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Abstract

Morphological characters are central to phylogenetic inference, especially for fossil taxa for
which genomic data are unavailable. While Bayesian methods have gained popularity in recent
years, they typically assume characters evolve independently, despite known correlations among
characters. Here, we assess the impact of character correlation and evolutionary rate heteroge-
neity on Bayesian phylogenetic inference using extensive simulations of binary characters
evolving under independent and correlated models. We find that Bayesian inference assuming
character independence accurately recovers tree topologies even when characters are strongly
correlated or evolve under heterogeneous rates. However, branch lengths or clock rates tend to
be underestimated, particularly under extreme rate heterogeneity. These biases are partially
corrected using models that integrate over character-state heterogeneity. Our results demon-
strate that Bayesian methods are robust to violations of character independence in topological
inference, supporting their continued use in morphological phylogenetics.

Non-technical Summary

Scientists oftenusemorphological traits to figure out how fossil species are related.Apopularmethod
to do this assumes each trait changes on its own, even though many traits can be linked. This study
used computer simulations to see how much this assumption affects the results. The researchers
found that even when traits are connected or change at different rates, the method still does a good
job figuring out the species tree. However, it can make mistakes in estimating how fast the traits
changed over time. Some improved models help fix these errors. Overall, the study shows that
current methods work well for figuring out relationships among species using morphological traits.

Introduction

Phylogenetic inference is essential for answering various questions in evolutionary biology.
Despite the tremendous amount of genomic data available, morphological characters remain
the primary or sole information to infer phylogenies of fossil taxa and to study deep-time
divergence (Lee and Palci 2015; Donoghue and Yang 2016). Discrete characters are the main
type of data and are traditionally analyzed under maximum parsimony. In recent years, model-
basedmethods, includingmaximum likelihood and Bayesian inference, have been shown to have
comparable or better performance in inferring phylogenies (Wright and Hillis 2014; O’Reilly
et al. 2016, 2018; Brown et al. 2017; Puttick et al. 2017, 2019; Smith 2019; Keating et al. 2020).
Among these methods, characters are treated as independent features. The simplest model for
discrete characters is theMkmodel (Lewis 2001), in which the rates of changes among the k states
are equal. The most frequently used Mkv model (with suffix “v”; Lewis 2001) is a variant that
accounts for the ascertainment bias of coding only variable characters.

Correlation among characters has long been recognized. One classical example is the tail-
presence and tail-color problem (Maddison 1993), because the two characters are logically
dependent. Several algorithmic solutions have been proposed to handle such cases, under either
parsimony- or model-based criteria (Brazeau et al. 2019; Goloboff et al. 2021; Hopkins and
St. John 2021; Tarasov 2023). Another example is that some characters are functionally or
developmentally dependent (Beaulieu and Donoghue 2013; Leslie et al. 2015; Billet and Bardin
2019). This study mainly deals with the latter but also covers the former if the inapplicable states
are governed by a hidden process (Tarasov 2021). In general, correlated discrete characters can be
modeled by aMarkov chain with rates among states as parameters (Pagel 1994; Pagel andMeade
2006). However, such a model is typically employed in phylogenetic comparative methods to
study the evolution of two or three characters given fixed trees (Pagel et al. 2004; Pagel andMeade
2006; Beaulieu and Donoghue 2013; Billet and Bardin 2019), but is rarely used for inference of
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phylogenetic trees, as the number of parameters grows so dramat-
ically with the number of characters and themodel quickly becomes
unidentifiable. Instead, all inference methods (parsimony, maxi-
mum likelihood, and Bayesian) typically assume all the characters
are independent (Felsenstein 1985a).

Simulation studies have shown that Bayesian inference assum-
ing character independence outperforms parsimony-based solu-
tions in the case of logical dependence (Simões et al. 2022).
However, no study so far has investigated how the Bayesianmethod
performs in the general case of character dependence. Previous
simulations used the simplestMkvmodel for inference (Wright and
Hillis 2014; O’Reilly et al. 2016, 2018; Puttick et al. 2017, 2019;
Smith 2019; Keating et al. 2020), thus rate heterogeneity in state
changes and across characters was not considered. Those studies
also focused on non-clock (unrooted) trees. Herein we perform
computer simulations to study the performance of Bayesian infer-
ence assuming character independence, with data simulated under
either independent or dependent evolution under various condi-
tions of evolutionary rate heterogeneity. We perform both non-
clock and tip-dating analyses, and in the latter case, fossil ages are
used and the results are dated (rooted) timetrees (Pyron 2011;
Ronquist et al. 2012a; Zhang et al. 2016).

Methods

Markov Models

In general, discrete character evolution can be modeled by a Mar-
kov chain with a Q-matrix specifying the rates of changes (Pagel
1994). We first describe the model for a single binary character,
then the models for a doublet and a triplet of correlated binary
characters. For simplicity, we do not further consider correlation of
four or more characters, or characters with more than two states.

For a binary character, the changes between states 0 and 1 are
determined by this instantaneous rate matrix

Q1 = λ
�π1 π1
π0 �π0

h i
,

and the transition probability matrix is

P tð Þ= π0 + π1e�λt π1�π1e�λt

π0�π0e�λt π1 + π0e�λt

h i
:

This model extends theMkmodel (Lewis [2001], in which π0 = π1 =
0.5), allowing the equilibrium state frequencies to vary (Ronquist
and Huelsenbeck 2003; Klopfstein et al. 2015; Wright et al. 2016)
and is a two-state variate of the F81model (Felsenstein 1981). It has
two free parameters (λ and π0). The average rate of change is 2λπ0π1.
Because λ and t are multiplied together in the transition probability
matrix, they are not identifiable without further assumptions about
the time and/or the rate.

For a doublet of binary characters, the general model for the four
state pairs, 00, 01, 10 and 11, is introduced with eight free param-
eters (Pagel 1994). Themodel is not necessarily time reversible, and
the Q-matrix may have complex eigenvalues and eigenvectors. For
mathematical convenience, we reparametrize the Q-matrix as

Q2 =

� aπ2 bπ3 0

aπ1 � 0 cπ4
bπ1 0 � dπ4
0 cπ2 dπ3 �

2
6664

3
7775=

� a b 0

a � 0 c

b 0 � d

0 c d �

2
6664

3
7775

π1 0 0 0

0 π2 0 0

0 0 π3 0

0 0 0 π4

2
6664

3
7775,

with {a, b, c, d} as the exchangeability rates and π = {π1, π2, π3, π4} as
the equilibrium state frequencies for the four state pairs. Themodel

is then time-reversible with seven free parameters. This can be
viewed as a special case of the GTR model (Tavaré 1986; Yang
1994a). Setting q12 = q34, q13 = q24, q21 = q43, and q31 = q42 results
in independent evolution with four parameters (π is derived from
{a, b, c, d}), and will be equivalent to the Mk model by further
constraining a = b = c = d (as few as one free parameter).

Similarly, we can use this rate matrix,

Q3 =

� a b 0 i 0 0 0

a � 0 c 0 j 0 0

b 0 � d 0 0 k 0

0 c d � 0 0 0 l

i 0 0 0 � e f 0

0 j 0 0 e � 0 g

0 0 k 0 f 0 � h

0 0 0 l 0 g h �

2
6666666666664

3
7777777777775

π1 0 0 0 0 0 0 0

0 π2 0 0 0 0 0 0

0 0 π3 0 0 0 0 0

0 0 0 π4 0 0 0 0

0 0 0 0 π5 0 0 0

0 0 0 0 0 π6 0 0

0 0 0 0 0 0 π7 0

0 0 0 0 0 0 0 π8

2
6666666666664

3
7777777777775

,

for a triplet of binary characters with eight states, 000, 001, 010, 011,
100, 101, 110 and 111. Simultaneous changes of two or three states
are negligible, so that their rates are zero. The model has 19 free
parameters. The average rate is�∑iπiqii, where qii is the i

th diagonal
element in the Q-matrix.

Simulation Procedure

We first generated variable timetrees from a birth–death process
using TreeSim in R (Stadler 2011) with a birth rate of 5.0 and a
death rate of 4.0, conditioned on a root age of 1.0. The ages are on a
relative scale and can be arbitrarily rescaled depending on the
chosen time unit. From the trees simulated, we kept 100 trees with
no more than 50 tips to make sure the data size is manageable. We
simply treated the extinct tips as fossils, without further sampling
fossils along the tree. The distribution of tree lengths and the
numbers of extant and extinct tips are shown in Figure 1.

For each tree, we then simulated evolution of discrete morpho-
logical characters along the tree under various models and settings
(Table 1). The general procedure was generating the exponential
waiting times and using the jump chain given the Q-matrix (Yang
2014: section 12.5.4). This is particularly useful when the transition
probability matrix is hard to derive. The starting state at the root
was randomly drawn from the equilibrium frequencies (π). Only
variable characters were kept at the tips referring to empirical
practices.

For independent binary characters, the simplest model is fixing
π0 = π1 = 0.5 (referred to as M2v herein) for all characters, repre-
senting homogeneous evolution. To introduce heterogeneity in
character states, we drew π0 from a uniform distribution indepen-
dently for each character and let π1 = 1 � π0 (the F81-alike
extension, referred to as F2v herein). We rescaled Q1 so that the
average rate per character (i.e., the base clock rate) is 1.0, such that
the branch lengths in the tree are measured by distance. To further
introduce heterogeneity along time, each branch length for each
character was multiplied by a relative rate r independently drawn
from a lognormal distribution with mean 1.0 and variance 4.0,
representing themost heterogeneous case (referred as “no common
mechanism” [NCM]; Tuffley and Steel 1997). We recorded a
moderate size of 200 variable characters in the data matrix in each
replicate of the three settings.

We used the ratematrixQ2 to simulate pairs of binary characters
(referred as G4v herein).We drew {a, b, c, d} and {π1, π2, π3, π4} from
a symmetric Dirichlet distribution with parameter 10 (representing
slight correlation) or 1.0 (severe correlation) for each doublet. We
rescaled Q2 to have an average rate of 2.0 (per character rate being
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1.0). To further have heterogeneous evolutionary rates, each branch
length for each doublet is multiplied by an independent relative rate
r as we did previously. We recorded 200 characters (i.e., 100 dou-
blets) and ensured that all characters were variable in the data
matrix.

Similarly, with three settings, we rescaled Q3 to have an average
rate of 3.0 (per character rate being 1.0), and simulated triplets of
binary characters (referred as G8v). We recorded 201 variable
binary characters (i.e., 67 triplets) but discarded the last character,
so that we still had 200 characters in the data matrix. Considering
that many empirical datasets are much smaller, we repeated the
simulations under the same procedure with 50 variable correlated
characters.

Phylogenetic Inference

Each data matrix was analyzed using the Bayesian phylogenetic
inference software MrBayes 3.2.7 (Ronquist et al. 2012b). All char-
acters were treated as independent, no matter how they were
simulated. They were also treated as a single partition, meaning
the branch lengths are shared by all characters (referred to as
“common mechanism”; Tuffley and Steel 1997). This setting
reflects the practice in most empirical analyses.

MrBayes supports both the M2v and F2v models. The M2v
model has no free parameter other than the tree topology and
branch lengths, while the F2v model has an extra parameter, π0,
which is averaged using a discretized symmetric beta prior with
parameter α (Wright et al. 2016). We used an exponential hyper-
prior with mean 1.0 (Exp(1)) for α by default. For datasets simu-
lated under NCM, we partially accommodated rate variation
among characters using a discrete gamma distribution (Yang
1994b) (F2v+G; Table 1).

The non-clock analyses used the morphological data only and
the branch lengths were measured by distance. As we simulated
timetrees with both extant and extinct tips, we further incorporated
the tip ages in another round of tip-dating analyses, so that we could
disentangle the times and clock rates. The tip ages were assigned
their true values assuming they are perfectly known. We specified
diffuse Exp(1) prior for the root age and mean clock rate, used
constant-rate fossilized birth–death prior (Stadler 2010) for the
timetree and independent lognormal relaxed clock (Drummond
et al. 2006) for the evolutionary rate variation, following common
practices.

For each inference, two independentMarkov chainMonte Carlo
runs were executed each for 8 million generations with sampling
frequency of 200. The beginning 35% of samples were discarded as
burn-in, and the rest of the samples from the two runs were
combined after checking consistency. We made sure the average

Figure 1. The distribution of tree length (A) and the numbers of extant and extinct tips (B) of the simulated trees.

Table 1. Models and settings used in the simulations and inferences. See
“Methods” for the explanations of the symbols.

Simulation Inference

M2v: r = 1.0, π0 = π1 = 0.5 M2v or F2v

F2v: r = 1.0, {π0, π1} ~ SymDir(α = 1) M2v or F2v

F2v: r ~ LNorm(m = 1, v = 4),
{π0, π1} ~ SymDir(1)

M2v or F2v+G

G4v: r = 1.0, {a,b,c,d} and π ~ SymDir(α = 10) M2v or F2v

G4v: r = 1.0, {a,b,c,d} and π ~ SymDir(α = 1) M2v or F2v

G4v: r ~ LNorm(m = 1, v = 4),
{a,b,c,d} and π ~ SymDir(α = 1)

M2v or F2v+G

G8v: r = 1.0, {a,…,l} and π ~ SymDir(α = 10) M2v or F2v

G8v: r = 1.0, {a,…,l} and π ~ SymDir(α = 1) M2v or F2v

G8v: r ~ LNorm(m = 1, v = 4),
{a,…,l} and π ~ SymDir(α = 1)

M2v or F2v+G

Simulations of correlated discrete characters 3
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standard deviation of split frequencies was below 0.02, and the
effective sample sizes were all greater than 100. In rare cases, we had
to resume the analysis or double the chain length until these criteria
were satisfied. The posterior tree samples were summarized as a
50% majority-rule consensus tree.

Missing Data

Themain procedure involves nomissing data.We also repeated the
analyses with 50% missing states in the extinct taxa and 10%
missing in the extant taxa, mimicking the observation in empirical
datasets. Specifically, we replaced each state by a question mark in
the data matrix with the corresponding probability (i.e., 0.1 for
extant and 0.5 for extinct taxa). Such replacement was performed
randomly on the generated binary characters rather than on the
doublets or triplets.

Tree Distance Metrics

We employed both the Quartet (Estabrook et al. 1985) and Mutual
Clustering Information (MCI; Smith 2020) metrics for comparing
the inferred tree with the true tree generating the data. The MCI
metric is a generalized Robinson-Foulds (RF) distance metric
(Robinson and Foulds 1981) that is information based and less
saturated; thus it is recommended over the RFmetric (Smith 2020).
The Quartet metric also has several advantages over the RF metric
and is also recommended (Smith 2019).

Both distance metrics conflate accuracy and precision (Keating
et al. 2020). Thus, we also calculated the Strict Joint Assertion (SJA,
which is the number of quartets that are resolved identically in both
trees over that resolved either identically or differently in both trees;
Estabrook et al. 1985) as a measure of accuracy, and the percentage
of resolved internal branches (the number of internal branches in
the estimated consensus tree over that in the true tree) as precision.

The quartet-related metrics are calculated using the package
Quartet in R (Smith 2019) and the MCI metric is using TreeDist
in R (Smith 2020).

Results

We aim to investigate the performance of Bayesian phylogenetic
inference using theM2v and F2vmodels by comparing the inferred
tree with the true tree simulating the data. The Quartet and MCI
metrics measure the topological differences, and the tree lengths in
non-clock analyses and tree heights in tip-dating analyses represent
the branch-length estimates.

We first look at the results from data without missing states. The
first two scenarios represent rate homogeneous evolution, and the
models used in the inference can match that in the simulation, in
which M2v is a special case of F2v. They are the best-case scenarios
and act as a baseline. The results do show that the topologies and
branch lengths are inferred with good accuracy (Figs. 2A–D, 3A–D,
cases 1, 2). For the following four scenarios, the rates in the Q-
matrix are quite similar, as they were generated from a Dirichlet
distribution with parameter 10. As a result, the performance of the
Bayesian inference is almost the same as when there is no rate
variation (Figs. 2A–D, 3A–D, cases 3–6).

The hardest situation appears to be when the data were simu-
lated under F2v and each character has its own stationary frequen-
cies (π0 and π1). The M2v model certainly does not account for
this, resulting in larger tree distances (Fig. 2A–D, case 7) and
underestimated tree lengths (Fig. 3A, case 7). In the tip-dating

analyses, the tree height estimates are barely affected (Fig. 3B, case
7), but the clock rate is underestimated (Fig. 4A, case 7). The
inference model of F2v is supposed to match the simulation con-
dition; however, we did not estimate individual frequencies for each
character due to identifiability issues. Instead, we averaged π0 (and
π1 = 1� π0) using a discretized symmetric beta distribution (Wright
et al. 2016). This strategy can correct the bias of tree-length or
clock-rate estimates (Figs. 3A, 4A, case 8), but results in similar
tree distances as using the M2v model (Fig. 2A–D, case 8). Having a
further look at the accuracy (SJA) and precision (tree resolution)
metrics, we find that the larger tree distances under M2v are largely
contributed by decreased accuracy (Supplementary Figs. S1, S2,
case 1 vs. case 7), whereas those under F2v are largely contributed
by decreased precision (Supplementary Figs. S1, S2, case 2 vs.
case 8).

Surprisingly, severe correlation in each pair or triplet of
characters does not increase but instead decreases the tree
distances (Fig. 2A–D, cases 9–12), although they still present
higher distances than the homogeneous ones (Fig. 2A–D, cases
1–6). This results from both slightly increased accuracy and
precision (Supplementary Figs. S1, S2, cases 7–12), likely
because the rate heterogeneity for each character in these set-
tings is slightly lower than that under independent evolution,
which is reflected in the estimates of the shape parameter of the
symmetric beta distribution (Supplementary Material, log
files). Having more correlated characters (three vs. two) makes
almost no difference in how the inference results are affected.
Using the F2v model in inference cannot match the simulation
models, but it is still helpful in slightly correcting the bias of
underestimating tree length (Fig. 3A, cases 9–12) or clock rate
(Fig. 4A, cases 9–12).

The most heterogeneous scenarios involve rate heterogeneity
both among characters and across branches (NCM). However,
using the simplestM2vmodel as well as the F2vmodel can achieve
comparable performance as when there is no rate heterogeneity for
inference of tree topology (Fig. 2A–D, cases 13–18, Supplementary
Figs. S1, S2, cases 13–18). Evolutionary rate heterogeneity across
branches appears to retain strong phylogenetic signal in the data.
On the other hand, branch-length or clock-rate estimates are
more biased, with M2v showing the most severe underestimation
and narrowest credibility interval (CI) width (Figs. 3A, 4A, cases
13–18).

Empirical data typically containmanymissing states.When 50%
of states in the fossil taxa and 10% in the extant taxa are missing on
average, we observe similar patterns as when there is no missing
state, with decreased precision but similar accuracy (Figs. 2E–H,
3E–H, 4B, D, Supplementary Figs. S3, S4). In other words, missing
data mostly result in more unresolved nodes in the trees and larger
CIs of the tree lengths, but for the resolved part of the tree, the
accuracy is similar to that when there is no missing data. Similar
patterns are also observed when the number of characters is much
smaller (50 vs. 200), with largely decreased precision and slightly
decreased accuracy (Supplementary Fig. S5).

Discussion

The Bayesian method has been demonstrated to have good accu-
racy when data were generated under either common or no com-
mon mechanisms (Wright and Hillis 2014; O’Reilly et al. 2016,
2018; Puttick et al. 2017, 2019; Smith 2019; Keating et al. 2020). We
moved one step further and introduced character correlation in the
simulations. Both the non-clock and tip-dating analyses suggest
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that Bayesian inference assuming character independence does not
mislead the inference of tree topology when character correlation
and rate heterogeneity are present. This is quite reassuring, as
correlation and NCM have been argued to be quite common in
morphological characters, and model-based methods are blamed
for not accounting for these (Goloboff et al. 2018, 2019).

However, when the interest is the branch lengths, they can be
biased toward underestimation when evolutionary rate variation is
high among characters and along branches. Such variation can be
modeled by general Markov processes in theory, but they are
typically not practical in inference. Unlike molecular sequences
where the same nucleotide across sites has the same biological
meaning, morphological characters coded as 0, for example, have

different meanings among characters; thus using one parameter for
all the 0s would be pointless, whereas unlinking all of them would
result in too many parameters. The best strategy so far has been
using the F2v model, in which the state frequencies are averaged
analogous to averaging the site rates (Wright et al. 2016). According
to our simulation results, it is recommended over theM2vmodel in
all the scenarios we have tested. However, the F2v model only
accounts for rate variation among character states. To further
account for rate variation along branches, we could subdivide the
data into multiple partitions (e.g., according to the anatomical
regions) and infer independent evolutionary rates for each partition
(e.g., using unlinked clock models; Lee 2016; Zhang and Wang
2019). Bear in mind, though, we should keep enough (probably at

Figure 2. Tree distance metrics (Quartet and Mutual Clustering Information [MCI]) comparing the inferred tree with the true tree generating the data. Each violin plot contains
100 replicates. The left four panels show the results of non-clock analyses (A, C, E, G), while the right four panels show the results of tip-dating analyses (B, D, F, H). Panels labeled
“w/ missing” (E–H) indicate scenarios with missing data. The numbers on the x-axis correspond to the following experiments (simulation model vs. inference model): 1, M2v–vs–
M2v; 2, M2v–vs–F2v; 3, G4v(α = 10)–vs–M2v; 4, G4v(α = 10)–vs–F2v; 5, G8v(α = 10)–vs–M2v; 6, G8v(α = 10)–vs–F2v; 7, F2v(α = 1)–vs–M2v; 8, F2v(α = 1)–vs–F2v; 9, G4v(α = 1)–vs–M2v;
10, G4v(α = 1)–vs–F2v; 11, G8v(α = 1)–vs–M2v; 12, G8v(α = 1)–vs–F2v; 13, F2v(α = 1, v = 4)–vs–M2v; 14, F2v(α = 1, v = 4)–vs–F2v; 15, G4v(α = 1, v = 4)–vs–M2v; 16, G4v(α = 1, v = 4)–vs–F2v;
17, G8v(α = 1, v = 4)–vs–M2v; 18, G8v(α = 1, v = 4)–vs–F2v.
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least dozens of) characters in each partition to avoid overparame-
terization, especially when the data contain a large portion of
missing states. Alternatively, a new method has been developed
to account for rate variation both across characters and along
branches by switching the rates among different rate regimes
(Khakurel and Höhna 2025).

In the tip-dating analyses, we fixed the fossil ages to their true
values. Hence the inferred tree heights (root ages) are reliable in all
different conditions. This implies that incorporating accurate fossil
information is crucial for dating divergence times, even when the
morphological evolutionary model is mis-specified (Klopfstein
et al. 2019). In practice, however, uncertainties in fossil ages and
prior for the timetree (root age in particular) are likely to
decrease the accuracy (Barido-Sottani et al. 2019; Luo et al. 2019).

Depending on the data andmodels, the situation can become rather
complicated (Simões et al. 2020; May et al. 2021). Optimistically,
when the timetree is presumably reliable, evolutionary rate esti-
mates could be refined using subsequent comparative methods for
the characters of interest under more complex models (Pennell
et al. 2014; Revell 2024).

We only considered correlated discrete morphological charac-
ters in this study. It is worth noting that there is a large body of
literature for correlated continuous traits. The evolution of the
traits is typically modeled by a Brownian motion (BM) (Felsenstein
1973, 1985b; Freckleton 2012) or an Ornstein–Uhlenbeck (OU)
process (Uhlenbeck and Ornstein 1930; Felsenstein 1988; Hansen
1997; Butler and King 2004), and trait correlations are described by
the variance–covariance matrix in the model. Relative to this, the

Figure 3. Relative bias (posterior meanminus the true value, then divided by the true value) and relative width of credibility interval (CI) (95% CI width divided by the true value) for
each of the following experiments (simulationmodel vs. inferencemodel): 1, M2v–vs–M2v; 2, M2v–vs–F2v; 3, G4v(α = 10)–vs–M2v; 4, G4v(α = 10)–vs–F2v; 5, G8v(α = 10)–vs–M2v; 6, G8v
(α = 10)–vs–F2v; 7, F2v(α = 1)–vs–M2v; 8, F2v(α = 1)–vs–F2v; 9, G4v(α = 1)–vs–M2v; 10, G4v(α = 1)–vs–F2v; 11, G8v(α = 1)–vs–M2v; 12, G8v(α = 1)–vs–F2v; 13, F2v(α = 1, v = 4)–vs–M2v;
14, F2v(α = 1, v = 4)–vs–F2v; 15, G4v(α = 1, v = 4)–vs–M2v; 16, G4v(α = 1, v = 4)–vs–F2v; 17, G8v(α = 1, v = 4)–vs–M2v; 18, G8v(α = 1, v = 4)–vs–F2v. Each violin plot contains 100 replicates.
The left four panels show the tree lengths from non-clock analyses (A, C, E, G), while the right four panels show the tree heights from tip-dating analyses (B, D, F, H). Panels labeled
“w/ missing” (E–H) indicate scenarios with missing data.
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threshold model (Wright 1934; Felsenstein 2005) is a promising
alternative for correlated discrete characters, in which the
observed discrete states depend on whether the underlying con-
tinuous trait (called liability) is above a threshold value. Although
the BM and OU models have been well studied mathematically,
practical implementations for phylogenetic inference are sparse
(Álvarez-Carretero et al. 2019; Hassler et al. 2022; Zhang et al.
2023). The main reason is that these models are parameter-rich,
and developing efficient computational methods is technically
challenging. Thus, it appears to be an important area for further
improvement.

Conclusion

Our results demonstrate that Bayesian inference of phylogenetic
trees is remarkably robust to violations of the character indepen-
dence assumption. Topological inference remains accurate across a
range of realistic evolutionary scenarios, including strong correla-
tion and substantial evolutionary rate heterogeneity among mor-
phological characters. However, our analyses also reveal that
branch lengths or clock rates may be systematically underestimated
under simpler models when rate variation is present. To mitigate
this, we recommend using models that average over character-state
frequencies (e.g., F2v) and, when feasible, incorporating rate vari-
ation across partitions.

While this study focuses on discrete morphological characters,
future work should extend to continuous trait and threshold
models that more directly account for trait correlations. Overall,
our findings support the continued and expanded use of Bayesian
methods inmorphological phylogenetics and call formethodological
innovations to improve branch-length estimation under complex
evolutionary processes.
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