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Abstract. For k ≥ 2, we prove that in a C1-open and Ck-dense set of some classes of
Ck-Anosov flows, all Lyapunov exponents have multiplicity one with respect to appropriate
measures. The classes are geodesic flows with equilibrium states of Holder-continuous
potentials, volume-preserving flows, and all fiber-bunched Anosov flows with equilibrium
states of Holder-continuous potentials.
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1. Introduction
The existence of a positive Lyapunov exponent and, more generally, the multiplicity of the
Lyapunov exponents of a system are of essential interest due to their relation to other
dynamical invariants and the geometry of the associated dynamical foliations. In this
paper, we seek to address the question of how often simplicity (that is, all exponents of
multiplicity one) of Lyapunov spectrum arises for some classes of hyperbolic flows. In the
classical settings of random matrix products, criteria for simplicity of spectrum were first
established in the seminal papers [GM89, GR86] and with a variety of different techniques
simplicity has more recently been proved in a large variety of settings [BP21, BPVL20,
MMY15, PV18].

In [BV04], Bonatti and Viana first established a criterion for the simplicity of the
Lyapunov spectrum of a cocycle over a discrete symbolic base which holds in great
generality with respect to a large class of measures. Applying a Markov partition
construction, the authors also extended the results to cocycles over hyperbolic maps, which
naturally leads to the question of whether the criterion generically holds for the derivative
cocycle in the space of diffeomorphisms. Indeed, without any further restrictions, the
arguments in [BV04] can be modified without much difficulty to show that such a result
would be possible, for appropriate choices of measures.

https://doi.org/10.1017/etds.2022.26 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1017/etds.2022.26
mailto:mitsutani@math.uchicago.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/etds.2022.26&domain=pdf
https://doi.org/10.1017/etds.2022.26


2438 D. Mitsutani

Here we consider the question of genericity of simple spectrum in the continuous-time
setting; in particular, in more restrictive classes (geodesic flows, conservative flows,
etc.) of Anosov flows, which presents significant differences relative to the discrete-time
scenario. We establish a method of constructing appropriate perturbations of the Lyapunov
spectrum by perturbing the 1-jet of an appropriate Poincareé map within a given
class.

We apply it in different settings to obtain the following results. Let X be a smooth closed
manifold; precise definitions of the other terms below are given in §2.

THEOREM 1.1. (Geodesic flows) For 3 ≤ k ≤ ∞, we denote by Gk the set of
Ck-Riemannian metrics on X with sectional curvatures 1 ≤ −K < 4.

There exists a C2-open and Ck-dense set in Gk of metrics such that with respect
to the equilibrium state of any Hölder potential (e.g. Liouville measure, measure of
maximal entropy (m.m.e.)) the derivative cocycle of the geodesic flow has simple Lyapunov
spectrum, that is, all its Lyapunov exponents have multiplicity one.

THEOREM 1.2. (Conservative flows) For a fixed smooth volume m and for 2 ≤ k ≤ ∞, let
Xkm(X) be the set of divergence-free (with respect to m) Ck vector fields on M that generate
(strictly) 1

2 -bunched Anosov flows.
Then flows in a C1-open and Ck-dense set of Xkm(X) have simple Lyapunov spectrum

with respect to m.

THEOREM 1.3. (All flows) For 2 ≤ k ≤ ∞, let XkA(X) be the set of Ck vector fields on M
which generate (strictly) 1

2 -bunched Anosov flows.
Then flows in a C1-open and Ck-dense set of XkA(X) have simple Lyapunov spectrum

with respect to the equilibrium state of any Hölder potential (e.g. Sinai–Ruelle–Bowen
(SRB) measure, m.m.e.).

As indicated before, the proofs are accomplished by constructing a discrete symbolic
system via a Markov partition to apply a simplicity criterion of Avila and Viana [AV07],
which is itself an improvement of the criterion of Bonatti and Viana [BV04]. In each
class, we prove or use a previously established perturbational result to obtain density in the
theorems above.

One main difficulty particular to the setting of R-cocycles, which was already present
in [BV04], arises in attempting to perturb the norms of pairs of complex eigenvalues
generically. In [BV04], through the introduction of rotation numbers that vary continuously
with the perturbation for orbits near a periodic point, a small rotation on a periodic orbit
is propagated to an arbitrarily large one for a homoclinic point, which can then be made to
have real eigenvalues.

Although such rotation numbers are well-defined for the particular perturbation of the
cocycle introduced in [BV04], a general construction which allows for perturbations of
the base system has only been introduced recently in [Go20]. However, the constructions
in [Go20] do not apply directly to flows, and so we introduce new ideas to control the
eigenvalues of the cocycle in the continuous-time setting.
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As the class of geodesic flows is the substantially more difficult case, we carry out
the proof of Theorem 1.1 in detail, and in §5 we prove the analogous results needed for
Theorem 1.2.

1.1. Outline. In §2, we give the necessary background for the later sections; we
summarize the main results of [AV07, KT72] and introduce rotation numbers. For a more
basic introduction to Lyapunov exponents and cocycles, we refer the reader to [Vi14], and
for background on geodesic flows, we refer the reader to [Pa99]. In §§3 and 4, we specialize
to the setting of the geodesic flows, giving the main arguments to prove of Theorem 1.1.
Finally, in §5, we prove a perturbational result for the volume-preserving class, which by
direct adaptation of the arguments of the previous sections proves Theorems 1.2 and 1.3.

2. Preliminaries
2.1. Lyapunov exponents and simplicity of spectrum. Here we collect and fix the
definitions and background results used in later sections. For a continuous flow �t :
X → X on a compact metric space X preserving an ergodic measure μ, a continuous
linear cocycle over � on a linear bundle π : E→ X is a continuous mapA : R × E→ E
such that �t ◦ π = π ◦At , where At := A(t , ·). Moreover, we require that the maps
Atπ(v) := A(t , ·)|Eπ(v) are linear isomorphisms Eπ(v) → Eφtπ(v) and satisfy the cocycle
property At+s(x) = As(�s(x)) ◦ At(x).

Suppose log+ ‖At(x)‖ ∈ L1(X, μ) for all t ∈ R. For some fixed choice of norm ‖ · ‖
on the fibers, the fundamental result describing asymptotic growth of vectors under A is
Oseledets’ theorem: there exists a set of numbers λ1, . . . , λn ∈ R, with λi 	= λj for i 	= j ,
a measurable splitting E = E1 ⊕ · · · ⊕ En and a set of full measure Y ⊆ X such that, for
all x ∈ Y and t ∈ R, we have AtxEix = Ei

�t (x)
and, moreover, for v ∈ Eix :

lim
t→±∞

1
t

log ‖Atxv‖ = λi .

The numbers λi are the Lyapunov exponents ofA with respect to μ.
When all bundles Ei are one-dimensional,A is said to have simple Lyapunov spectrum

with respect to μ. When X is a smooth manifold and �t is C1, the dynamical cocycle on
E = TX is the derivative mapD�t of the flow; we often refer to its Lyapunov exponents as
the Lyapunov exponents of � with respect to μ. Similarly, we say � has simple Lyapunov
spectrum when the dynamical cocycle does.

The definitions above hold in the discrete-time setting of [AV07], with appropriate
modifications, where the criterion for simplicity of Lyapunov spectrum we need is proved.
Following their notation, we let f̂ be the shift map on a subshift of finite type �̂ andA be a
measurable cocycle on �̂ × R

d over f̂ , which alternatively can be equivalently described
by some measurable Â : �̂ → GL(d, R).

The theorems of Avila and Viana all require the additional bunching assumption.

Definition 2.1. (Domination/holonomies) We say that Â is dominated if there exists a
distance d in �̂ and constants θ < 1 and ν ∈ (0, 1] such that, up to replacing Â by some
power ÂN :
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(1) d(f̂ (x̂), f̂ (ŷ)) ≤ θd(x̂, ŷ) and d(f̂−1(x̂), f̂−1(ŷ)) ≤ θd(x̂, ŷ) for every ŷ ∈
Ws

loc(x̂) and ẑ ∈ Wu
loc(x̂);

(2) the map x̂ �→ Â(x̂) is ν-Hölder continuous and ‖Â(x̂)‖‖Â−1(x̂)‖θν < 1 for every
x̂ ∈ �̂.

If Â is either dominated or constant on each cylinder, there exists a family of holonomies
φu
x̂,ŷ , that is, linear isomorphisms of Rd such that for each x̂, ŷ, ẑ ∈ �̂ in the same unstable

manifold of f̂ there exists C1 > 0 such that:
(1) φu

x̂,x̂ = id and φu
x̂,ŷ = φu

x̂,ẑ ◦ φu
ẑ,ŷ ;

(2) Â(f̂−1(ŷ)) ◦ φu
f̂−1(x),f̂−1(y)

◦ Â−1(x̂) = φu
x̂,ŷ ;

(3) ‖φu
x̂,ŷ − id‖ ≤ C1d(x̂, ŷ)ν .

There is a family φs of holonomies over stable manifolds satisfying analogous
properties.

For such cocycles, the holonomies allow the dynamics to be propagated over single
periodic orbits to obtain data on the Lyapunov spectrum of certain measures. Thus, the
adaptation of the original pinching and twisting conditions for a monoid of matrices can
be adapted to these cocycles as follows.

Definition 2.2. (Simple cocycles) Suppose Â : �̂ → GL(d, R) is either dominated or
constant on each cylinder of �̂. We say that Â is simple if there exists a periodic point
p̂ and a homoclinic point ẑ associated with p̂ such that:
(P) the eigenvalues of Â on the orbit of p̂ have multiplicity 1 and distinct norms; let

ωj ∈ RPd−1 represent the eigenspaces, for 1 ≤ j ≤ d; and
(T) {ψp̂,ẑ(ωi) : i ∈ I } ∪ {ωj : j ∈ J } is linearly independent, for all subsets I and J

of 1, . . . , d with #I + #J ≤ d where, denoting by φu and φs the holonomies as
above,

ψp̂,ẑ = φs
ẑ,p̂ ◦ φu

p̂,ẑ.

An invariant probability measure μ̂ has local product structure if, for every cylinder
[0 : i],

μ̂|[0 : i] = ψ · (μ+ × μ−),

where ψ : [0 : i] → R is continuous and μ+ and μ− are the projections of μ̂|[0 : i] to
spaces of one-sided sequences indexed by positive and negative indices, respectively. For
instance, this property holds for every equilibrium state of f̂ associated with a Hölder
potential [Bo75].

THEOREM 2.3. [AV07, Theorem A] If Â is a simple cocycle then it has Lyapunov
exponents of multiplicity one with respect to any μ̂ with local product structure.

2.2. Anosov flows. The continuous-time hyperbolic systems we study are as follows.

Definition 2.4. (Ck-Anosov flows) A Ck (1 ≤ k ≤ ∞) flow �t : X → X on a smooth
manifold X is called Anosov if it preserves a splitting Eu ⊕ E0 ⊕ Es of TX such that

https://doi.org/10.1017/etds.2022.26 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.26


Simplicity of the Lyapunov spectrum for classes of Anosov flows 2441

E0 is the flow direction and there exist λ > 0 and C > 1 such that, for all v ∈ Eu and
u ∈ Es ,

‖D�tv‖ ≥ Ceλt‖v‖, ‖D�−t u‖ ≥ Ceλt‖u‖.

A significant class of cocycles over Anosov flows related to the theory of partially
hyperbolic systems and to the class of dominated cocycles over shift maps is that of
fiber bunched cocycles, whose expansion and contraction rates are dominated by the base
dynamics.

Definition 2.5. (Fiber bunching) A β-Hölder continuous cocycleA : E× R → E over an
Anosov flow �t : X → X is said to be α-fiber bunched if α ≤ β and there exists T > 0
such that for all p ∈ M and t ≥ T :

‖Atp‖‖(Atp)−1‖‖D�t |Es‖α < 1, ‖Atp‖‖A−t
p ‖‖D�−t |Eu‖α < 1.

When the cocycles D�t |Ei=u,s themselves satisfy the inequalities above in place of A,
the Anosov flow is said to be α-bunched.

Fiber bunching is a partial hyperbolicity condition on the projectivization of the fiber
bundle. The strong stable and unstable manifold theorem for this partially hyperbolic
system can be interpreted as defining holonomy maps between the fibers.

THEOREM 2.6. [KS13] Suppose A is β-Hölder and fiber bunched over a base system as
in Definition 2.5. Then, the cocycle admits holonomy maps hu, that is, a continuous map
hu : (x, y) → hux,y , x ∈ M , y ∈ Wu(x) the strong unstable manifold of x, such that:
(1) hux,y is a linear map Ex → Ey;
(2) hux,x = Id and huy,z ◦ hux,y = hux,z;
(3) hux,y = (Aty)

−1 ◦ hu
�t (x),�t (y) ◦ Atx for every t ∈ R.

Moreover, the holonomy maps are unique, and, fixing a system of linear identifications
Ixy : Ex → Ey , see [KS13], they satisfy

‖hux,y − Ix,y‖ ≤ Cd(x, y)β .

Using property (3), for sufficiently small r > 0, one may extend these holonomies
for all y ∈ Wcu

r (x), the ball of radius r centered at x in the center-unstable manifold
sometimes called the local center-unstable manifold, and such holonomies are denoted
by hcu. Namely, one lets

hcuxy = hu�t (x),y ◦ Atx ,

where t ∈ R is chosen to minimize |t | among the times such that�t(x) ∈ Wu(y). Observe
that this is only well-defined locally and that the same construction holds over Wcs .

For the case where� is itself α-bunched, it is known that [Ha94] the bunching constant
is directly related to the regularity of the Anosov splitting: for 1

2 -bunched Anosov flows,
the weak stable and unstable bundles Ecu,cs := E0 ⊕ Eu,s are of class C1. Thus, we have
the following.
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PROPOSITION 2.7. For �t : X → X a 1
2 -bunched C2-Anosov flow, the cocycle Au

(respectively, As) on the bundle Qu := Ecu/E0 (respectively, Qs := Ecs/E0) given by
the derivative D�t is 1-bunched.

Proof. The cocycle D�t |Ecu/E0 is C1 by the regularity of the splitting mentioned
previously and, by hypothesis D�t |Ecu/E0 , satisfies the inequalities in the definition of
fiber bunching with α = 1. Same for Ecs .

Finally, we describe the class of measures with respect to which we prove our results.
Fix a topologically mixing C2-Anosov flow �t . Let ρ : X → R be a Hölder-continuous
function, which we refer to as a potential. Then an equilibrium state μρ of ρ is an invariant
measure satisfying the variational principle:

hμρ (�)+
∫
ρ dμρ = sup

μ∈M�(X)

hμ(�)+
∫
ρ dμ,

where hμ(�) is the measure-theoretic entropy of � with respect to μ andM�(X) is the
set of invariant measures of �. The existence and uniqueness of the equilibrium state μρ ,
is, in this setting, a foundational result in the theory of the thermodynamical formalism
[Bo75].

Important examples of equilibrium states include the case ρ = 0, which gives the mea-
sure of maximal entropy as the equilibrium state, and ρ(x) = −(d/dt) log J u(x, t)|t=0,
where J u(x, t) = det Dx�t |Eu , which gives the SRB measure. Moreover, the product
structure property mentioned in the previous section is also a classical result for equi-
librium states proved in [Bo75].

2.3. Rotation numbers. As indicated in the introduction, in order to perturb away
complex eigenvalues by a small rotation, one needs the formalism of rotation numbers,
which we introduce in complete form here. We roughly follow the discussion in §3 of
[Go20].

As a brief introduction, recall that for an orientation-preserving homeomorphism of the
circle f : S1 → S1, the Poincaré rotation number ρ(f ) ∈ S1 = R/2π of f is defined as

ρ(f ) = lim
n→∞

f̃ n(x)− x

n
(mod 2π),

for a lift f̃ : R → R of f. This limit always exists and is independent of the choice of x ∈ R

and the lift f̃ . For an orientation-reversing homeomorphism we define ρ(f ) = 0.
The Poincaré rotation number measures, on average, how much an element is rotated

by an application of f and is a conjugation invariant, that is, ρ(g−1fg) = ρ(f ), for g also
a homeomorphism of S1. In what follows, we extend this definition for cocycles on circle
bundles.

Throughout this section, let X a compact metric space and �t a continuous flow on X.
LetM�(X) be the space of probability measures on X invariant under�t with the weak-*
topology.

For our purposes, it will suffice to work with trivial bundles E = X × S1, and a
continuous cocycle A : R × E → E over �t . Then, for (x, θ) ∈ E, the map t �→ Atx(θ)
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is a continuous map from R → S1, so it may be lifted to some wx,θ : R → R. Let
w̃x,θ (t) := wx,θ (t)− wx,θ (0), so that w̃ does not depend on the lift w.

Definition 2.8. (Pointwise rotation number) The average rotation number ρ : X → R is
defined by the limit:

ρ(x) = lim
t→∞

w̃x,θ (t)

t
,

whenever it exists, and is independent of the choice of θ .

Indeed, for any θ , θ ′ ∈ S1, we have |w̃x,θ (t)− w̃x,θ ′(t)| < 2π for any t so the limit does
not depend on choice of θ ∈ S1.

Now define σ : X × R → R and τ : X × R → R by

σ t (x) := σ(x, t) = sup
θ∈S1

w̃x,θ (t),

τ t (x) := τ(x, t) = inf
θ∈S1

w̃x,θ (t),

which, by the continuity of A, are evidently continuous in t and in x. Moreover, by
the cocycle equation for A, it is clear that the functions σ and τ are subadditive and
superadditive in the R coordinate, respectively.

By Kingman’s subadditive ergodic theorem for flows, for any μ ∈M�(X):
(1) the sequence (1/t)σ t converges μ-almost everywhere to a � invariant map, which

agrees with ρ;
(2) we may compute the integral of ρ by

ρμ :=
∫
ρ dμ = inf

t>0

1
t

∫
σ t dμ. (2.1)

The discussion above then implies the following result.

THEOREM 2.9. The mapM�(X) → R given by μ �→ ρμ is continuous.

Proof. Note that by the compactness of X and continuity of σ t : X → R, the map μ →∫
σ t dμ is continuous and, hence, by∫

ρ dμ = inf
t>0

1
t

∫
σ t dμ

and the analogous equation for τ , we obtain upper and lower semicontinuity of
μ �→ ρμ.

Remark 2.10. When μ is supported on a periodic orbit O, we often write ρO for ρμ.

Next, we consider perturbations of cocycles over a fixed base flow. The space of cocycles
C� over the same� has aC0-topology of uniform convergence defined by the property that
An → A if, for each x ∈ X and |t | < 1, the maps (An)tx → Atx in C0(S1, S1) uniformly.

Associated with the cocycles A are rotation numbers ρμ(A) for invariant measures μ
defined by (2.1). Then we have the following.
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PROPOSITION 2.11. For a μ ∈M�(X), the map C� → R given by

A �→ ρμ(A)
is continuous.

Proof. The proof is nearly identical to that of Theorem 2.9. Namely, one uses continuity
ofA �→ ∫

σ t (A) dμ and the subadditive ergodic theorems.

Now we specialize to the case where X = O is a hyperbolic periodic orbit of a C1

flow �0 on a Riemannian manifold N, which will be N = SM with the Sasaki metric in
the setting of this paper. We are interested in how ρO varies as the flow � varies, for the
derivative cocycle on certain circle bundles.

By structural stability of the hyperbolic set O, there exists U a C1-neighborhood
of �0 and a continuous h : U× O→ N such that the maps h�(x) := h(�, x) are
C1-diffeomorphisms onto their images, and O� := h�(O) is a closed orbit of �. More-
over, because the maps h� are C1 there exists a continuous κ : U× O× R → R such that
κ�(x, t) := κ(�, x, t) is C1 and the flow �̃ (defined on O�) given by

�̃t (x) = �κ�(h�(x),t)(x),

is, in fact, conjugated to �0 by h�, that is, h� ◦�0 = �̃ ◦ h�.
For any bundle E, we write PE for its projectivization. Let F0 be a two-dimensional

trivial subbundle of TN |O which is part of a dominated splitting E0 ⊕≤ F0 ⊕≤ G0 of
TN |O. The derivative cocycle D� on PF0 is then a cocycle on a trivial S1 bundle, and it
has a rotation number ρO as before.

AssumingU is taken sufficiently small, by persistence of dominated splittings for each
� ∈ U, there is a splitting TN |O� = E� ⊕≤ F� ⊕≤ G� for � and the bundle F� is
trivial. Moreover, the splitting is also dominated for the flow �̃, which is simply a time
change of �. Hence, D�̃ and D� on PF� also have well-defined rotation numbers ρO

�̃
,

ρO� , which satisfy the relation:

ρO
�̃
�(O�) = ρO��(O),

as they differ by a time change, where � denotes the period of a periodic orbit.
With all the objects defined, we now state the continuity with respect to the parameters

as follows.

PROPOSITION 2.12. The mapU→ R given by

� �→ ρO� ,

is continuous in some openV ⊆ U containing �0.

Proof. First, we would like to consider all cocycles D�̃ constructed on F� as existing on
the same bundle over the same base map.

For x ∈ O, there exists a unique length-minimizing geodesic segment (from the
Riemannian structure on N) from x to h�(x), as long as h� is close to the identity, which
may be ensured by reducing the neighborhood U to some V ⊆ U further if needed. By
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parallel transport of the bundle F� over O� along such segments, one then obtains a
two-dimensional trivial bundle F ′

� over O. By reducing V further if needed, the bundle
F ′
� obtained is a given by a graph over F0 with respect to the fixed Riemannian metric on

N and, hence, by orthogonal projection they may be identified.
As all maps above are continuous, the construction describes a continuous map T h :

U× F0 → TN , so that T h�(·) := T h(�, ·) are bundle isomorphisms F0 → F� fibering
over h�. Hence, conjugating by T h�, we may regard D�̃ on F� as a cocycle on F0 over
�0. By continuous dependence on�, this defines a continuous map� → D�̃, whereD�̃
are now regarded as elements of the space of cocycles over�0 on F0 with the C0-topology.

As all rotation numbers ρO
�̃

defined previously are preserved by conjugation, it suffices
to check continuity of the rotation numbers of the conjugated cocycles, which is given by
Proposition 2.11. Thus, the map � �→ ρO

�̃
is continuous and, finally, because

ρO
�̃
�(O�) = ρO��(O),

and the periods vary continuously, the map � �→ ρO� is continuous as well.

2.4. Geodesic flows. Let M be a smooth closed manifold. As we consider varying
Riemannian metrics, it is useful to work on the sphere bundle over M of oriented directions
of the tangent space, which we denote by SM , rather than on the unit tangent bundle. When
a metric g is fixed, T 1

g M is canonically diffeomorphic to SM , and one can pullback the
Sasaki metric from T 1

g M to SM .
Recall that for 3 ≤ k ≤ ∞ we denote by Gk the set of Ck-Riemannian metrics on M

with sectional curvatures 1 ≤ −K < 4. The geodesic flow on the unit tangent bundle
of a negatively curved Riemannian manifold is an Anosov flow with the horospherical
foliations corresponding to the stable and unstable foliations; moreover, under the pinching
condition above it is a 1

2 -bunched (see §2.2) Anosov flow [Kl82, Theorem 3.2.17]. In
particular, the bundles Ecu,cs are C1 and, because the flow is contact and the kernel of
the Ck−1 contact form equals Eu ⊕ Es , in fact Eu ⊕ E0 ⊕ Es is a (at least) C1 Anosov
splitting.

We describe now the perturbational results of [KT72] that will be used to perturb the
derivative cocycle by perturbing the metric. For a fixed embedded compact interval or
closed loop γ ⊆ SM , the set of metrics for which γ is an orbit segment of the geodesic
flow is denoted by Gkγ ⊆ Gk . For a fixed g0 ∈ Gkγ , pick local hypersurfaces �0 and �1 in
SM that are transverse to γ̇ (t) ∈ T SM at t = 0 and t = 1, respectively. This allows us to
define a Poincaré map

Pg0 : �0 ⊇ U → �1,

where U is a neighborhood of γ (0), by mapping ξ ∈ U to ϕt1g0(ξ), where t1 is the smallest
positive time such that ϕt1g0(ξ) ∈ �1 and ϕg0 is the geodesic flow of the metric g0. By the
implicit function theorem and the fact that ϕtg0

is Ck−1, the map P is Ck−1.
By projecting the tangent spaces of �i=0,1 to Eu ⊕ Es one may give �i=0,1 a

symplectic structure ω that is preserved by the Poincaré map, because the symplectic form
is invariant by the geodesic flow [KT72]. With g0 fixed, we let Gkg0,γ ⊆ Gkγ be the set
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of metrics such that π(γ (0)), π(γ (1)) /∈ supp(g − g0) (π : SM → M is the canonical
projection map), that is, metrics unperturbed at the ends of the fixed geodesic segment
γ relative to g0.

We repeatedly use the main result on generic metrics established by Klingenberg and
Takens in [KT72] to perturb the metric g0.

THEOREM 2.13. [KT72, Theorem 2] Suppose g0 ∈ G∞
γ , and let Q be some open dense

subset of the space of (k − 1)-jets of symplectic maps (�0, γ (0)) → (�1, γ (1)).
Then there is arbitrarily Ck-close to g0 a g′ ∈ Gkg0,γ such that Pg′ ∈ Q, where Pg′ :

(�0, γ (0)) → (�1, γ (1)) is the Poincaré map for the geodesic flow of g′.

Remark 2.14. The technical assumption that g0 is C∞ needed in [KT72] is virtually
harmless, because by smooth approximation G∞ ⊆ Gk is dense for all k.

We need two additional facts about how these perturbations can be made, both of which
follow directly from the proof of Theorem 2.13 in [KT72].

PROPOSITION 2.15. Let h := g′ − g0, where g′ and g0 are given as in the statement of
Theorem 2.13. For any tubular neighborhood V of γ , h can be taken to satisfy:
(1) supp(h) ⊆ V ;
(2) for a system of coordinates {x0, . . . , x2n−2} on V where ∂x0 is parallel to the geodesic

flow, the k-jets of h00 (where h = hij dxi dxj ) vanish identically along {x0 = 0}.
In particular, this implies that the parametrization of γ by arc-length in g0 is the same as
that in g′, that is, the geodesic flow for both metrics agree along γ .

Let J k−1
s denote the Lie group of (k − 1)-jets of Ck−1 symplectic maps (R2n, 0) →

(R2n, 0) with the standard symplectic form
∑
i dx

i ∧ dyi . If O is a closed orbit, we
may take v := γ (0) = γ (1) ∈ O and fix � := �0 = �1, so by Darboux’s theorem we
may choose coordinates that identify the space of (k − 1)-jets of Ck−1 symplectic maps
(�, v) → (�, v) with J k−1

s .

COROLLARY 2.16. If O is a closed geodesic for g0 ∈ G∞
O andQ ⊆ J k−1

s is an open dense
invariant (Q satisfies σQσ−1 = Q for any σ ∈ J k−1

s ) set, then there is arbitrarilyCk-close
to g0 a g′ ∈ GkO such that for any v ∈ O and any � a transverse at v, Pg′ ∈ Q, where
Pg′ = P(v, �) is the Poincaré return map for the geodesic flow of g′.

Proof. The choice of a different section � or a different point v of the orbit changes Pg′
by conjugation, so the property that Pg′ ∈ Q needs only to be assured at one fixed point
and one fixed section, which is done by Theorem 2.13.

Remark 2.17. As the map πk−1 : J k−1
s → J 1

s
∼= Sp(2n) is a submersion, for Q an open

dense invariant subset of Sp(2n), (πk−1)−1(Q) is an open dense invariant subset of J k−1
s ,

so in the statement of Corollary 2.16 we may take an open dense invariant Q ⊆ Sp(2n)
instead, while the approximation is still in Gk .

In the context of Theorem 2.13, the analogous observation holds; that is, one may take
Q to be an open dense subset of 1-jets of symplectic maps (�0, γ (0)) → (�1, γ (1)), and
approximate in Gk .
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3. Pinching and twisting for flows
In this section, we present the main technical results of the paper, namely, the construction
of perturbations of Anosov flows leading to an appropriate pinching and twisting condition.
For the sake of simplicity, we specialize to the class of geodesic flows, but the main
arguments here adapt to the proofs of the other theorems with adjustments which we
describe in the last section. We define pinching and twisting for orbits of the geodesic
flow in analogy with Definition 2.2, and use the results on generic metrics to show that
these are C1-open and Ck-dense.

We fix the following useful notation. For a metric g such that O ⊆ SM is a periodic
orbit of its geodesic flow with period �, let v ∈ O and let {λ1, . . . , λ2n} be the generalized
eigenvalues of Dvϕ�g|Eu⊕Es , which do not depend on the choice of v, sorted so that |λi | ≥
|λj | whenever i < j . We write

�λu(O, g) := (λ1, . . . , λn), �λs(O, g) := (λn+1, . . . , λ2n) ∈ C
n,

�λ(O, g) := (λ1, . . . , λ2n) ∈ C
2n.

The ith coordinates of the vectors above are written as �λu,s,·
i (O, g) (where · means no

superscript).
The following continuity lemma about these �λ is the bread and butter of all ‘openness’

arguments which follow.

LEMMA 3.1. Fix k ≥ 2. For a metric g0 ∈ Gk there exists a neighborhood U ⊆ Gk of
g0 such that for any g ∈ U any orbit O of the geodesic flow of g0 has a hyperbolic
continuation Og for the geodesic flow of g, and the mapsU→ C

n given by

g �→ �λu,s(Og , g)

are continuous with respect to the C2-topology.

Proof. Let � be a smooth hypersurface parallel to Eu ⊕ Es at v so that O ∩� =: {v}.
The return map for the geodesic flow ϕg0 then defines a map Pg0 : U → �, where U ⊆ �

is some neighborhood of v, for which v is a hyperbolic fixed point.
For any g sufficiently close to g0, we also obtain a map Pg : U → � given by the

return map of ϕg , and by the standard hyperbolic theory, a fixed point vg such that g �→ vg

is continuous. The geodesic flow ϕg varies in a Ck−1 fashion as g varies in Gk , and by the
implicit function theorem, so does Pg . Then, by fixing a coordinate system, because k ≥ 3
the matrices DvgPg vary continuously, so their eigenvalues vary continuously as g varies
in Gk .

Finally, the eigenvalues of the matrices Dvgϕ
�g
g |Eu⊕Es and DvgPg agree, so we obtain

the desired result.

3.1. Pinching. Before moving to the definition of pinching, first we verify that
generically there exists a periodic orbit with a dominated splitting of Eu ⊕ Es into
one-dimensional subspaces and two-dimensional subspaces corresponding to conjugate
pairs of eigenvalues.
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PROPOSITION 3.2. Let

Gkd := {g ∈ Gk : there exists O : |λi | 	= |λj |, unless λi = λj ,

where (λ1, . . . , λn) := �λu(O, g)}.
The set Gkd is C2-open and Ck-dense in Gk .

Proof. Openness follows directly from Lemma 3.1, because by the continuity of �λu, the
continuations of O will satisfy the same condition defining Gkd .

For density, we start by assuming that g0 ∈ G∞
O , for some O, which is possible by the

density of G∞ in Gk . It remains to check that the property defining Gkd is indeed an open
dense in J k−1

s , so that we may apply Corollary 2.16 to finish the proof. By Remark 2.17, it
suffices to check that having eigenvalues distinct with distinct norms, apart from complex
conjugate pairs, is an open and dense Sp(2n).

Openness is clear, because the eigenvalues depend continuously on the matrix entries.
For density, we note that the condition of distinct eigenvalues is given by the complement
of the equation� = 0, where� is the discriminant of the characteristic polynomial, which
is a non-empty Zariski open set in Sp(2n) and, thus, dense in the analytic topology. In
particular, the set of diagonalizable matrices is dense. As diagonalizable matrices are
symplectically diagonalizable, by the lemma following this proof, by a small perturbation
on the norm of the diagonal blocks, we obtain the density of eigenvalues of distinct
norms.

We prove the linear algebra lemma used above, which is also useful in what follows.

LEMMA 3.3. A matrix A ∈ Sp(2n) with all eigenvalues distinct is symplectically diago-
nalizable in the sense that there exists P ∈ Sp(2n) such that P−1AP is in real Jordan form
(that is, given by diagonal blocks which are either trivial or 2 × 2 conformal).

Proof. Recall that eigenvalues of A ∈ Sp(2n) appear in 4-tuples

{λ, λ, λ−1, λ−1}
for λ /∈ R and in pairs {λ, λ−1} for λ ∈ R. For each λ, we let Eλ = Eλ−1 be the
two-dimensional subspace spanned by the eigenspaces of λ and λ−1.

Let ω be the canonical symplectic form on R
2n and extend ω and A to ωC and AC in

the complexification C
2n = R

2n ⊗ C. By definition, AC and ωC agree with A and ω on
R

2n ⊗ 1.
The identity for eigenvectors vλ and vη:

ωC(vλ, vη) = ωC(ACvλ, ACvη) = λη ωC(vλ, vη),

implies that, unless λη = 1, we have ωC(vλ, vη) = 0. Therefore, Eλ ⊗ C is symplectically
orthogonal to Eη ⊗ C for any λ 	= η, η−1.

In particular, this implies that the Eλ ⊗ 1 are symplectic subspaces with respect to ω
the real form, and symplectically orthogonal to each other. In each Eλ, A can be put in
Jordan real form with respect to a symplectic basis. By orthogonality, we may construct a
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symplectic basis for R2n by taking the union of symplectic bases for the Eλ. Then, let P be
the matrix which sends the standard R

2n basis to the constructed symplectic basis.

The next step is to construct a metric with a periodic orbit with simple real spectrum
with an arbitrarily small perturbation of the metric. Following [BV04], this is accom-
plished by slightly perturbing a periodic orbit O rotating a complex eigenspace, and
propagating the perturbation to a periodic orbit which shadows a homoclinic orbit of O
that spends a long time near O.

Recall the following definitions: an ε-pseudo-orbit for a flow � on a space X is a
(possibly discontinuous) function γ : R → X such that

d(γ (t + τ), �τ (γ (t))) < ε for t ∈ R and |τ | < 1.

For γ a ε-pseudo-orbit, γ is said to be δ-shadowed if there exists a point p ∈ X
and a homeomorphism α : R → R such that α(t)− t has Lipschitz constant δ and
d(γ (t), �α(t)(p)) ≤ δ for all t ∈ R.

The classic closing lemma for Anosov flows we need is as follows.

THEOREM 3.4. ([FH18] Anosov closing lemma) If � is a hyperbolic set for a flow �,
then there are a neighborhood U of � and numbers ε0, L > 0 such that for ε ≤ ε0 any
compact ε-pseudo-orbit in U is Lε-shadowed by a unique compact orbit for �.

We use it to prove the main result of this section.

PROPOSITION 3.5. Let

Gkp := {g ∈ Gk : there exists O : λi 	= λj , λi ∈ R, where (λ1, . . . , λn) := �λu(O, g)}.
In this situation, we say O has the pinching property for g. Then Gkp is C2-open and Ck

dense in Gk .

Proof. Fix a C2-open set U ⊆ Gk . First, because Gkd is C2-open and dense and G∞ is
Ck-dense in Gk , we may fix some g0 ∈ U ∩ G∞

d . Let O be as in Proposition 3.2.
Suppose that the vector �λu(O, g) has 2c entries in C \ R, for some c > 0. It suffices to

show that there exists a metric g′ inU that has a periodic orbit O′ such that �λu(O′, g′) has
2(c − 1) complex entries and all real entries distinct.

Along O there is a dominated splitting Eu = E−
1 ⊕ · · · ⊕ E−

k such that each Ei is
either one- or two-dimensional. Fix the smallest index i ∈ {1, . . . , k} such that E±

i is
two-dimensional and let Pg0 denote the Poincaré return map of the geodesic flow for a
fixed section � transverse to the flow small enough so that O ∩� =: {v}. By shrinking
U further if needed we may assume thatU ⊆ Gkd , that is, that the dominated splitting for
ϕg0 along O persists for the continuation of O for all g ∈ U ; thus, by Lemma 3.1, the map
g �→ θg := |arg(λg)| is well defined and continuous, where λg is an eigenvalue ofDϕg on
E−
i on the continuation of O.

LEMMA 3.6. There exists g1 ∈ U ∩ GkO such that θg1 	= θg0 .
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Proof. The derivative of the Poincaré map is conjugate toDϕg|Eu⊕Es over the closed orbit
O, so θg0 agrees with the argument of the eigenvalue of DPg0 along the two-dimensional
Jordan block F− ⊆ Tv� mapped to E−

i under the conjugation aforementioned. Moreover,
let F+ be the Jordan block corresponding to E+

i in the same manner.
Identifying the space of symplectic maps Tv� → Tv� with Sp(2n), there exists some

neighborhood V ⊆ Sp(2n) of the original map DPg0 , such that for A ∈ V the Jordan
block F has a continuation for A, and we call the norm of the argument of the eigenvalue
of A along this continuation θA. Let W ⊆ V be the set of matrices A such that θA 	=
θg0 . IfW is open and dense in V, then by Remark 2.17 we may apply Corollary 2.16 to
W ∪ ((Sp(2n) \ Cl(V)), which will be open and dense in Sp(2n) to find that the set of
metrics that has θg1 	= θg0 is dense (and open) inU.

It remains to check that W is open and dense in V. Openness is clear by continuous
dependence of eigenvalues on matrix entries. For density, letRθ be given by rotation of any
angle of θ > 0 on the subspaces F−, F+ and the identity on the other subspaces, satisfies
Rθ�R

T
θ = �, where� is the standard symplectic form. ThenRθDPg0 has θRθDPg0

	= θg0 ;
because θ > 0 can be made arbitrarily small, this finishes the proof.

Let g1 be given as in the lemma and, for 0 ≤ s ≤ 1, we let gs = sg1 + (1 − s)g0,
which, if g1 is taken sufficiently close to g0, also satisfies {gs} ⊆ U ∩ GkO. Clearly, the
map [0, 1] → Gk given by s �→ gs is continuous. In addition, note that, by Proposition
2.15(2), O is not only a closed orbit of ϕgs for all s ∈ [0, 1], but it, in fact, has the same
arc-length parametrization with respect to all gs .

For the geodesic flow of g0, fix w a transverse homoclinic point of v, that is, w ∈
Wu(v) ∩Wcs(v). Fix some ε > 0 so that the geodesic flow has local product structure
at scale 2ε. Then there exists t1, t2 > 0 such that ϕ−t2

g0 (w) ∈ Wu
ε (v), ϕ

t1
g0(w) ∈ Ws

ε (v) and
also a C > 0 such that, for all t > 0,

d(ϕ−(t2+t)
g0

(w), ϕ−t
g0
(v)) < Cεe−t ,

d(ϕt1+tg0
(w), ϕtg0

(v)) < Cεe−t .

Hence, for n ∈ N the γn : R → SM given by

γn(t) = ϕt̃−(t2+n�)g0
(w) where t̃ = t mod (t2 + t1 + 2n�)

are εn-pseudo-orbits where εn < 2Cεe−n�, by the fact that the minimal expansion of the
geodesic flow is τ = 1 by the assumption on curvature.

For n sufficiently large, there exist unique periodic wn which Lεn-shadow γn. Let wn,s

be continuations of wn for 0 ≤ s ≤ 1 (where wn,0 = wn, by definition). Let ws be the
hyperbolic continuations of w. By uniqueness of shadowing, note that the wn,s can also be
constructed by shadowing segments of the orbit ofws . The following lemma shows we can
extend the dominated splitting of O to the new orbits we defined.

LEMMA 3.7. There exists N large so that for each 0 < s < 1, the compact invariant set

KN ,s =
⋃
n≥N
O(wn,s) ∪ O(ws) ∪ O,
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for the geodesic flow ϕgs of gs admits a dominated splitting for the bundle Eu = E−
s,1 ⊕

· · · ⊕ E−
s,k over Km,s coinciding with the dominated splitting of Eu over O, and similarly

for Es = E+
s,1 ⊕ · · · ⊕ E+

s,k .

Proof sketch (see [BV04], Lemma 9.2). We sketch the proof for s = 0, which is almost
identical to the result cited. Then, because dominated splittings over compact invariant
sets persists under C1-small perturbations by an invariant cone argument, this shows the
result for all s ∈ [0, 1]. Consider the case of Eu.

As w ∈ Wu(v) ∩Wcs(v), one can extend the dominated splitting of O to O(w) as
follows. Consider the bundles over O given by F i = E−

1 ⊕ · · · ⊕ E−
j+1, and Gi = E−

j ⊕
· · · ⊕ E−

k for i, j = 1, . . . , k − 1. Then we define

Ej(w) := φcsv,wF
j (v) ∩ φcuv,wG

j (v)

and extend the Ej bundles to O(w) by the derivative of the flow. Proof of continuity and
domination of this splitting follows closely that in [BV04].

For N sufficiently large we observe that KN ,0 is contained in an arbitrarily small
neighborhood of O ∪ O(w), so the dominated splitting extends by continuity.

For each n, we let θn : [0, 1] → S1 = R/2πZ be defined by setting θn(s) to be the
argument of the eigenvalue of Dϕgs along E−

s,i on the closed orbit wn,s . By Lemma 3.1,
the θn are continuous so for each n they may be lifted to some θ̃n : [0, 1] → R.

The main result about these rotation numbers, whose proof is postponed to the next
section due to its length, is:

LEMMA 3.8. There exists n ∈ N so that |θ̃n(1)− θ̃n(0)| > 2π .

By continuity, one then finds n, s such that θ̃n(s) is an integer multiple of 2π , that is,
such that the eigenvalues in �λu(O(wn,s), gs) corresponding to the subspaceE−

i,s are real. By
another perturbation using Corollary 2.16, there exists a metric such that these eigenvalues
become distinct. Then, by induction on the other eigenspaces with complex eigenvalues,
all eigenvalues are real and distinct.

To finish the proof, openness follows again by Lemma 3.1, because the requirements on
the products of the eigenvalues is an open condition.

3.2. Proof of Lemma 3.8. We apply the notions introduced in §2.3 to give a proof of
Lemma 3.8.

Proof of Lemma 3.8. Fix N large enough so that KN ,s satisfies the conclusion of Lemma
3.7. We begin with the following result.

PROPOSITION 3.9. There existsN ′ > N , which we denote by N after this proposition, such
that the bundles with total spaces Es defined by the fibers Es(x) := E−

s,i (x) over x ∈ KN ′,s
are continuously trivializable, for each s ∈ [0, 1] and where i is some index as set in the
proof of Proposition 3.5.
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FIGURE 1. Proof of Proposition 3.9. The closed orbit O is schematically represented by the black dot.

Proof. First, note that it suffices to prove that Es is trivializable for s = 0, because the
bundles Es vary continuously in the ambient space T SM as s varies.

We construct a non-vanishing section of the frame bundle F associated with E0 over
someKN ′,0 forN ′ large, which is equivalent to a continuous choice of basis forE0, proving
triviality of the bundle.

For δ > 0, let Bδ(O) a δ-tubular neighborhood of O. If δ is sufficiently small relative to
the scale of local product structure of the Anosov flow, for all n ≥ N ′, and N ′ sufficiently
large, O(wn)δ := Bδ(O) ∩ O(wn) consists of a connected segment of the embedded circle
O(wn) and, moreover,O(w)δ := Bδ(O) ∩ O(w) consists of the complement of a connected
closed interval in O(w), that is, two immersed connected components (see Figure 1).

Note that we may assume that the map Dϕ�(wn)g0 preserves orientation on E0 over any
periodic orbitO(wn), because otherwise it would have real eigenvalues (anyA ∈ GL(2, R)
with negative determinant has real eigenvalues) and we would obtain a proof of Lemma
3.8. Hence, the bundle E0 is trivializable over any O(wn). It is also clearly so over O(w),
because it is an immersed real line, and we may assume this is also true for O, because
otherwise, again, we would have real eigenvalues.

By shrinking δ further if necessary, there exists a well-defined closest point projection
p : Bδ(O) → O which is a surjective submersion. Fix a trivialization of E0 over O, that is,
a non-vanishing section S : O→ F , which is possible by the previous paragraph.

For x ∈ Bδ(O) ∩KN ′,0 =: Kδ , again shrinking δ further if necessary, there exists
a unique length-minimizing geodesic segment between x and p(x), and by parallel
transporting E0(p(x)) along such segments and then projecting orthogonally onto E0(x)

one obtains a continuous bundle map E0|Kδ → E0|O which is an isomorphism on fibers.
This map induces a map F |Kδ → FO and so by pulling back the non-vanishing section
S : O→ F we obtain a non-vanishing section, which we now denote by S : Kδ → F

because its restriction to O agrees with the previous S, of F over Kδ .
Recall that O(w)δ consists of two connected immersed components homeomorphic to

R. As O(w) is contractible, it is possible to define a determinant on F |O(w); up to scalar it
is unique and, hence, there is a well-defined continuous sign function on each fiber. Then
we claim that S|O(w)δ has the same determinant sign on both components, so that it may
be extended to a continuous section O(w) → F |O(w). Suppose this is not the case for a
contradiction.
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Define the line bundleL := ∧2
E0 over K, which restricted to individual orbits is trivial

since E0 is. At each point x ∈ K there is a natural map F(x) → L(x) given by (e1, e2) �→
e1 ∧ e2, which extends to a continuous global map W : F → L. Considering the image
of S|O(w)δ under W, we obtain a section O(w)δ → L, which has opposite signs in the two
connected components. Let B : O(w) → L be any extension of this section to all of O(w);
by the previous remark, B must have an odd number of zeros.

By continuity,

O(wn) \ Bδ/2(O) → O(w) \ Bδ/2(O)
as n → ∞, so by continuity of the bundle for n sufficiently large, we can parallel transport
the section B on O(w) \ Bδ/2(O) to O(wn) \ Bδ/2(O) to obtain a section Bn on O(wn) \
Bδ/2(O) that has the same number of zeros as B on O(w) \ Bδ/2(O), that is, oddly many.

On the other hand, as n → ∞,

Bn|O(wn)δ\Bδ/2(O) → (W ◦ S)|O(wn)δ\Bδ/2(O)
and, hence, for n large enough, Bn has constant sign on O(wn)δ \ Bδ/2(O). Thus, Bn
extends to O(wn)δ without any zeros. Hence, we obtain a global section Bn on O(wn)
with an odd number of zeros, contradicting the triviality of L over O(wn).

Hence, we may extend S|O(w)δ continuously to all of O(w). Since in Kδ the section
S is continuous, and again O(wn) \ Bδ/2(O) → O(w) \ Bδ/2(O) as n → ∞, we can
then continuously extend S|O(w)\Bδ/2(O) to O(wn) \ Bδ/2(O) while agreeing with S in
Kδ . As S|O(w) is non-vanishing, the section obtained in this way is also globally
non-vanishing.

The projectivizationPEs of the bundleEs then defines a trivial circle bundle overKN ,s ,
and we fix a trivializing bundle isomorphism φs : PEs → KN ,s × S1. By conjugating with
φs , the derivative of the geodesic flow then defines a continuous cocycleAs onKN ,s × S1

over the geodesic flow, so we may apply the results of §2.3 forAs .
Then the rotation numbers have the following characterization over periodic orbits.

LEMMA 3.10. For a closed orbit O(u) of a point u ∈ KN ,s , the argument θ(u) of the
eigenvalue of the return map of the geodesic flow on E−

s,i satisfies

θ(u) = �(u) · ρO(u) (mod 2π),

where �(u) is the period of u, and ρO(u) is as in Remark 2.10 for the cocycle As defined
above.

Proof. On the one hand, it follows from the definition of ρ that �(u) · ρO(u) agrees mod
2π with the Poincaré rotation number for the map

(As)
�(u)
u : S1 → S1.

On the other hand, the projectivization of the derivative of the flow also defines on the
fiber a homeomorphism S1 → S1 with Poincaré rotation number equal to the argument of
the eigenvalue of the derivative.
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As these two statements differ by a conjugation given by π2 ◦ φs(u, ·) : S1 → S1, where
π2 : KN ,s × S1 is the natural projection, by invariance we obtain the result.

Applying Lemma 3.10 to the θn(s), we obtain, for 0 ≤ s ≤ 1,

θn(s) = �(wn,s)ρO(wn,s ) (mod 2π).

By continuity of the functions θn, we may lift them to θ̃n : [0, 1] → R satisfying
θ̃n(0) = �(wn,0)ρO(wn,0). By the continuity of ρO(wn,s ) in s, given by Proposition 2.12, our
choice of lift then implies

θ̃n(s) = �(wn,s)ρO(wn,s ) for 0 ≤ s ≤ 1.

Let θ(s) be the argument of the eigenvalue of the Dϕgs on E−
i,s on the periodic orbit

O (recall O is a closed geodesic for all gs with �(O) fixed), and repeat the constructions
above to obtain θ̃ (s) as well satisfying

θ̃ (s) = �(O)ρO(s), (3.1)

where ρO(s) is ρO of the geodesic flow of gs .
As μO(wn,s ) → μO (where μO is the invariant probability measure supported on the

closed orbit O) we have ρO(wn,s ) → ρO(s) as n → ∞ by Theorem 2.9. By hypothesis,
θ(1) 	= θ(0) and because �(O) is constant as s varies, equation (3.1) gives that ρO(1)−
ρO(0) 	= 0. Hence, for n large enough, there exists some δ > 0 such that |ρO(wn,1) −
ρO(wn,0)| ≥ δ.

Finally, let δn = |�(wn,1)− �(wn,0)|. Again, we defer the proof of the following final
proposition we need.

PROPOSITION 3.11. There exists M2 > 0 such that δn < M2 for all n ∈ N.

With Lemma 3.11, we complete the proof of Lemma 3.8:

|θ̃n(1)− θ̃n(0)| = |�(wn,1)ρ̃O(wn,1) − �(wn,0)ρ̃O(wn,0)|
≥ |�(wn,1)(ρ̃O(wn,1) − ρ̃O(wn,0))|

− |(�(wn,1)− �(wn,0))ρ̃O(wn,0)|
≥ δ�(wn,1)− δn|ρ̃O(wn,0)|
> δ�(wn,1)−M1M2 > 2π

for all n sufficiently large, because �(wn,1) → ∞.

Finally, we prove Proposition 3.11.

Proof of Proposition 3.11. To bound the variations δn, we use exponential shadowing and
Hölder continuity of the geodesic stretch, defined in the following. As the geodesic flow
is unperturbed on O and the orbits O(wn,s) approximate O, the two mentioned properties
give us the bound on δn.
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Recall that the wn are constructed by shadowing γn : R → SM given by

γn(t) = ϕt̃−(t2+n�)g0
(w), where t̃ = t mod (t2 + t1 + 2n�),

which is a εn-pseudo-orbit, where t1 (respectively, t2) is such that ϕt1g0(w) (respectively,
φ

−t2
g0 (w)) is in Ws

ε (v) (respectively, Wu
ε (v)) and εn < 2Cεe−n�.

The following well-known theorem is an adaptation for flows of the usual ‘exponential’
shadowing theorem, which uses the Bowen bracket in its proof. The statement gives a
sharper estimate on how well shadowing orbits approximate pseudo-orbits.

THEOREM 3.12. [FH18, Theorem 6.2.4] For a hyperbolic set � of a flow � on a closed
manifold, there exists c, η > 0 such that for all ε > 0, there exists δ > 0 so that if x, y ∈ �,
s : R → R continuous, s(0) = 0 and d(�t (x), �s(t)(y)) < δ for all |t | ≤ T , then:
(1) |t − s(t)| < 3ε for all |t | ≤ T ;
(2) there exists t (x, y) with |t (x, y)| < ε so that the ε-stable manifold �t(x,y)(x)

intersects uniquely the ε-unstable manifold of y and

d(�t (y), �t(�t(x,y)(x))) < ceη(T−|t |) for |t | < T .

In the context of the current proof, we apply the above theorem as follows.
Let Tn = �(wn), x = ϕ

Tn/2
g0 (wn), and y = ϕ

τn
g0(w) where τn := Tn/2 − (t2 + n�). For n

sufficiently large, d(ϕtg0
(x), ϕs(t)g0 (y)) < δ is satisfied, by the statement of shadowing, for

|t | < Tn/2 and δ given by the theorem for the ε > 0 fixed before. Then the theorem gives
a tn ∈ R such that

d(ϕtn+tg0
(wn), ϕτn+tg0

(w)) < ceη(Tn/2−|t |) for |t | < Tn/2.

Now we turn to computing the period of wn,1 using the facts established previously.
By structural stability, there exists h : SM → SM which conjugates the orbits of ϕg0 to
those of ϕg1 . This conjugacy can be taken to be Hölder continuous and C1 along the
flow direction. Thus, there exists some a : SM → R that is Hölder continuous with some
exponent 1 ≥ β > 0, such that for u ∈ SM:

dh(u)Xg0(u) = a(u)Xg(h(u)),

where Xg (respectively, Xg0 ) is the vector field generating the geodesic flow for g
(respectively, g0). The function a is referred to as the geodesic stretch, and the proof of
the facts above can be found, for instance, in [GKL19, pp. 12–13]

The period of wn,1 is given by the formula

�(wn,1) =
∫ Tn

0
a(ϕtg0

(wn)) dt

By Proposition 2.15(2), because O is a closed geodesic, with same arclength
parametrization for g0 and g1, it is clear that a|O ≡ 1. Therefore, we may compute the
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difference δn = |�(wn,1)− �(wn,0)| as follows:

|�(wn,1)− �(wn,0)| ≤
∫ Tn/2

−Tn/2
|a(ϕtg0

(wn))− 1| dt

≤ M

∫ Tn/2

−Tn/2
d(ϕtn+tg0

(wn), O)β dt ,

because a is β-Hölder continuous and the distance between a point and a compact set is
well defined. To estimate the distance, note

d(ϕtn+tg0
(wn), O) ≤ d(ϕtn+tg0

(wn), ϕτn+tg0
(w))+ d(ϕτn+tg0

(w), O)
≤ c(eη(Tn/2−|t |) + e−|t |) for |t | < Tn/2,

because w is a homoclinic point of O so d(ϕτn+tg0 (w), O) ≤ ce−|t | for some c > 0 which we
assume, by taking the maximum if necessary, is the same as the previous c. Substituting
this inequality into the previous integral, we obtain

|�(wn,1)− �(wn,0)| ≤ M

∫ Tn/2

−Tn/2
(eη(Tn/2−|t |) + e−|t |)β dt < M2 < ∞,

for M2 independent of n, as an easy calculus exercise shows.

3.3. Twisting. Following the previous section, we fix a metric g0 ∈ Gkp. Let O be the
orbit with the pinching property, v ∈ O, and let l be the period of O. We fix an arbitrary
w ∈ Ws

g0
(v) ∩ (Wcu

r )g0(v) a transverse homoclinic point of the orbit of v, and consider the
following composition of cocycle holonomy maps for the unstable bundle Eu:

ψg0
v,w = hsw,v ◦ hcuv,w

given by Theorem 2.6 and Proposition 2.7. Existence of w satisfying the above properties
is given by the existence of homoclinic points and the fact that, by considering ϕt (w) if
needed, we may always choose w to lie in the local center-unstable manifold of v, so that
the center-unstable holonomy is well defined (cf. Theorem 2.6 again) and, moreover, so
that w ∈ Ws

g0
(v) simultaneously.

Recall that �λu(O, g) consists of distinct real numbers, so let {ei} be an (non-generalized,
real) eigenbasis for Eu. For all 1 ≤ j ≤ n, the alternating powers �kEu(v) have a
basis obtained as exterior products of the ei . We write ejI := ei1 ∧ · · · ∧ eik , where I =
{i1, . . . , ij }.
PROPOSITION 3.13. For g0 ∈ Gkp as above, we say g0 has the twisting property for w ∈
SM with respect to v, and we write g0 ∈ Gkp,t , if

for all ejI , elI ′ , j + l = n : (∧kψg0
v,w)(e

j
I ) ∧ elI ′ 	= 0,

which is to say that the image of any direct sums of eigenspaces intersects any direct sum
of eigenspaces of complementary dimension only at the origin.

The set Gkp,t is C2-open and Ck-dense in Gk .
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Proof. Again, by the density of G∞ ⊆ Gk and openness of Gkp we may assume that g0 ∈
G∞ so we can apply Theorem 2.13. For some small ε > 0, consider the geodesic segment
γ = ϕ

g0
[0,ε](w). Note that because O(w) accumulates as |t | → ∞ on the compact set O, if

we take ε > 0 small enough we may take π(γ ) to be disjoint from π(O(w) \ γ ) ∪ π(O),
where π : SM → M is the projection map.

Then we apply Theorem 2.13 to γ ′ ⊆ γ , where γ ′ = ϕ
g0
[δ,ε−δ](w) for δ > 0 small, to

perturb Dwϕεg0
by perturbing the metric only on a tubular neighborhood Vγ ′ of γ ′ small

enough (possible by Proposition 2.15(1)) so that

Vγ ′ ∩ Cl(π(O) ∪ π(O(w) \ γ )) = ∅,

where Cl denotes closure.
By equivariance of holonomies, the map ψg0

v,w can be rewritten as

ψg0
v,w = hsϕεg0

(w),v ◦Dwϕεg0
|Eu ◦ hcuv,w.

Then observe that perturbations to the metric of the form described in the previous
paragraph affect only the Dwϕεg0

|Eu term in the composition above. Indeed, we recall that
hcuw,v depends only on the values of the cocycle on a neighborhood of the (−∞, 0] part of
the orbit ϕtg0

(w), and hsϕεg0
(w),v on a neighborhood of the [ε, ∞) part of the orbit ϕtg0

(w)

and on the cocycle along O. By construction of Vγ ′ , the cocycle is not perturbed in any of
these sets.

It remains to check that for an open and dense set of 1-jets of symplectic maps P from
a small transversal to the flow at w to a small transversal section to the flow at ϕεg0

(w), the
map ψg0

v,w has the twisting property (we assume both transversals to be tangent to Eu at w
and at ϕεg0

(w), respectively), if we replaceDwϕεg0
|Eu byDP |Eu . This implies, by Theorem

2.13, that we can construct such a small perturbation in the space of metrics, completing
the proof.

As both holonomy maps in the composition defining ψg0
v,w as above are symplectic iso-

morphisms, an open and dense subset of Sp(Eu(v)⊕ Es(v)) is mapped under composition
with the holonomies to an open dense set of the 1-jets of symplectic maps P as above, so it
suffices to check that twisting holds when the map ψg0

v,w takes value in an open and dense
subset of Sp(Eu(v)⊕ Es(v)).

Again, observe that the condition defining twisting is given by a Zariski open subset
of the matrices Sp(Eu(v)⊕ Es(v)). Hence, as long this set is non-empty the twisting set
must also be open and dense in the analytic topology. Then, by the paragraph above, this
translates to an open and dense condition in 1-jets of symplectic maps P, and as there is no
condition imposed on higher jets, we obtain the desired result by Remark 2.17.

To finish the proof, it thus suffices to check that the Zariski open set defining twisting
is non-empty in the symplectic group, which is done in the following.

LEMMA 3.14. There exists a matrix A ∈ Sp(2n), where R
2n is taken with standard

symplectic basis {ei , fi} such that A preserves Eu := span {ei}ni=1 and

for all ejI , elI ′ , j + l = n : (∧kA)(ejI ) ∧ elI ′ 	= 0.
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Proof. Note that for fixed ekI , ej
I ′ , the property that (∧jA)(ejI ) ∧ el

I ′ 	= 0 is open in
Sp(2n). Thus, by induction, it suffices to show that for any ejI , el

I ′ one can arrange so
that (∧jA)(ejI ) ∧ el

I ′ 	= 0 and, moreover, A still preserves Eu, by an arbitrarily small
perturbation of A ∈ Sp(2n). Then, by induction, the proof is completed by performing
successively small perturbations over all pairs I , I ′.

To prove the claim, suppose (∧jA)(ejI ) ∧ el
I ′ = 0, and write (∧jA)(ejI ) = ∑

J aJ e
j
J .

As A is invertible, there exists J0 such that aJ0 	= 0 and such that |J0 ∩ I ′| is minimal.
As |J0| + |I ′| = n, we have |J0 ∩ I ′| = {1, . . . , n} \ (J0 ∪ I ′), so we take an arbitrarily
chosen bijection r �→ sr from J0 ∩ I to {1, . . . , n} \ (J0 ∪ I ′).

For θ > 0, and r , s ∈ {1, . . . , n} let Rr ,sθ be given by rotating the (oriented) planes
span(er , es) and span(fr , fs) by θ and preserving the other basis elements. Let A′ be
obtained by composing A with each of Rr ,srθ for r ∈ J0 ∩ I (in any order, because the
rotation matrices commute). One checks directly that Rr ,sθ �(R

r ,s
θ )

T = �, where � is the
standard symplectic form, so Rr ,sθ preserves Eu so A′ is symplectic and preserves Eu.
Writing ∏

r∈J0∩I ′
(∧kRr ,srθ )ekJ =

∑
L

bLe
j
L,

by a direct computation, one can check that b{1,...,n}\I ′ 	= 0 if and only if J = J0, which
implies that (∧jA′)(ejI ) ∧ el

I ′ 	= 0.

4. Proof of Theorem 1.1
We finish the proof of Theorem 1.1. In what follows, let σ : � → � be the shift map of an
invertible subshift of finite type �. The suspension of � under a continuous f : � → R

+
is the compact metric space,

�f := (� × R)/((x, s) ∼ αn(x, s), n ∈ Z),

where α(x, s) := (σ (x), s − f (x)). The shift σ lifts to a continuous-time system σ tf :
�f → �f given by σ tf (x, s) = (x, s + t) for t ∈ R.

First, we need to represent Anosov flows by the suspension of a shift. The following is
the standard statement of the construction of a Markov partition for an Anosov flow.

THEOREM 4.1. [FH18, Theorem 6.6.5] Let � : M → M be a C1 Anosov flow. There is a
semiconjugacy from a hyperbolic symbolic flow to� that is finite-to-one and one-to-one on
a residual set of points, where the roof function for the subshift of finite type corresponds
to the travel times between the local sections for the smooth system.

Finally, we prove Theorem 1.1.

Proof of Theorem 1.1. We prove that the statement holds for all g ∈ Gkp,t , so the theorem
is proved by Proposition 3.13. Fix some such g0 ∈ Gkp,t and let v, w ∈ SM be the vectors
along whose orbits pinching and twisting hold, respectively.

Let �f be a suspension of a subshift of finite type and P : �f → SM be the
semi-conjugacy map to the geodesic flow of g0 given by Theorem 4.1. Following the proof
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of Theorem 4.1 in [FH18], we see that it is possible to construct the Markov partition so
that v ∈ SM has a unique lift (p, t) to the suspension of the shift space �f by enlarging
the Markov rectangles by an arbitrarily small amount so that the orbit of v only intersects
their interiors, where f : � → R is some roof function. Then, by [FH18, Claim 6.6.9
and Corollary 6.6.12], there is also a unique (q, s) that lifts the homoclinic point with
twisting w.

We write E→ �f for the pullback of the bundle Eu → SM to �f under P, and by
At : E→ E, the pullback of the derivative cocycle. By using the return map of At to the 0
section of �f , the cocycle At determines a discrete time cocycle A on E→ � identified
with � × {0} ⊆ �f . Following, the propositions in section 2.1 of [BGV03], there exists
a distance on � which makes the cocycle A dominated, so that it admits holonomies Hs

and Hu.
Recall that the local stable and unstable manifolds Ws

loc(x) (respectively, Wu
loc(x)) for

the shift space � are defined as the sequences y such that (y)i = (x)i for all i ≥ 0
(respectively, ≤ 0), where the subscript i denotes the ith entry of x and y regarded
as a sequence in the shift space �. By reducing the size of the rectangles in the
original construction if necessary, it is possible to ensure that points in the same local
stable/unstable manifold in the shift� are mapped to the same local center stable/unstable
manifold in SM by the semi-conjugacy P. Then we can prove the following lemma
which verifies agreement of holonomies of the geodesic flow and its symbolic discrete
representation:

LEMMA 4.2. Let x = x × {0} ∈ �f , and y = y × {0} ∈ �f , where y is in the local stable
manifold. Let v = P(x) and w = P(y) which, by the previous paragraph, lie in the same
local center-unstable manifold in SM . Then hcsvw = Hs

xy and the analogous result holds
for unstable holonomies.

Proof. By the proof of existence of holonomies as in [BV04], one obtains the holonomy
map as a limit:

Hs
x,y = lim

n→∞((A
n)x)

−1 ◦ Iσnxσny ◦ (An)y .

As n → ∞, note that (σnx)× {0} and (σny)× {0} converge to the same stable
manifold in �f . Hence, if we let Tn := ∑n−1

i=0 f (σ
ix) so that (An)x = (ATn)x×{0}, then∑n−1

i=0 f (σ
iy)− (Tn + r) → 0, as n → ∞, where r ∈ R is such that σ rf (y) ∈ Ws(x).

On the other hand, using the formula defining the holonomies and the definition of At

as a pullback cocycle of Dϕtg0
|Eu :

hcsvw = lim
T→∞(Dϕg0 |TEu)−1

v ◦ I
ϕTg0

(v),ϕT+r
g (w)

◦ (Dϕg0 |TEu)ϕrg0
(w) ◦ (Dϕg0 |rEu)w,

= lim
T→∞(A

T )−1
x ◦ I

σTf y,σT+r
f y

◦ (AT )σ rf y ◦ (Ar)y ,

so letting T = Tn we conclude that Hs
x,y = hcsvw.

With the above proposition it is straightforward to verify using the equivariance of
holonomies (with respect to A) that the cocycle A over � is simple. Let ρ : SM → R
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be a Hölder potential and μρ its associated equilibrium state for the geodesic flow of g0.
Let ρ̃ be the Hölder continuous potential on�f given by ρ̃ = ρ ◦ P , and μ̃ρ its associated
equilibrium state for σ tf : �f → �f .

It is a well-known fact (see, e.g., [BR75]) that P is, in fact, a measurable isomorphism
between (�f , μ̃ρ) and (SM , μρ). Hence, the Lyapunov spectrum of At with respect to
μ̃ρ agrees with that of Dϕtg0

with respect to μρ , and it suffices to show simplicity of the
spectrum of the former.

As f : � → R is Hölder, identifying � with � × {0} ⊆ �f , the Hölder continuous
function:

( ∫ f (x)

0
ρ̃(x, t) dt

)
− P(σf , ρ̃)fg(x),

where P(σ tf , ρ̃) is the pressure of σ tf with respect to ρ̃, defines a potential on � = � ×
{0} ⊆ �fg and has a unique equilibrium state μ which satisfies, for F ∈ C0(�f ),

∫
�f

F dμ̃ρ =
∫
�

( ∫ f (x)
0 F(x, t) dt

)
dμ

∫
�
f (x) dμ

by [FH18, Proposition 4.3.17]. In particular, because μ is an equilibrium state it has local
product structure.

The product μ× dt defines a measure for the suspension flow σ t1 on �1 (where 1 is
the constant function 1) which has the same Lyapunov spectrum as μ. As μ× dt and μ̃ρ
are related by a time change, the Lyapunov spectrum of At with respect to μρ and the
Lyapunov spectrum of A with respect to μ differ by a scalar, see, e.g., [Bu17, Proposition
2.15]. Hence, applying Theorem 2.3 to the simple cocycle A for the measure μ we obtain
simplicity of the Lyapunov spectrum for μρ .

5. Proof of Theorems 1.2 and 1.3
In this section, we explain the modifications needed to the previous sections to give the
proofs of Theorems 1.2 and 1.3.

Proof of Theorems 1.2 and 1.3. For 1
2 -bunched Anosov flows, the splitting Eu ⊕ E0 ⊕ Es

may not be C1, so instead we consider the derivative cocycle on the C1-bundles Qu :=
Ecu/E0 and Qs := Ecs/E0, which we have shown to be 1-bunched in Proposition 2.7.
In what follows, we prove simplicity for the spectrum on Qu and Qs implies the desired
result because D� on Qu,s has the same spectrum as D� on Eu,s .

For Theorem 1.3, recall that topological mixing isC1-open andCk-dense in the space of
Anosov flows. Then we follow the propositions in §3 to construct orbits with pinching and
twisting for the cocycle onQu by a Ck-small perturbation, which in this case is achievable
because the analog of Theorem 2.13 is clear in the space of all vector fields and XkA(X)

is open by structural stability in the space of all vector fields and, moreover, the linear
algebra lemmas (Lemmas 3.3 and 3.14) needed for the case of Sp(2n) are immediate for
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GL(n). The C1-openness of the conditions also is proved similarly. Then, by a symmetric
argument, it is clear that pinching and twisting for both Qu and Qs is C1-open and
Ck-dense. The proof then follows the same outline in §4.

The proof of Theorem 1.2 is similar, in that the linear algebra lemmas (Lemmas 3.3 and
3.14) needed for the case of Sp(2n) are still immediate for SL(n). Moreover, topological
mixing is known for all C2-volume-preserving Anosov flows. Finally, it remains to prove
an analog of Theorem 2.13 for the conservative class, which we do in the next section.
With that in hand, the proof also follows the same outline as Theorem 1.1.

5.1. Conservative perturbations. In this section, we prove the analog of Theorem 2.13
in the volume-preserving category. To the best of the author’s knowledge, the result is not
found anywhere in the literature so the complete proof is included here. Throughout, we
let X ∈ X∞

m (M) be a non-vanishing vector field generating the flow ϕX on the smooth
manifold M which preserves the smooth volume m. Fix an embedded segment of a flow
orbit l : [0, ε] → M parametrized by the time parameter and a small transversal smooth
hypersurface �(0) to X at l(0).

For t ∈ [0, ε], set �(t) = ϕtX(�(0)) so that ιXm is a volume form on the hypersurfaces
�(t). The following result, whose proof is elementary except for an application of
the conservative pasting lemma, shows that it is possible to perturb the k-jets in the
conservative setting generically by Ck-small perturbations.

THEOREM 5.1. Let Q be some dense subset of the space of k-jets of volume-preserving
maps (�(0), ιXm, l(0)) → (�(ε), ιXm, l(ε)).

Then there is arbitrarily Ck-close to X an m-preserving X′ such that:
(a) Y := X′ −X is supported in an arbitrarily small tubular neighborhood B of

l([δ, ε − δ]), for some 0 < δ < ε;
(b) Y = 0 on l([0, 1]) and Y is tangent to the hypersurfaces �(t);
(c) the flow of X′ generates a map (�(0), l(0)) → (�(ε), l(ε)) with k-jets in Q.

Proof. If B is sufficiently small, we may assume that it is foliated by the transversals �(t)
and, moreover, by passing to a further neighborhood we may assume that the transverse
sections are mapped diffeomorphically onto each other by the flow X, that is, we may
construct the perturbation in a flow box with transversals given by the �(t).

In the flowbox, a classic application of Moser’s trick allows us to assume that the flow
is in normal coordinates ϕtX(x1, . . . , xn−1, s) �→ (x1, . . . , xn−1, s + t), where the image
of l is contained in {x1 = · · · = xn = 0} and m = dx1 ∧ · · · ∧ dxn. In these coordinates,
we may regard B ∼= U × [0, ε], where U ⊆ R

n−1 is a domain and so Q ⊆ J km(n− 1, R),
where J km(n− 1, R) is the Lie group of k-jets of volume-preserving maps fixing the
origin.

Using the flow to identify the fibers of U × R → R, the problem is thus reduced to the
construction, for each δ > 0, of a time-dependent vector field {Yt }t∈[0,ε] on R

n−1 with the
following properties:
(a) Yt (0) = 0 and supp(Yt ) ⊆ U for t ∈ [0, ε];
(b) Yt ≡ 0 on [0, δ] and Yt ≡ 0 on [ε − δ, ε];
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(c) Yt is divergence free for all t ∈ [0, ε];
(d) the time-ε map f : (Rn−1, 0) → (Rn−1, 0) of Yt has derivative at 0 in Q;
(e) ‖Yt‖C∞ < δ for all t ∈ [0, ε];

The construction is given by first specifying the time-ε map f and then finding an
appropriate isotopy within the volume-preserving category to the identity.

Fix some θ ∈ Q sufficiently close to the k-jets of I (the identity map) and a map
F : (Rn−1, 0) → (Rn−1, 0) whose k-jet at the origin is given by θ . Take some C∞ bump
function ρ : Rn−1 → R which interpolates between the constant function 1 in B(0, η/2)
to the constant function 0 outside of B(0, η) for some η small. Let F ′ = ρF ; if θ
is sufficiently close to 0, then ‖F ′ − I‖Ck is small so in particular F ′ ∈ Diff(Rn−1).
Applying Moser’s trick, we can find an f ∈ Diffm(Rn−1), that is preserving m, which
is Ck-close to the identity and which agrees with F ′ where it is conservative, namely,
everywhere except B(0, η) \ B(0, η/2). In particular, the k-jet of f at the origin equals
θ ∈ Q.

To obtain such an f, we construct a family s �→ hs ∈ Diff(Rn−1) such that h1 = F and
h0 =: f is conservative. Let r : B → R be the smooth function Ck close to 1 satisfying
F∗μ = rμ. Then, for s ∈ [0, 1], we solve (hs)∗μ = rsμ, namely divZs = rs log rs , where
Zs = ∂shs . Moreover, the proof of the Poincaré lemma shows that we can take Zs to be
constant equal to 0 outside of B(0, η). By the conservative pasting lemma [Te20], there
existsWs which agrees with Zs on a neighborhood of Rn−1 \ (B(0, η) \ B(0, η/2)) and is
divergence-free. Then Z′

s = Zs −Ws also satisfies div Z′
s = rs log rs and it is identically

0 where r = 1, so that hs(x) = F(x) on B(0, η) \ B(0, η/2), where now ∂shs = Z′
s . In

particular, f := h0 is the identity outside of B(0, η) and its k-jet at the origin is given
by θ . This constructs the desired f.

Now let α : [0, ε] → [0, ε] be a C∞ function such that α ≡ 0 on [0, δ] and α ≡ ε on
[ε − δ, ε]. If ‖f − I‖Ck is sufficiently small (which is ensured by taking θ closer to the
jets of the identity), the maps gt := α(t)f + (1 − α(t))I are all diffeomorphisms and t �→
∂tgt is a time-dependent vector field that satisfies all the desired properties except for being
divergence-free.

To repair that, again Moser’s trick constructs a family s �→ gt ,s such that gt ,0 = gt

and gt ,1 is conservative as follows. Let rt : B → R be the smooth one-parameter family
of smooth functions Ck close to 1 satisfying (gt )∗μ = rtμ. Then, for s ∈ [0, 1], we
solve (gt ,s)∗μ = rst μ, namely div Zt ,s = rst log rst , where Zt ,s = ∂sgt ,s . It is an easy
consequence of the proof of the Poincaré lemma that the family Zt ,s may be taken to
be smooth in t with small t derivatives, because t �→ rt as a one-parameter family has
the same properties. Moreover, we can take supp Zt ,s ⊆ supp (rt − 1). The Ck norm of
the Zt ,s is a continuous function of the Ck norm of rst log rst , so that taking Yt = ∂tgt ,1

finishes the proof.
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