  du;j
Fh,q,i = —p(SlJ—F,LLf E—{-a—x[ I’ljdAx, (311)

p.q

where 052, , is the surface of particle g, J;; is the Kronecker delta function, and d A,
indicates an element of the surface in the neighborhood of point x on the particle. If
the values of u; and p are known on all points on the surface of the particle. Formally,
the process of volume-filtering does not remove any information, but the discretisation of
the filtered solution on a finite fluid mesh does. Therefore, an exact relation between the
volume-filtered flow quantities and the hydrodynamic force exists, but since the volume-
filtered flow quantities are approximated in EL simulations, the predicted hydrodynamic
force is also an approximation. Since less information is removed for small filter widths, it
is expected that the estimation of the hydrodynamic force is also more accurate for small
filter widths.

As a conceptual proof of the proposed framework for force correlations, the functional
approach of the existing mean-drag-force correlation of Tenneti et al. (2011) is adapted to
the framework proposed in this paper. The adaption consists of two essential modifications.
(i) The input parameters are the volume-filtered velocity and the volume fraction at the
particle position as well as the filter width, instead of the superficial velocity and the
global volume fraction, as in the original model. (ii) The coefficients of the expression are
obtained by minimising the deviation of the predicted force from the actual force of each
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Figure 4. Examples of (u,) stream-wise velocity fields normalised by the superficial velocity as predicted by
PR-DNS, for two different volume fractions.

individual particle, instead of the deviation of the predicted force from the mean of the
forces acting on all the considered particles in each PR-DNS of a particle assembly.

To determine the coefficients of the proposed expression, we have carried out PR-DNS
of assemblies of particles. The PR-DNS are performed in a periodic cubic domain of
volume Vi, containing N, non-overlapping, fixed, monodisperse spherical particles. The
domain is discretised into Ny Eulerian fluid cells, in which the governing equations for
fluid flow are solved to obtain the local fluid properties. Each fluid cell may be fully
occupied by fluid, fully occupied by a particle or partially occupied by both. Flow through
the periodic domain is driven by imposing a pressure drop, § P, which is introduced as an
additional body force in the x-direction in the fluid momentum equations, so the correct
superficial fluid velocity is obtained. For further details, we refer to van Wachem et al.
(2024).

In this study, a total of six global particle volume fractions are considered, namely
(ep) =0.1,0.2, 0.3, 0.4, 0.5 and 0.6. For each global particle volume fraction, multiple
flow conditions are investigated by varying the superficial particle Reynolds number as
Re; =0.1, 1, 10, 50, 100 and 300. The superficial particle Reynolds number is defined as
Res = prdpug /i, where the superficial velocity is given as the fluid domain average of
the fluid velocity:

1
Uy = — | uy(x)dVi. (3.12)
Viot
2

The total volume of the domain, V;, is the sum of the volume occupied by the fluid and
the volume occupied by the particles. To ensure statistical convergence, three independent
realisations are simulated for each combination of solid volume fraction and superficial
particle Reynolds number. Each simulation is carried out until a statistically steady state
is achieved. In total, 108 PR-DNS are performed, with an average of 136.33 particles per
simulation. This results in a total of 14 724 data points across the entire parameter space,
which serve as the basis for the development of the hydrodynamic force correlations. In
figure 4, a two-dimensional section of the normalised streamwise velocity field is shown
for (¢,,) = 0.2 and 0.5, both at Re; = 50.
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From the results of the PR-DNS, we determine the volume-filtered flow quantities for
various filter widths, for each simulation configuration. To obtain the volume-filtered flow
quantities, we exploit the fact that the domain is periodic and that a convolution becomes
a multiplication in spectral space. Therefore, the volume-filtered velocity is given as

erti = g x (Iru) = F~{Flg) Fllru}}, (3.13)

where * is the convolution operator, and F corresponds to the Fourier transform.

In order to derive a drag correlation as a function of the local volume-filtered quantities,
we propose a drag correlation of a similar form as that in Tenneti et al. (2011), except
that the input parameters here are the local fluid volume fraction, the volume-filtered
velocity, and the ratio of the filter width to the particle diameter, o’. The general form
of the normalised drag correlation is as follows:

Cp Re 1 F)
D %p +ap £
24 (1-34,)3 (1—35,)3

5173 545
I3 an £
+a——— +8%Re, (a2+a3—>:|, (3.14)

Fd =3nurdy(erur@p — &FV) |:

(1—8,)% (1—38,)?

where & is the difference between the fluid volume fraction of an isolated particle and &,
both of which are evaluated at the particle centre. Here, Cp is the Schiller-Naumann
correlation based on Re,. It is to be noted that, for the correlation to completely depend on

volume-filtered quantities, we convert ﬁp to Re), using (3.8). For a Gaussian kernel, d,
can be mathematically expressed as

1
exp (——2>
8o’
—&r. 3.15
2\/50/) + o'A/2m °f ( )

Equation (3.15) is obtained by using the fluid volume fraction for an isolated particle
(Balachandar & Liu 2022), and using L’Hopital’s rule to retrieve the volume fraction at the
particle centre. In the limit of a very dilute volume fraction, i.e. §; — 0, and a large filter
width, (3.14) reduces to the standard Schiller-Naumann correlation for a single particle.
Mean-drag-force models, such as that proposed by Tenneti et al. (2011), use the ‘global’
superficial fluid velocity, and the global particle volume fraction to predict a mean drag
force in an assembly. When o’ — 00, 8, simplifies to the global particle volume fraction,
(ep), and the volume-filtered velocity at the particle centre simplifies to the superficial
fluid velocity, u,. In this limit, (3.14) uses the same inputs as in a mean-drag-force model,
such as that proposed by Tenneti et al. (2011).

To evaluate the coefficients in (3.14), we define an error measure that minimises the
deviation of the drag force prediction from the actual drag experienced by each individual
particle in the random assembly. The mean relative deviation of the predicted drag force
in the streamwise direction acting on particle ¢, I:"d,q, x, from the actual drag force acting
on particle g, Fy 4 «, is therefore defined as

8, =erfc (

qux qux

(3.16)
Fy .q,X

Table 2 presents the fitted coefﬁc1ents of (3.14) obtained by minimising the mean
deviation in the predicted individual particle force against the corresponding particle
force from the PR-DNS data using (3.16). The datasets are grouped based on o', and
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o/d, ap ay a as as as

0.5 9.147 9.955 0.077 8.266 0.056 2.898
1 4.589 2.122 0.097 2.308 0.604 3.571
2 6.486 0.609 0.109 1.598 0.891 3.274
3 7.501 0.190 0.131 1.699 1.012 3.451
4 7.584 0.134 0.550 5.393 1.826 5.097
5 7.615 0.101 0.724 8.188 2.003 5.856

Table 2. Coefficients of the empirical correlation for ﬁ‘d given in (3.14).

use the Limited-memory Broyden-Fletcher-Goldfarb-Shanno for Box contraints algorithm
for limited memory bounded-constraint optimisation to evaluate the coefficients (Byrd,
Peihuang & Nocedal 1996). A maximum mean error of approximately 27 % in predicting
the individual particle forces across the six different values of o’ is observed.

4. Results and discussion
4.1. A sphere falling in a fluid in the Stokes regime

We demonstrate the advantages of the newly proposed framework of force correlations by
first considering a single falling spherical particle in a large domain filled with an initially
quiescent fluid under gravity in the Stokes regime. The particle, which is initially at rest,
accelerates in the fluid until it reaches its terminal velocity, which can be determined
analytically in this regime. We perform three configurations of two-way coupled EL
point-particle simulations of this case by:

(i) solving the volume-filtered NSE with the classical Stokes drag;
(i1) solving the volume-filtered NSE with the newly proposed filtered Stokes drag, (3.4);
and
(iii) solving the commonly used PSIC method (Crowe et al. 1977) and neglecting &; and

Tsfs, ij-

For each configuration, the domain is fully periodic and has a size of Ly x Ly x L, =
100d), x 100d,, x 100d,, and various mesh resolutions and, where applicable, filter widths
are simulated. The particle Reynolds number based on the terminal velocity is Re), =
1.11 x 10~* and the density ratio is pp/pr =2000, where p, is the particle density.

Figure 5 shows the particle velocities of the three different simulation configurations for
three different resolutions, d,/Ax =0.25, d,/Ax =1 and d,,/Ax =2, and in the figure
the simulation results are compared with the analytical result. The filter widths, o, are
chosen according to the guidelines provided in Hausmann ez al. (2024a), such that o’ > 1
and o/Ax > 1 are always satisfied. The time is normalised by 7, = (p, — pf)dlzj J(A8pur).

The simulations using the classical Stokes drag overpredict the magnitude of the
terminal velocity considerably, although the simulations do reach a stable velocity
after some time. The simulations adopting the PSIC framework show an even larger
error, and do not even converge for d,/Ax =2. When using the newly proposed drag
force correlation based on the volume-filtered velocity and the ratio of the filter width
and the particle diameter, the analytical particle velocity is reproduced accurately in
all cases.
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—e— Analytical

-= Volume-filtering, Stokes drag

-4- Volume-filtering, filtered Stokes drag
PSIC, Stokes drag

o'=4,0/Ax=1 o'=1,0/Ax=1 o'=1,0/Ax=2
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Figure 5. Relative particle velocities of a single falling sphere over time for the volume-filtered simulations
using classical Stokes drag, the volume-filtered simulations with the filtered Stokes drag, and the PSIC
simulation frameworks, compared with the analytical solution. The simulations are performed with three
different resolutions: (a) d/Ax =0.25, (b) d,/Ax =1 and (c¢) d,,/Ax =2. vy is the terminal velocity of
the particle.

4.1.1. Comparison with undisturbed velocity models

A falling sphere in a finite domain is often used to validate models based on the
undisturbed fluid velocity principle. The most recent velocity disturbance corrections for
transient flow (Evrard et al. 2025; Chandran et al. 2025) can predict the trajectory of a
single falling sphere in a finite domain accurately because this is one of the few cases
in which the undisturbed velocity is well defined. We investigate a single falling particle
under gravity in a small periodic domain, a simple case where the concept of subtracting
the velocity disturbance to achieve the undisturbed fluid velocity fails when the particle is
confronted with its historic effect on the fluid.

To simulate this case, two-way coupling is used, i.e. the drag force acting on the particle
is fed back to the fluid momentum. This results in a constant acceleration of the mean fluid
velocity. Since in steady state the drag force on the particle must be equal to the sum of
the gravitational force, Fg, and the buoyancy force, Fg, the mean flow accelerates with a
magnitude of |Fg + Fg|/my, where the mass of the fluid, ms = pr Ly Ly L. The periodic
domain has a size of Ly x Ly x L, =50d, x 50d, x 50d,. A steady state is achieved
only in the sense of the relative velocity between the particle and the fluid, as the mean fluid
flow continues to accelerate, just as the particle. However, the particle velocity in the non-
moving Eulerian frame of reference continues to increase in time. The results of the EL
simulation using the concept of the undisturbed fluid velocity with the EL simulation using
the volume-filtered drag model, as well as the theoretically expected trend, is shown in
figure 6. It is clearly evident that, in this case, the concept of reconstructing the undisturbed
velocity to compute the drag force fails to produce accurate results, whereas the simulation
employing the volume-filtered drag force framework yields predictions in good agreement
with the reference solution.

One could argue that a single particle which is falling in a periodic domain does not
have much practical relevance. However, the failure of the concept of velocity disturbance
correction translates directly to configurations with more than one particle, which is
frequently studied in the literature (see e.g. Uhlmann & Doychev 2014; Capecelatro,
Desjardins & Fox 2015; Willen & Prosperetti 2019; Hausmann et al. 2024b; Xia et al.
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Figure 6. A falling isolated particle in a periodic domain. Simulations of the volume-filtered NSE using the
proposed filtered Stokes drag are compared with the theoretical acceleration of the particle and the ideal
correction of the flow disturbance of the particle.

2024). If these cases were simulated with the EL point-particle approach with an accurate
velocity disturbance correction, incorrect results would be obtained.

4.2. A sphere falling in a fluid at higher Reynolds numbers

In order to test the novel force correlation that we propose for finite Re), the study of
the falling particle discussed in the previous section is extended to larger Re),. Similarly
to the configuration of the falling particle in the Stokes regime, the domain size remains
Ly x Ly x L; =100d, x 100d, x 100d,, for this validation. The density ratio is kept at
pp/pr =2000, and the particle Reynolds number is varied by varying the fluid viscosity.
At finite Re ), the results cannot be compared with an analytical solution, but for a single
particle, a reference solution can be obtained with a one-way coupled simulation. In the
one-way coupled simulation, the fluid velocity remains zero at all times and the classical
Schiller-Naumann correlation, as given in (3.5), provides an accurate drag force on the
particle. In addition to the one-way coupled simulations, we perform two two-way coupled
EL point-particle simulations of this case by:

(i) solving the volume-filtered NSE with the classical Schiller—Naumann drag
correlation; and

(i1) solving the volume-filtered NSE with the newly proposed filtered version of the
Schiller—-Naumann drag correlation using (3.8).

The simulations are performed with three different particle Reynolds numbers, Re;, €
[1.11 x 1074, 0.9646, 38.7] and two relative filter widths o’ € [1, 4], whereas o/Ax =1
for all simulations.

In figure 7, the particle settling velocities are shown for the three Re), and for a relative
filter width of o’ = 1. The volume-filtered simulations with the newly proposed filtered
Schiller-Naumann drag force model predict the particle settling velocities accurately for
all of the three Re,. With the classical Schiller-Naumann drag, significant deviations
from the correct particle settling velocities are observed, whereby the deviations decrease
with increasing particle Reynolds number. For large particle Reynolds numbers, the flow
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Figure 7. Relative particle velocities of a single falling sphere over time for the volume-filtered simulations
using classical Schiller—Naumann drag and the volume-filtered simulations with the filtered Schiller—Naumann
drag. The corresponding one-way coupled simulation with classical Schiller-Naumann drag is shown as
reference. The simulations are performed with three different values for Re, and with a relative filter width
ofo’=1.
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Figure 8. Particle velocities of a single falling sphere over time for the volume-filtered simulations using
classical Schiller—Naumann drag and the volume-filtered simulations with the filtered Schiller—Naumann drag.
The corresponding one-way coupled simulation with classical Schiller—-Naumann drag is shown as reference.
The simulations are performed for three different values of Re,, and with a relative filter width of o’ = 4.

disturbance induced by the particle becomes small, and the volume-filtered velocity at the
particle position is relatively close to the undisturbed velocity.

Figure 8 shows the particle settling velocities for a larger filter width, o’ = 4. Ideally,
the predicted particle settling velocities should not depend on the filter width or the spatial
resolution and the same results should be obtained as with o’ = 1. This is the case for the
volume-filtered simulations using the filtered Schiller-Naumann drag. With the classical
Schiller-Naumann drag, the particle settling velocity is still inaccurate for the smaller Re,,
but for the larger Re, the particle settling velocities are predicted accurately.

This means that, when using the classical Schiller-Naumann drag with the volume-
filtering framework, the results deteriorate as the relative spatial resolution increases or
the local Re;, decreases. For large filter widths, the flow disturbance by the particle is
spread over a wider region, which leads to a volume-filtered velocity at the particle position
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closer to the undisturbed velocity than for small filter widths. Therefore, the disturbance is
negligible for the largest Re, and o’ > 4.

Although accurate particle settling velocities are predicted with the volume-filtering
framework and the newly proposed filtered Schiller—Naumann drag, some small deviations
to the one-way coupled simulations remain, which have multiple origins. (i) The volume-
filtered NSE are solved on a discrete fluid mesh, which leads to a discretisation error.
Furthermore, the volume fraction, the mass source and the closures, including the
analytical viscous closure, are also represented on a discrete fluid mesh. The resulting
discretisation errors lead to a deviation of the numerical solution from the actual volume-
filtered flow field, which has been used to fit the coefficients of the force correlation.
(i1)) The model for the subfilter stress tensor is accurate for small filter widths but the
modelling error increases as the filter width increases (Hausmann ef al. 2024a), and
(iii) a falling particle is a transient process but the filtered Schiller—Naumann correlation
is obtained with data from the stationary flow around a sphere. In the acceleration phase,
the flow field around the particle can be different from the steady-state flow field at the
same Re,. Unlike undisturbed velocity models, which attempt to remove transient effects
only to reintroduce them through corrective terms such as the history force, our approach
directly models the total hydrodynamic force using the filtered flow quantities. This
avoids ambiguities in defining the undisturbed velocity, and offers a consistent, potentially
unsteady-aware framework. The extent to which transient effects are retained remains an
open question for future research.

These and other error sources are common in EL point-particle simulations, but the
present results indicate that they are small with the volume-filtering framework, at least
for the falling sphere configurations investigated.

4.3. Suspension of monodisperse spheres

As a final test case, the novel force correlation framework is evaluated for a suspension
of monodisperse spheres. The hydrodynamical force on each individual particle predicted
by the force correlation derived in § 3.3 is compared with the actual force given in the
PR-DNS of the flow through the particle arrangements. In figures 9 and 10, the mean
relative force error, Ef, of the correlation given in (3.14) is shown for different filter
widths, different global particle volume fractions, (£,), and different superficial particle
Reynolds numbers, Re;. It should be noted that Reg and (¢),) are not the filtered quantities
at the particle positions but the averages over the entire domain of the respective case,
which corresponds to filtered quantities with an infinite filter width. Therefore, the values
on the x-axes are not the direct values used in the correlation, but they characterise
the simulation case, which is why some values on the x-axis are the same, although
the filter width is different. This means that the mean relative error Er is the error
observed for a specific superficial Reynolds number and a global particle volume fraction,
which is somewhat arbitrary. It may very well be that particles belonging to cases with
different superficial velocities and different global particle volume fractions have similar
volume-filtered velocities or local volume fractions at the particle positions.

The relative errors observed in figures 9 and 10 are of the order of 20 %. The proposed
correlation cannot be expected to be much more accurate because the volume-filtered
velocity and volume fraction are not sufficient to predict the force in such a complex flow
with high accuracy. Furthermore, the functional approach used is designed to accurately
predict the mean force and not the force on each individual particle. However, more
relevant for the proposed framework for force correlations than the magnitude of the error
is how the error changes with the filter width.
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Figure 9. Mean relative force error as a function of the superficial Reynolds number for different filter widths
and different global particle volume fractions compared with the correlation of Tenneti et al. (2011).
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Figure 10. Mean relative force error as a function of the global particle volume fraction for different filter
widths and different superficial Reynolds numbers compared with the correlation of Tenneti ez al. (2011).

With the filter width o’/ =35, the volume-filtered velocity and volume fraction at the
particle positions are almost identical to the superficial velocity and the global particle
volume fraction for all particles. Therefore, the correlations of all particles in the same
simulation case have almost identical input values, which leads to predicted forces by
the correlation that are also almost identical for all particles. For such large filter widths
and if only the volume-filtered velocity and the volume fraction are considered as input
parameters, the proposed framework yields a correlation that is similar to existing mean
force correlations. However, the proposed framework is also suitable for smaller filter
widths. As observed in figures 9 and 10, the mean relative force error decreases for almost
every Re,; and (g)) as the filter width decreases to o’ = 0.5. For the smaller filter widths,
the volume-filtered velocity and volume fraction at the different particle positions varies
and the correlation can predict the different drag forces on the particles. Figures 9 and 10
also show the predictions of the correlation of Tenneti et al. (2011) evaluated at the same
filtered Reynolds numbers and volume fractions. For the majority of Re; and (¢)), the
newly proposed correlation based on the filtered flow quantities shows a smaller error,
especially for relative filter widths less than five. To improve the overall accuracy of the
force correlation, additional volume-filtered flow quantities need to be included in the
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correlation, such as the volume-filtered velocity gradient or the volume fraction gradient,
which becomes particularly evident for large global particle volume fractions.

As already discussed for the configurations with isolated particles, the proposed
framework of drag force correlations does not require the determination of the undisturbed
velocity, but is fully based on filtered flow quantities. Moreover, the accuracy of the force
prediction does not deteriorate as the filter width or mesh spacing is decreased, as with
existing drag force prediction frameworks, but the accuracy of the drag force prediction is
improved.

5. Conclusions

This study presents a novel framework for modelling the hydrodynamic forces in EL
point-particle simulations that does not rely on the classical concept of the undisturbed
fluid velocity. By leveraging the volume-filtered NSE, the proposed approach directly
relates the drag force on each of the particles to volume-filtered fluid quantities which
are readily available in EL simulations.

The accuracy of the framework has been demonstrated through validation against
analytical solutions, one-way coupled simulations, and PR-DNS across a wide range
of particle Reynolds numbers and filter widths. In particular, the filtered drag force
correlations accurately recover the correct terminal velocity for a falling sphere in both
the Stokes and finite-Reynolds-number regimes.

Moreover, the framework has been extended to particle assemblies, where a generalised
drag correlation has been derived based on the volume-filtered velocity and the volume
fraction. The new correlation shows an improved predictive performance over existing
mean-force models, especially at smaller filter widths and mesh resolutions, and at lower
volume fractions. To increase the accuracy of the newly proposed framework, apart
from the volume-filtered fluid velocity, additional volume-filtered quantities, such as the
volume-filtered fluid velocity gradients, are required.

Unlike traditional approaches that depend on estimating undisturbed velocities, the
proposed methodology remains robust in both dilute and moderately dense regimes,
avoids high computational cost, and enables the formulation of force models that are
inherently consistent with the volume-filtered flow description. The proposed framework
provides a theoretically sound and computationally efficient basis for the development of
next-generation force correlations in EL point-particle simulations of multiphase flows.
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