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THE TOPOLOGICAL DEGREE OF A-PROPER MAPPING
IN THE MENGER PN-SPACE (I)

HUANG XIAOQIN, WANG MIANSEN AND ZHU CHUANXI

In this paper, we introduce the concept of A-proper topological degree in Menger
PN-space and study some of its properties. Utilising its properties, we obtain a new
fixed point theorem.

1. INTRODUCTION

In 1940s, Menger advanced the concept of probabilistic metric space. In his theory,
the distance between two points was represented by a distribution function. Obviously,
compared with the structure of metric space, it further conformed to reality. Moreover,
the ordinary metric space can be looked upon as its special cases. So, the study of
probabilistic metric space has important practical significance. As everyone knows, the
A-proper topological degree theory is a forceful tool in the research of operator theory
in normed spaces. Then, how to establish and study the A-proper topological degree in
probabilistic metric space? In this paper, we introduce the concept of A-proper topologi-
cal degree in Menger PN- space and study some of its properties. Utilising its properties,
we obtain a new fixed point theorem.

For the sake of convenience, we recall some definitions and properties of PN-space.

DEFINITION 1: (Chang [1].) A probabilistic normed space (shortly a PN-space) is
an ordered pair (E,F), where E is a real linear space, F is a mapping of E into D (D is
the set of all distribution functions. We shall denote the distribution function F(x) by
Fx, Fx(i) denotes the value Fx for t € R) satisfying the following conditions:

(PN-2) Fx(t) = H(t) for all t € R if and only if x = 0, where H(t)=0 when t s$ 0,

and H(t)=l when t > 0;

(PN-3) For all a ± 0, Fax(t) = Fx(t/\a\);

(PN-4) For any x,y 6 E and tu t2 e R, if Fx(ti) = 1 and Fy{t2) - 1, then we have
Fx+y{h+t2) = l.
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LEMMA 1 . (Chang [1].) Let (E,F,A) be a Menger PN-space with a continuous
t-norm A, then xn C E is said to be convergent to x € E if for any t > 0, we have
lim FXn-x(t) = H(t).

n—foo

Let (E, F, A) be a Menger PN-space with a continuous t-norm A, then (E, F, A)
with the induced family of neighbourhoods

{Uy(e,\) :yeE,e>0,\>0} = {y + U0{e,\) : y 6 E,e > 0, A > 0}

is a Hausdorff linear topological space.

Sherwood has proved that every Menger space with a continuous t-norm must have
a completion (See Chang [1].) Hence, without generalisation, for Menger space with a
continuous t-norm, we always think that the space is complete.

We can refer to Chang [1, 2], Guo [3] and Petryshyn[4] for the properties of PN-space
and A-proper mapping.

2. MAIN RESULTS

DEFINITION 2: (E, F, A) is said to be a projected complete Menger PN-space, where
A is a continuous t-norm, if the following conditions are satisfied:

(i) Xn is a sequence of finite dimensional subspace of E and Qn : E -* Xn is

a linear bounded projection operator satisfying Qn{E) = Xn, Q^ = Qn;

(ii) For any x € E, we have lim FQnX-x(t) = H{t), Vt > 0;

(iii) (E, F, A) is a Menger PN-space. In here, F = {Xn, Qn} is called a proba-
bilistic metric approximation scheme of (E, F, A).

DEFINITION 3: Let (E, F, A) be a projected complete Menger PN-space; A be a

continuous t-norm; Q be a bounded open set of E and / : f2 —> E be a continuous

bounded mapping. Qn = Q, D Xn (n = 1,2,...). / i s said to be an A-proper mapping

with respect to the probabilistic metric approximation scheme F if for any sequence
xnk € fin* satisfying Jl2

rn
=-Fgnt/(i»t)-Qn)!(y)(0= # W . Vt > 0 (where y € E), there exists

a convergent subsequence {xnt.} of {xnk}, such that xnk. —¥ x € fi and f(x) = y. When

F is fixed, / is said to be A-proper.

Throughout this paper, we assume that F is fixed.

DEFINITION 4: Let (E,F,A) be a projected complete Menger PN-space; A be a
continuous t-norm; Q be a bounded open set of E; and / : fi —> E be an A-proper
mapping, p 6 E\f(dSl). Z denotes the set of integers. Z* = ZU{-oo, +oo}. Generalised
topological degree Deg(/, fi,p) is defined to be:

Deg(/, f2,p) = I z € Z* | there exists a subsequence {nk} of {n}

such that degR{QnJ,nnt,Qnk(p))
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The degree degR(Qnf,Qn,Qn(p)) which is used in the above definition is the topo-
logical degree of the continuous mapping Qnf : ftn — t Xn in a finite dimensional space.
It is easy to see that when n is sufficiently large, we have Qn(p) £ Qnf{dSln) (otherwise,
there exists an xn € 9ftn C 9ft such that Qnf(xn) =Qn(p), then we have

n l imFg n / ( l n ) _ Q n ( p ) ( t )= i? ( t ) .

Because / is an A-proper mapping, by the definition, there exists a subsequence {xUk}
of {xn} satisfying xnk ->• x € 9ft and f(x) — p. This contradicts p £ / (9f t ) ) . Thus,
when n is sufficiently large, degR(Qn/ , ftn,Qn(p)) is significant. Therefore Deg(/,fi,p)
is a nonempty subset of Z*.

THEOREM 1 . The generalised topological degree Deg(/, ft, p) has the following

properties:

(i) Deg(/, ft,p) = 1, Vp 6 ft, where / is an identity operator;

(ii) If Deg(/, ft,p) 7̂  {0}, then the equation f(x) = p has a solution in ft;

(iii) IfL : [0,1] xft —• £ is continuous and for any fixed t € [0,1], L(t,.) : SI-t E

is an A-proper mapping satisfying

lim inf Fut,x)-L{t0,x)(e) = H(e), V£ > 0,
t-no xgn

and p $ ft((9ft), 0 < t ^ 1, where /it(x) = L(t, x), then we have

Deg(ftt,ft,p) = Deg(/io,ft,p), V O ^ t ^ l ;

(iv) If fto is an open subset ofQ and p g /(ft\ft0) , t ien we have Deg(/,fi,p)

= Deg(/,fto,p);

(v) If ft(i) and ft(2) are two disjoint open subsets of SI and

p£/( f t \ ( f t ( 1 ) Uf t ( 2 ) ) ) ,

then
Deg(/,ft,p) C Deg(/,ft(1),p) + Deg(/,ft(2),p).

If either Deg(/,ft(i),p) or Deg(/, ft(2),p) is single-valued, then

Deg(/,ft,p) = Deg(/,ft(1),p) + Deg(/,ft(2))p);

(vi) Ifp i /(9ft), then Deg(/, ft,p) = Deg(/ - p, ft, ̂ );

(vii) Ifp varies on every connected component of E\ /(9ft), then Deg(/, Q,p)
is a constant.
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PROOF: (i) Because

Deg(/, fi,p) = | z € Z* | there exists a subsequence {nt}of {n}

such that degR(QnJ,£lnk,Qnk{p)) —>

and degR(Qnjt/,nnt, Qnk(p)) = 1, Vp € fint, then we have Deg(/,n,p) = 1, Vp G fi.
(ii) Because Deg(/, fi,p) ^ {0}, there must exist a subsequence {nk} of { n} such

that degR(Qnkf,Qnk,Qnk(p)) ^ 0. Hence, there exists an {xnk} G fint c fi such that
QnJ{xnk) = Qnk(p) (k = 1,2,...), and Urn Fgnt/(lnjk)_Qnv(p)(<) = tf (t), V* > 0. By the
A-proper property of / , there exists the convergent subsequence {xnk.} of {xnk} satisfying
xnic. - » i o 6 ! ) and f(x0) = p. By the definition of Deg(/, fi,p), we have p £ f(dQ).
Hence x0 € Q. Hence f(x) = p has a solution in Q.

(iii) For any t0 € [0,1], we prove that there exists a So > 0 such that

Qn(p)$Qnha(dnn), Vs€N(to,6o).

Otherwise, for any <5X > 62 > • • • > Sk > • • • ~£ 0, there exists an snit 6 N(t0, <5fc) such that
Qnk(p) 6 QnkhSnk(dQnk) (fc = 1,2,...)- Therefore there exists an xnk G dQnk C dfi such
that Qnk{p) = QnkhSnk(xnk). So

lim Ve > 0

Hence

fc''to(I»*)-««*''-nt («»») ( 2 ) ' FQnkh,nk{Xnk)-Qnk{p) ( 2 ) J

Because lim miFL{tjX)^L{t<>tX)(e) = #(<•) and inf_FL(t,I)_L(to,I)(e) < Fz,(e,l)_x,{to>l)(e),
t-»-to xen _ xeii

we have lim FL^)-L(t0,x)(s) = H(e), V i e f i , e > 0 . Hence ht{xnk) -+ h^x^) (t -»• «O).
t—•to

By the continuity of Qnjt, we have Qnkht{xnk) -t Qnkhto(znk) (t -»• to)- Because sn t

G N(to,Sk), we have sn t ->• t0 (k ->• 00). Hence QnkhSnk(xnk) -> Qnkhto{xnk) {k -+ 00),
dand

Therefore

= H(e)
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Thus lin^Fon^x^-Q^wie) = H(e), Ve > 0. By the A-proper property of h^,

there exists a convergent subsequence {xnit.} of {xnk} satisfying xnk. —> i 0 6 dCl and
hto(xo) = P- It contradicts p ^ /^(Sfl) . Hence Qn(p) ^ Qn/i«(9nn). By the homotopy
invaxiance property of topological degree in finite dimensional space, we have

degR(Qnht,Sln,Qn(p)) = degR(Qnhta,nn,Qn(p)), Vn > N(t).

So Deg(/it,fi,p) = Deg(/ito,n,p), Vt e N(to,6o). Hence we prove that for any t0 G [0,1],
there exists a neighbourhood N(to,So), when t € iV(to,<5o), DegC^ti^jP) is a constant.
By the arbitrariness of t0, we have Deg(/it,fl,p) = Deg(/io, fi,p), V* € [0,1].

(iv) Let n{n] = fi0 n Xn. There must exist a AT > 0 satisfying Qn(p) <£ Qn/(ftn \
nJ,0)),Vn > N. Otherwise, there exist a subsequence {n*} of {n} and an xnk e n n t \
nSJ C H \ n o such that QnJ{xnt) = Q n » , (* = 1,2,...), hence Um F0.t / ( l l< ik )_Q.l(p)

(e) = i/(e). Because / is an A-proper mapping, then we have xnk. -+ x0 and / ( io) =p .
Because fi \ Qo is a closed set, we have x0 € fi \ Qo- It contradicts p $ /(fl \ Qo). Hence
Qn(p) ^ Qnf(Qn \ fin )• By the properties of topological degree in finite dimensional
space, we have

degR(Qnf,nn,Qn(p)) =deg f i (Q n / , f iW,Q n (p) ) , V n > AT.

Hence
,p) = Deg(/,fio,p)-

(v) Let nj,l) = fyi) n A"n and flj,2) = fi(2) n X n , then Q,{n] and fij,2' are two disjoint
open subsets of Qn — fi n Xn. In the following, we prove that when n is sufficiently
large, Qn{p) £ <?„/(«„ \ (fij,1' U Q.^)). Otherwise, there exist a subsequence {nk}

of {n} and an {x n j € Qnk \ (fl^ U nJJ) c H \ (n(1) U n(2)) such that Qnkf{xnk)
= Qnk(p){k = 1,2,...). Hence ^lhn FQnkf{Xnh)-Qnh{p)(e) = H(e), Ve > 0. Because /
is an A-proper mapping, then we have xnk. -)• i 0 and / (x 0 ) = p. Because fi \ (fi(i)
U f2(2)) is a closed set, we have x0 € Cl \ (f2(i) U 0(2))- This contradicts p £ /(f2 \ (fi(i)
U n( 2 ) ) ) . Hence Qn(p) i Qnf{Tln \ (n£] U fi{,2))), Vn > iV. Hence deg«(Q n / , nB> Qn(p))

For any z € Deg(/, fi,p), there exists a subsequence {n*} of {n} such that

Obviously, there exists a subsequence {n^} of {n^} such that

degR(Qnt,./,fl^,<3nti.(p)) -> «i € Deg(/,n( 1 ) ,p).

There exists a subsequence {nki.} of {nAi} such that

R{Qnki. f,n« ,Qntj. (p)) -> Z2 e Deg(/,n(2))p).
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Hence z = z\ + zz € Deg(/, ft(i),p) + Deg(/, ft(2),p). By the arbitrariness of z, we have
Deg(/,ft,p) C Deg(/,ft(1),p) + Deg(/,ft(2),p).

On the other hand, if either Deg(/,0(1),p) or Deg(/,ft(2),p) is single-valued, for
example, Deg(/,ft(i),p) = {a}, then we have

degR(Qnf, n « , Qn(p)) -> a (n -> oo).

If z € Deg(/, ft(i),p) + Deg(/, ft(2),p), then we have z = a + z2 and the subsequence {rij}
of {n} such that

deg«(Qn,/,nW,Q»,(p)) - • zi, (j -> oo).

Hence
degH(Qn,/, ftn,., Qn> (p)) -»• a + z2 = z,

then z e Deg(/, ft,p), and

Deg(/,n(i),p) + Deg(/,n(2),p) C Deg(/,n,p).

So

Deg(/,n(1) lp) + Deg(/,n(3),p) = Deg(/,n,p).

(vi) Deg(/, fi,p) = \z € Z*| there exists the subsequence {n*} of {n} such that

degR(Qnt/,^nfc,<3ni(p)) -> zj, Deg(/-p,Q,0) = | z € Z*| there exists the subsequence

{nk} of {n} such that degR(Qnt(f-p),Qnk,Qnic(0)) -¥ z\. By the property of topological
degree in finite dimensional space and Qnit is continuous and linear, we have

degR(Qnk (f-p), ftnt, Qnk (0)) = degR(Qnk f - Qnk (p), Qnt, 6)

= degR(QnJ,nnk,Qnk(p)).

Hence Deg(/,n,p) = Deg(/ -p,tl,O).

(vii) We assume that V is a connected region of E \ J(dQ.) and p € V. Then there
must exist a neighbourhood u(e0, Ao) of 9 such that (p + u(e0, Ao)) D /(3ft) = 0. We take
q € (p + u(£o) Ao)) and denote /it(i) = f{x) — t(q — p),t£ [0,1], x 6 ft. Obviously, /i( is
continuous. If there exist t0 S [0,1] and x0 € df2 such that f(x0) — to(q-p) = p, then we
have Ff(xo)-P(eo) = Fto(,_p)(eo) > 1 - Ao. This contradicts p ^ /(9ft). Hence p £ /it(9ft),
Vt € [0,1]. If for any subsequence {xn} satisfying lim FQnU{XTi).t{q.p)).Qn{w)(£) = H{e),

n—>oo

that is, lim •pQn/(In)_Qn(t(,_p)+u,)(£) = i/(e), then by the A-proper property of / , there
n—•oo

exists a subsequence {xnk} of {xn} such that xnk —> x0 and f(xQ) = t(q - p) + w. Hence
f(x0) — t(q — p) = w, and ht is an A-proper mapping. Because

lim inf Fi(M)_i,(t0,x) (e) = lira inf F/(l)_t(,_p)_(/(l)_to(,_p))(e)

-P(to-0(«-P)(£)

H(e), Ve>0,
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by Theorem 1 (iii), we have

Deg(/,n,j>) = Deg(/ - (q - p ) ,n ,p ) = Deg(/ - q,Q,9) = Deg(/ ,f i ,g).

This implies that the mapping V : p -> Deg(/, fi,p) is a continuous mapping on V.
Because V is connected, then ^{V) is a connected set in R. Since * is an integer-valued
function, then Deg(/, fi,p) is the same when p € V. D

3. A P P L I C A T I O N

THEOREM 2 . Let ( £ , F, A) be a projected complete Menger PN-space, A be a
continuous t-norm, and f2 be a bounded open set of E, 9 (E fi, and .A : Q, —• £ be
a continuous bounded mapping. For any A € [0,1], I — \A is an A-proper mapping.
Moreover A satisfes the following condition:

(1) FAX® > Fx(t), Vx€dn, t>0

then A must have a fixed point in fi.

P R O O F : By condition (1), A does not have a fixed point on dCl, that is, Ax ^ x,
Vx € d£l. Let hs{x) = x — sAx, Vs € [0,1], Vx € il. In the following, we prove that
6 i hs{dQ), Vs e [0,1]. In fact, if 6 € /i,(dfi), then there exist an s0 e [0,1] and an
Xi e dQ such that 9 — Xi - s0Ax\. We have s0 # 0 (If So = 0, then we have 9 = x\, that
is, 9 e dfl. It contradicts 0 € Q) and s0 / 1 (If s0 = 1, then we have 0 = xx - Axx, that
is, Xi = Axi. It contradicts Ax ^ x, Vi € 9fi). Hence s0 € (0,1). By 0 = Xj — so/lxi,
we have

(1°) AXX = - X !
so

By (1), we have F{1/,o)xi(t) > FXl{t), Vt > 0, that is, FXi(ts0) > Fxi(t). By the
nondecreasing property of FXI, we have sot > t. So sQ > 1. This contradicts
s0 € (0,1). Hence 9 £ ha(dfl). When t -t t0, we have x - M x -> x - t0Ax.
Thus lim Fx-tAx-.(x-toAx){e) = H(e), Ve > 0, Vx 6 JT. Thus for any A > 0, we have

t—•fo

•Pt-t/ii-(i-to/ii)(e) > 1 - A (t -> t0). It is easy to prove that

inf FI_Ml_(l_to/i :c)(£:) ^ 1 - A (t -> t0).

By the arbitrariness of A, we have

lim inf Fx-tAz-{z-toAx)(e) = H{e),Ve > 0,Vx G fl.

Because ht{x) = x - tAx is an A-proper mapping, by Theorem l(iii), we have

Therefore, A has a fixed point x* in fi such that Ax* = x*.
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