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Abstract

J. B. Diaz and F. T. Metcalf established some results concerning the structure of the set of cluster
points of a sequence of iterates of a continuous self-map of a metric space. In this paper it is shown
that their conclusions remain valid if the distance function in their inequality is replaced by a
continuous function on the product space. Then this idea is extended to some other mappings and to
uniform and general topological spaces.

1980 Mathematics subject classification (Amer. Math. Soc): 47 H 10, 54 H 25.

Diaz and Metcalf [5, 6] have studied the structure of the set of subsequential limit
points of a sequence of iterates of a continuous self-map A of a metric space
(X, d) satisfying the condition d(Ax, F(A)) < d(x, F(A)), where x ¥= Ax and
F(A), the set of fixed points of A, is nonempty and compact. In this paper it is
shown that the conclusions of Diaz and Metcalf [6] may still be derived after
replacing d by a continuous function <p: X X X -* Ro, where Ro is the subspace
[0, oo) of the real line with usual topology. Then our analysis is extended to the
mappings introduced by Dotson [7], Browder and Petryshyn [2, 3], Singh and
Zorzitto [9] and Caristi [4]. Then we show that our results may be carried over to
uniform spaces and, further, that some of our conclusions hold in Hausdorff
topological spaces.

In what follows <p(x, F(A)) will be used to denote infyeFiA)(x, y). The orbit of
x e X generated by A will be denoted by O(x, A) and its closure by O(x, A).
The set of subsequential limit points of the sequence {A"x}™_0 will be denoted
byJS?(*).
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12] On subsequential limit points 119

We now establish the generalization of Theorem 2 of Diaz and Metcalf [6].

THEOREM 1. Let A be a continuous self-map of a metric space (X, d). Suppose
that

(i) F(A) is nonempty and compact.
(ii) there exists a non-negative continuous function <p: X X A' -* Ro such that

<p(Ay,F(A)) < <p(y, F(A))fory eX- F(A),
(iii) O(x, A) is compact for some x e X.
Then£P(x) is a nonempty, compact and connected subset of F{A). Either ^C(x)

is a singleton or is uncountable. In the caseJif(x) is a singleton, ]imn_aoA"x exists
and belongs to F(A). In the case £P{x) is uncountable, it is contained in the
boundary of F{ A ).

PROOF. The compactness of O(x, A) implies nonemptiness of £e(x). We now
show that£C(x) c F(A). If some iterate Akx e F{A), we havei?(x) = {Akx} c
F(A) and the theorem is proved. Therefore we assume that Akx € F(A) for
k — 0,1,2, Since for any fixed y, z -* <p(z, y) is a continuous function from
X -* RQ, the function z -» <p(z, F(A)) is an upper semi-continuous function,
being the infimum of a family of continuous functions. Since Akx £ F(A) for all
k, we have <p(Ak+1x, F(A)) < <p(Akx, F(A)) for all k. Therefore
[<p(Akx, F(A)))f_0 is a monotonically decreasing sequence of nonnegative real
numbers and so will converge to r > 0, say. Since £f(x) # 0 , for a £ e ^f(x)
there exists a subsequence {A"'x}fl1 v/ithA"'x -> £ as / -> oo. If A^ = £, then we
are through. Therefore we assume that £ # A£. Then r = hm<p(A1+"'x, F(A)) =
Umsup <p(A1 + n'x, F(A)) < (p(Um A1 + n'x, F(A)) = <p(A£, F(A)) < v ({ , F(A)).
Nowj -» <p(A"x, y), for fixed A"x, is a continuous function: X -> i?0 and so will
attain its infimum on F(A). Therefore there exists a pne F(A) such that
<p(A"x, F(A)) = <p(v4"*, /»„). Corresponding to each ,4"'* of the convergent sub-
sequence {A"ix}fLl we have apn, e F(^4). Since ^(^4) is compact, {pn.}?=l will
have a convergent subsequence denoted by {pm }°°ml converging to q, say, in
F(A). Now Am'x -* q. From <p(An + lx, pn + 1) = <p(^"+1x, F(^)) <
<p(A"x, F(A)) = <P(^"JC, pn), we have, for m, > n, <p(Am'x, pm) < q>(A"x, pn).
Letting w, -» oo, we have, since <p is continuous, <p(£, r̂) < <p(A"x, pn). Since
<p(^"x, /;„) = <p(A"x, F(A)) -» r > 0, we have <p(£, ?) < r. Thus r <
<p(A£, F(A)) < <p(£, F(A)) < <p(£, 9) < r. This is absurd. Therefore £ = A£, that
is, | e F(.4). In other words Sf(x) c f ( ^ ) . Further, £C(x), being a closed subset
of the compact set -F(.4), is compact.

We now prove that^(x) is connected. Suppose the contrary. Then there exist
two nonempty, disjoint, closed subsets Sl5 S2 oi^C(x) such that^P(x) = S1 U S2-
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120 M. Maiti and A. C. Babu 131

Since Sx and S2 are closed subsets of a compact set Sf^x), they are themselves
compact. Hence d(Sv S2) > 0. Next, we show that d(Amx, F(AJ) -» 0 as m -» oo.
If not, there exists an e > 0 and a subsequence {Am'x}f=l such that
d(Am<x, F(A)) > e > 0 for / = 1,2,3,. . . . Since O(x, A) is compact, {Am-x}f=l

will have a subsequence {An'x}f=1 - > J G F(A). Thus ^(y4"'x, F(^)) <
d{A"'x, | ) -» 0 as / -» oo. This is a contradiction. Therefore we must have
d(Amx, F(A)) - ^ O a s m - * oo. We next prove that hmm^o o d(Amx, S1 U 52) = 0.
If it is not so, then there will exist an e > 0 and a subsequence {Am'x}fl1 such
that d(Am'x, S1U S2)> e>0 for i = 1,2,3,. . . . Since F(A) is compact, there
exists a ?m e F(/ l) such that d(Am'x, F{A)) = </(^mot, qm ). Because of the
compactness of /"(^4), {?m.}?li will have a convergent subsequence {^ }f_x with
qni^q^ F(A). Now </(.4"<JC, ?) < </(,<"% ?„) + d(qn_, q) -» 0. Hence ? e
^f(jc) = Sx U 52 and </(^"'0c, Sx U S2) < J ( ^ " ' i , q) -> 0 as / -> oo. This con-
tradiction shows that Umm_oorf(y4mjc, 5X U S^) = 0. We further prove that A is
asymptotically regular. If not, there will exist an e > 0 and a subsequence
{Am'x}°°ml such that d(Am'x, Al+m'x) > e > 0. The corresponding sequence
{Qm )T-\ m ^ ( ^ ) wiU n a v e a subsequence {^n.}JLi converging to q G F(^4). AS
above A">x - » ? e ^(-^)- Since A is continuous at r̂, we have A1+"-x -+ Aq = q.
Now d(A"'x, Al+n'x) < </(>4"% ?) + d(A1 + "'x, q) -+ 0 as i -> oo. This is con-
trary to hypothesis. Hence we have proved that d(Amx, Am+1x) -* 0 as / -> oo.
Thus from the results found in this paragraph, we can find an integer M such that
for m > M, d(Amx, Am+1x) < \d(Slt S2) and d(Amx, Slt S2) < \d(Sv S2). Since
^ U S2 is compact there exists a q e St U S2 such that d(Amx, St U S2) =
d(Amx, q). If q e 51; then J(^mx, Sx) < J(^mx, q) < ^d(Sv S2). Therefore for
any m 2* M, either d(Amx, Sx) < i</(51; S2) or, </(^mx, S2) < jd(Sv S2). Both
these inequalities cannot hold simultaneously, because in that case d(Sv S2) <
d(Slt Amx) + d(S2, Amx) < %d(Slt S2) which is absurd. Now it is clear that the
set of positive integers m > M for which d(Amx, 5X) < %d(Sv S2) is nonempty,
since 0 # 5X c ^Sf(jc). Similarly the set of positive integers w > M for which
d(Amx, S2) < %d(Sv S2) is also nonempty. Let, for m1 > M, d(Amix, Sx)
< jdiS^ S2). There exist integers n > m1 such that d(A"x, S2) < %d(Sv S2). Let
k + 1 be the least such integer. Then d(Ak+1x, S2) < \d(Sv S2) and d(Akx, 5X)
< $d(Slt S2). We have

d(Slt S2) < d{Sly Akx) + d(Akx, Ak+1x) + d(Ak+1x, S2)

< \d(Slt S2) + $d(Slt S2) + $d(Slt S2).
This is absurd. Therefore the hypothesis that £f{x) = Sx U S2 with St and S2

nonempty, disjoint, closed subsets of^C(x) leads to a contradiction. Hence J?(x)
is connected.

By Theorem 1 in Berge [1, p. 96] it follows that Jif(x) is either a singleton or is
uncountable. We have proved above that ]imm_xd(Amx, ^C(x)) = 0, so that
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is a singleton {£}, say, ]imm^xd(Amx, £) = 0. Thus ]imm^xA
mx =

To prove that^(x) , if uncountable, lies on the boundary of F(A), we observe
that in this case Akx <£ F(A), k = 0,1,2,.... If £ e <£?(*) c F(A) is an interior
point of F(A), Akx e F(A) for some A:, as ir(^4) is a neighborhood of £ and some
subsequence of { Amx} converges to £. This is a contradiction.

REMARK 1. We observe here that Theorem 2 of Diaz and Metcalf [6] is a
corollary of our theorem if we replace q> by d. For this we have only to show that
when £f(x) is nonempty, the assumptions of Diaz and Metcalf imply the
compactness of O(x, A). This has been shown in [8]. The following example
shows that our theorem is indeed a generalization of the theorem of Diaz and
Metcalf.

Take X= {a, b, c,d,e) with the metric d(x, y) = 1 if x * y and d(x, y) = 0 if
x = y. Take the mapping A: X -» X such that Aa = b, Ab = c, Ac = d, Ad = e
= Ae. Here F(A) = {e} and it is easy to see that for x # Ax, d(Ax, F(A)) <
d(x, F{A)) is not satisfied for x = a, b or c. Therefore we cannot invoke the
theorem of Diaz and Metcalf to show that SC(a) is a closed, connected subset of
F(A). We now define a function <jp: X X X -* Ro the schematic representation of
which is given by

a
b
c
d
e

a
0
40
50
90
100

b
4
0
30
60
80

c
5
3
0
20
70

d
9
6
2
0
10

e
10
8
7
1
0

where the value of <j>(.x, y) occurs at the intersection of the row containing x with
the column containing y. We have

1 = <p(d, F(A)) = <p(Ac, F(A)) < <p(c, F(A)) = 7

= q>(Ab, F{A)) < <p(b, F(A)) = 8 = <p(Aa, F(A))<p(a, F(A)) = 10.

Further <p is continuous o n J f x ^ because it has the discrete topology. Also F(A)
is nonempty and compact and so is O(a, A). Thus we may invoke our theorem to
show that J*?(a) is a nonempty, compact and connected subset of F(A).

REMARK 2. Suppose, in "addition to the hypotheses of Theorem 1, that F(A) is
an at most countable set. In this case ]imm^<xA

mx exists and belongs to F(A),
because^7(x) is a singleton here and Umm_00 d(Amx, ^(x)) — 0.
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COROLLARY 1. Let A: X -* Xbe such that Ak is continuous for some k. Suppose
(i) F(Ak) is nonempty and compact,
(ii) for each x e X, O(x, Ak) is compact,
(iii) there exists a continuous real-valued function <p: X X X -* Ro such that for

x<=X- F(Ak), <p(Akx, F(Ak)) < V(JC, F(Ak)).
Then, for x e X, the set SCk{x) of subsequential limit points of the sequence of

iterates {Amkx}™=1 is a nonempty, compact and connected subset ofF(Ak). Further
the set ^Ci(x) of subsequential limit points of the sequence of iterates { A mx } ~_ x is
the union of the k nonempty, compact, connected subsets Ji?k(A

jx), j'• = 0 ,1 ,2 , . . . , k
- 1.

The proof is omitted because it is a minor modification of the proof of
Theorem 2k of Diaz and Metcalf [6].

COROLLARY 2. Suppose, in addition to the hypotheses of Corollary 1, that F(Ak)
is an at most countable set. Then for x^X, Sf^x) contains at most k points. This is
because eachSCk(A

Jx) is a singleton.

Dotson [7] calls a mapping A quasi-nonexpansive if F{A) ¥= 0 and for each
x e J f - ^(^4), P e F(A), d(Ax, p) < d(x, p). We call A quasi-contractive if the
strict inequality sign holds. The concept of quasi-contractiveness has been dis-
cussed by Diaz and Metcalf [6]. We define the mapping A to be <p-quasi-nonex-
pansive if F(A) * 0 and f o r x G ^ - i ^ ) , p e F(A) we have <p(Ax, p) <
<p(x, p) where <p: X X X -* Ro. We say that A is <p-quasi-contractive if the strict
inequality sign holds. In this connection we now prove

THEOREM 2. Let A: X -» X be a continuous self-map of a metric space (X, d).
Suppose that A is <p-quasi-contractive, where <p is a continuous function from
X X X -» Ro. Then£\x) c F(A). Ifq>(x, y) = 0 «• x = y, thenSC(x) consists of
at most one point. If O(x, A) is compact in addition, then \iiam_x>Amx exists and
belongs to F(A).

PROOF. If J?(x) is empty there is nothing to prove. Therefore we shall assume
that JSP(JC) * 0 and that Akx <£ F(A), k = 0 ,1 ,2 , . . . , as in Theorem 1. Then for
any p e F(A), the sequence of positive numbers {<p(A"x, p)} is monotonically
decreasing, because <p(An+1x, p) < <p(A"x, p) by hypothesis. Hence
]hnn^oo<p(A"x, p) exists and is r > 0. Let £ e & { x ) and let the subsequence
{ A">x }°l! converge to £. If possible, let | # At Now
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r = Urn <p(A1+"'x, p) = J lim A1+n'x, p) = <p(At, p)
I! - » 0 0 M - » OO '

< <p(£, p) = <p( lim A"'x, p) = lim <p(yl"'\x, />) = lim <p(̂ 4njc, />) = r.
W' —» 00 ' / —* 00 I —* 00

This contradiction proves that £ = Ai- and so £ e F{A). We have thus proved that
£e(x) c f ( ^ ) . Obviously&(x) is closed.

Assume now that <p(jc, j ) = 0 if and only if x = y. Let p, q e -S?(x) c F(^4).
Obviously <p(,4mx, />) -» 0 as m -* oo. If the subsequence {Am'x}f=1 converges
to q, then tp(Am>x, p) -* <p(p, q). Hence <p(q, p) = 0 so that p = q. Therefore
•S?(;c) can consist of at most one point. If O(x, A) is compact, then £C(x) is
obviously nonempty and so is a singleton. Let JSP(JC) ={ />} . If A"x -t* p as
n -* oo then for some e > 0 there exists a subsequence {^"'x}"!, with
d(A"'x, p) > e > 0. The compactness of O(x, A) implies the existence of a
subsequence of {A"'x}f_l converging to/? as£C(x) = { / > } . This contradicts our
hypothesis that d(A"'x, p) > e. Hence d(A"x, p) -» 0 as n -» oo, implying v4"x

- * / > •

Browder and Petryshyn [2, 3] define a self-map /4 of a Banach space to be
asymptotically regular if An+lx — A"x -» 0 strongly as « -» oo. We shall say that
a mapping A is <p-asymptotically regular it (p(A"x, An+1x) ^> 0 as « -> oo. We
are now in a position to give our

THEOREM 3. Let A be a continuous self-map of a metric space (X, d). Suppose
(i) .F(.<4) is nonempty and compact,
(ii) there exists a continuous function <p: X X X —> Ro such that <p(y, z) = 0 if

and only ify — z,
(iii) A is <p-asymptotically regular,
(iv) O(x, A) is compact.
ThenJif(x) is a nonempty, compact and connected subset ofF(A). Either JiP(x) is

singleton or uncountable. In the case SC(x) is a singleton \imn_ooA"x exists and
belongs to F(A). In the case£f(x) is uncountable it is contained in the boundary of
F(A).

PROOF. If Akx e F(A) for some k, then the proof is trivial. Therefore, assume
Akx £ F{A) for all A:. The sequence {<p(Amx, F{A))}^1 is non-increasing and
bounded below by zero and so converges to r > 0. Since O(x, A) is compact,
&(x) * 0 . Let £ e^f(x) with Am<x -> £ as / -» oo. Then <p(Am<x, A1+m'x) ->
<p(£, A^) = 0, since A is <p-asymptotically regular. Hence £ = Ai and £ e F{A).
Therefore ^C(x) c F(A). Obviously ^C(x) is closed. Since F(A) is compact and
SC(x) is closed, ^C(x) itself is compact. In view of the proof of Theorem 1, to
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prove that JSf(jc) is connected we need prove only d(Amx, F(A)) -» 0 as m -* oo
and this follows from the compactness of O(x, A) and the fact that^P(x) c F(A).
The remaining part of the proof is as in Theorem 1.

We may relax the compactness conditions on F(A) by assuming A to be
(p-quasi-nonexpansive. This we state as

THEOREM 4. Let A be a continuous self-map of a metric space (X, d). Suppose
(i) F(A) is nonempty,
(ii) A is <p-asymptotically regular where <p is a continuous function: X X X —> RQ

and<p(y, z) = 0 if and only ify = z.
Then ^C(x) c F(A). If, in addition, A is (p-quasi-nonexpansive, then J?(x)

consists of at most one point. If O(x, A) is compact, then tomm_aaA"x — p, where

PROOF. The fact that A is <p-asymptotically regular and vanishes only on the
diagonal shows that.5?(;t) c F(A). HA is <p-quasi-nonexpansive and;?, q e £C(x)
with p # q, then tp(A"x, q) -* r > 0. Also there exist subsequences {Am'x},
{A"'x} such that Am'x -* p, An> -* q. Hence <p(Am<x, A"'x) -» <p(p, q). Keeping
/ fixed and letting7 -» 00, we have <p(Am:x, A"JX) -» q>(Am'x, q). We can extract
a subsequence {m'j} from {/«,•} such that m'j > nj. Since lim,_00<p(y4m'x, q) = r
> 0, we have,

r= hm<p(Am'x,q)= Um <p(ylm^, q) < Um (p(y4n>x, ^) = <p(q, q) = 0.
/ - » 00 m'j-* 00 rij-* 00

But <p(Am>x, q) -» <p(/>, ̂ ) . Therefore <p(/7, q) = 0 whence ^ = 9. Thus -S?(*)
consists of at most one point. If O(x, A) is compact, then^f(x) is nonempty and
so JSP(JC) = {/>}, say. Now, proceeding as in Theorem 2 we can show that

We now take the range of A to be compact and derive

THEOREM 5. Let A: X —> Xbe continuous. Suppose
(i) A( X) is compact,
(ii) A is <p-asymptotically regular where <p is a continuous function: X X X -* Ro

and <p(x, y) = 0 if and only if x = y.
Then, for x e X, the set SC(x) is a nonempty, compact and connected subset of

F(A). Either Sf(x) contains exactly one point or is uncountable. In the casel?(x) is
a singleton, ]imm_xA

mx exists and belongs to F(A). In the case ^C(x) is uncount-
able, it is contained in the boundary ofF(A).

PROOF. Since A is continuous, F(A) is closed and so is compact as F(A) c
A(X), which is compact. Since O(Ax, A) c A(X), we have O(Ax, A) is compact.
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Condition (ii) now implies that SC(Ax) c F(A). But &(x) = &(Ax). Hence
JSf(x) c F(A). The compactness of O(Ax, A) implies that d(A"x, F(A)) -> 0 as
n -* oo. The remaining conclusions can be derived as in Theorem 1.

Following the idea of Singh and Zorzitto [9] we have

THEOREM 6. Let Abe a continuous self-map of a metric space (X, d). Suppose
(i) F(A) is nonempty and compact
(ii) there exists a continuous function <p: X X X -> Ro such that <p(y, z) = 0 if

and only if y = z and for y e X - F(A), <p(Ay, F(A)) < <p(y, F{A)) and
<p(Amy, F(A)) < <p(y, F(A))foran integer m = m(y),

(iii) O(x, A) is compact.
ThenSC(x) is a nonempty, compact and connected subset ofF(A). Either Of (x) is

a singleton or is uncountable. In the case ^C(x) is a singleton, hmm^,aoA
mx exists

and belongs to F{A). In the case^C(x) is uncountable it is contained in the boundary
ofF(A).

PROOF. Since O(x, A) is compact, JSf (JC) is nonempty. It is enough to prove that
J?(x) c F(A). The remaining portion of the proof can be derived as in Theorem
1. Assume Akx £ .F(/l) for all fc. Let £ e (x). If possible let | # At Hence there
exists a subsequence {A"'x} of {A"x} such that A"'x -* £. Obviously,
lim,,.,^ <p(A"x, F(A)) exists and is equal to r > 0. Now r =
l i m , ^ VM"«>+"%F(>1)) < <p(lim,^0O>r<«+"0c, F(A)) = <p(A?«\ F(A)) <
<p(£, ̂ (^4)). Proceeding as in Theorem 1, we can show that <p(£, F(A)) < r. Thus
r < <p(Am<V£, F(A)) < <p(£, F(A)) < r, which is absurd. Thus £ = A£ and &(x)
c F(A).

Corresponding to Theorem 2 we state the following theorem without proof as it
can be derived by combining the methods of Theorem 2 and Theorem 6.

THEOREM 7. Let A: X -* X be a continuous self-map of a metric space (X, d).
Suppose that F(A) # 0 and A is <p-quasi-inonexpansive where q>: X X X -» Ro is
continuous. Assume further that for y e X — F(A) and p e F(A) there exists an
integer m = m(y, p) such that <p(Amy, p) < <p(y, p). Then for x G X, &(x) c
F{A). If <p(y, z) = 0 «=> y = z, then, for any x G X, SC(x) consists of at most one
point. If, in addition, O(x, A) is compact then limOT_00^4mjc exists and belongs to
F(A).

Now we shall use conditions similar to those of Caristi [4] to derive the same
conclusions as those of Diaz and Metcalf [6].
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THEOREM 8. Let A be a self-map of a metric space (X, d). Suppose
(i) A is continuous at eachpont ofF(A),
(ii) F(A) is nonempty and compact,
(iii) there exists a function \p: X -* Ro such that for y e X, d{Ay, F(A)) <

Then, for x e X, ^(x) is a nonempty, compact and connected subset of F(A).
Either -Sf(x) is a singleton or is uncountable. In the case •S'(x) is a singleton,
]hnm_,00A

mx exists and belongs to F(A). In the case £f(x) is uncountable, it is
contained in the boundary of F(A).

PROOF. We assume at the outset Akx € F(A) for all k, because otherwise the
proof is trivial. This implies that ip(Ak+1x) < ip(Akx) for all k. Thus {\P(Akx)}°£_1

is a monotonically decreasing sequence of reals bounded below by zero and so
converges to r > 0. We have

d(Amx, F(A)) <

d(Am+1x, F(A))

d{A»x, F{A))

whence, by adding, we get

d(Amx, F(A)) + d(Am+1x, F(A)) + ••• + d(A"x, F(A))

For m, n sufficiently large, the right hand side can be made less than any
preassigned e > 0, since {*l'(<Akx)}f_1 is a convergent sequence of reals. Hence
d(Amx, F(A)) -» 0 as m -* oo. Now, since F{A) is compact we can find a
Pm e F(A) such that d(Amx, F(A)) = d(Amx, pm). The sequence {pm}%=l will
have a convergent subsequence { /V }H-i converging top e F(A). Now

d(p, A""x) < d(p, pm) + d{pmi, A"»x)

= d(p, pn) + d{Am<x, F(A)) - 0 as i - oo.

Thus Am'x -»p as i -> oo and so p e SC(x) and hence 3f(x) is nonempty. If
£e«S?(;c), then there is a subsequence {Anix}°°-1 converging to £. Now
</(|, F(A)) = d(lim A"'x, F(A)) = lim d(An'x, F(A)) = 0 and as F(A) is closed
(being compact), £ e F(A). Thus £f(x) c F(A). Obviously £C(x) is a closed
subset of the compact set F(A) and hence is itself compact. Now we can proceed
as in proving Theorem 1 to establish the remaining conclusions.

COROLLARY 3. If Ak satisfies the conditions of Theorem 8, then the set Hfk(x) of
subsequential limit points of the sequence {Amk*x}™_1 is a nonempty, compact, and
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connected subset of F(Ak). The set Jf^x) of the subsequential limit points of
{Amx}™_1 is the union of the k closed and connected sets £Ck(A

Jx),j = 0,1,2,...,k
— 1. IfF(Ak) is at most countable, thenSC^x) consists of at most k points.

COROLLARY 4. The conclusions of Theorem 8 remain valid if condition (iii) is
replaced by

(iii)' there exists a monotonically decreasing sequence {/•„} of positive reals such
that d(An + lx, F(A)) < /•„ - rn+1, or

(iii)" there exists a sequence {sn} of positive reals converging to zero such that
d(A"x, F(A)) < v

Tarafdar [10] has extended some results of Diaz and Metcalf [2] to uniform
spaces. We shall show that the results of Tarafdar still hold when our condition
replaces his inequality. Our notations will conform to those of Thron [11].

Let (X, h) be a uniform space, h being the uniformity. The uniform topology
induced by h will be denoted by yh. A family { pa: a e / } of pseudometrics on X
is called an associated family for the uniformity h on X if the family { H(a, e)\a
G /, e > 0} where H(a, e) = {(x, y)\pa(x, y) < e] is a subbase for h. A family
{ pa\a G / } of pseudometrics on X is called an augmented associated family for h
if {pa\a e / } is an associated family for h and has the additional property that
given a, /3 e /, there is y e / such that py(x, y) > max(pa(x, y), p$(x, y)) for all
x, y G X. An associated family and an augmented associated family for h will be
denoted respectively by^(h) and&*(h).

We are now in a position to give our

THEOREM 9. Let (X, h) be a Hausdorff uniform space and&*{K) = {pja e / } .
Let A: X -» X be ̂ -continuous. Suppose

(i) A(X) is ^-compact,
(ii) A is (p-asymptotically regular where <f> is a 3~h X 3~h continuous function on

X X X -» RQ such that <p(x, y) = 0 if and only if x = y.
Then, for each x e X, the S~h-cluster set £C{x) is a nonempty S~h-closed and

^-connected subset of F(A). In the case JSf(x) is just one point then £Th-]hn A"x
exists and belongs to F(A). In the case^C(x) contains more than one point then it is
contained in the ̂ -boundary ofF(A).

PROOF. The sequence {A"x}™-1 being a net in A(X), which is compact, jSf(jc)
is nonempty. If y e SP(x), then there is a subnet {A"^x}JeJ of the net {A"x}™=1

such that A"J -* y in the ̂ -topology. Since A is J^-continuous, A1 + "JX -* Ay in
the$~h-topology. Hence (p(AnJx, A1+n*x) -» <p(y, Ay) as <p is^), X 3~h continuous.
Since A is <p-asymptotically regular, <p(y, Ay) = 0 and hence by condition (ii),
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y = Ay. Therefore Jif(x) c F(A). Obviously &(x) is closed. Now, we can pro-
ceed as in Tarafdar [10, Theorem 2.1] to prove that Sf{x) is .^-connected. The
other parts of the conclusion are to be established likewise.

Corresponding to Theorem 2.2 of Tarafdar [10] we have

THEOREM 10. Let (X, h) be a Hausdorff uniform space and let {pa\a e / } =
Jr*(A). Let A: X -» X be ̂ -continuous. Suppose

(i) F(A) is nonempty and compact,
(ii) there exists a S~h X &~h continuous function <p: X X X -* Ro such that for

y * AyMAy, F(A)) < <p(y, F(A)),
(iii) O(x, A) is compact.
Then JSf(jc) is a closed subset of F(A). IfSC(x) consists of more than one point,

then ^C(x) is contained in the ^-boundary of F(A).

The proof is omitted. A careful perusal of the proof of Theorem 1 shows that
no metric properties of the space have been used in proving that &(x) is a subset
of F(A). Therefore we have the following theorem for Hausdorff topological
spaces.

THEOREM 11. Let (X, 3~) be a Hausdorff topological space and A, a continuous
self-map. Suppose

(i) F(A) is nonempty and compact,
(ii) there eixsts a continuous function tp: X X X -» Ro such that for y # Ay,

<p(Ay, F(A)) < <p(y, F(A)).
Then^C(x), the set cluster points of{A"x}™=1 is a closed subset ofF(A). If^C(x)

consists of more than one point then it is contained in the boundary of F(A). If we
further assume that <p(x, y) = 0 // and only if x = y, then Jif(x) is at most a
singleton. IfJjf(x) is a singleton and O(x, A) is compact, then ]imn_ooA"x exists
and belongs to F(A).
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