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Abstract

We develop sharp conditions for various types of starlikeness for functions analytic in the unit disk with
bounded derivatives. We also describe the precise range [zf '(z)/f (z) : z e D , / € ^ } , where / e 3?x
means/(0) = 0,/ ' (0) = 1, and |/ '(z) — l| < A. in the unit disc D, and draw some conclusions from
that.

2000 Mathematics subject classification: primary 30C45.

1. Introduction and statement of results

We denote the set of analytic functions in the unit disk by J f (D) and by 38 the subset
of functions/ e JV (D) with \f(z)\ < 1 in CD, while

®0 := ( / € # n C°(D) : / (0 ) = 0, sup|/(z)| = l ) .

^/ consists of the functions/ e J f (O) with the normalization/ (0) = / ' (0) - 1 = 0 .
For a given b € 88$, and 0 < A. < 1, define ^(Z>) to be the set of functions/ e &/

such that

(1.1) \f\z)-\\<X\b{z)\, z e O ,

that is

/ (z) = z + A. / b(t)w(t) dt, wz3S.
Jo
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In particular, for b(z) = z we write
In [8] the following result was obtained.

THEOREM 1.1. Letbe&0 and

:=sup f \b(tz)\dt,
zeD Jo

fi := 1/Vl + c2. Then c < 1/2 and ^(b) C &*, where &* is the set of starlike
univalent functions in £/. If

(1.2) b{t) = max l*(reI>)|, 0 < t < 1,

then the constant fi cannot be replaced by any larger number without violating the
conclusion.

REMARKS. (1) Various choices of b lead to function classes which are commonly
investigated. For instance the choices b(z) = z" restrict the functions under consider-
ation to those with

(1.3) f ( z ) = z + a n + l z n + l + --- .

(2) An interesting feature of this result is the sharpness part. It can be shown that
there does not exist extremal functions, that is for every single function

/ (z) = z + fi f Ht)w(t) dt e %
Jo

there exists fif > 0, so that

or similarly, there exists \xf > fx so that z + fif fo
z b(t)w(t) dt e Sf* holds as well.

This kind of result has first been obtained by Fournier [1], who dealt with the classical
case b(z) = z, where fi turns out to be 2/V5. This bound, without the sharpness
statement, has also been known before [4, 10]. In [9] Samaris extended Fournier's
result to functions / with the property

- 1 , y>0.

In this paper we choose to deal only with functions of the form (1.1), that is, y = 1
in (1.4).
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FIGURE 1. 3^,1/2 for A. = 0.05, (0.1), 0.95

Our aim in this paper is to generalize Theorem 1.1 in various ways that enable us
to obtain sharp bounds for other types of starlikeness. One obvious generalization of
Theorem 1.1, which we do not include, is to get bounds for starlikeness of order a
(Re zf'(z)/f (z) > a). For the case b(z) = z this was already done by Fournier [2].

We begin with the study of the sets

: f
and to this end we also define

1 + Xcw : z, w €

Note that S2x,c» as the union of circular discs (with w as parameter) containing the
point 1, is a domain, starlike with respect to 1.

THEOREM 1.2. (i) LetO^be 3SQ and c := supzeD /„' \b(tz) | dt. Then

rx(b) c fiiiC, 0 < A. < 1.

(ii) Furthermore, for each f e ^(b) we have

(iii) If, in addition, b satisfies the condition in (1.2), then

(1.5) r x ( b ) = - f i I 7 > 0 < k < l .

The condition (1.2) holds for b(z) — z, so that (1.5) applies to <^. In Theorem 2.1
below we shall describe the boundary of QKc in parametric form, and this makes it
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possible to derive various sharp starlikeness statements. We give two examples. A
function / e srf is said to be strongly starlike of order a, 0 < a < 1, if and only if

arg
zf'(z) an< — , zsB .
fit)

Note that the case a = 1 of the following corollary is Theorem 1.1.

COROLLARY 1.3. Letb€@o and c be as before. For 0 < a < 1 let

sin (an /2)
fi(oc) : =

y/l + 2c cos (an/2) + c2'

Then f € ^a)(b) implies that f is strongly starlike of order a. Ifb satisfies (1.2),
then the constant n(a) cannot be replaced by any larger number without violating the
conclusion, although every single function f e ^(^(b) is strongly starlike of order
af < a.

The result in Corollary 1.3, without the sharpness part, was previously obtained by
Ponnusamy and Singh [5].

A function g e &f is called uniformly convex if it maps every circular arc in D,
with center also in D>, univalently onto a convex arc. It is known [7] that g e srf has
this property if and only if / = zg' satisfies

(1.6)
f(z)

- 1 < Re 777-
f(z)

Note that (1.6) means \haXzf'(z)/f (z) is contained in a parabola.

COROLLARY 1.4. Let b € @0 and c be as before. Iff € &i/(c+2)(b) andf = zg'
then g is uniformly convex. Ifb satisfies (1.2), then the constant l/(c + 2) cannot be
increased without violating the conclusion.

Taking b(z) = z" in Corollary 1.4 we find that g e stf is uniformly convex if
/ = zg' satisfies

and the bound is best possible. Non-sharp results for this case can also be found in [5].
A different situation where our method can be applied as well is the case of

uniformly starlike functions / e &/. A function / is called uniformly starlike if it
maps each circular arc in O with center £, also in D, univalently onto an arc starlike
with respect to / ( £ ) .
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FIGURE 2. The situation for a strongly starlike function of order 1/2 and uniformly convex with b(z) = z
(that is, c = 1/2).

THEOREM 1.5. Let b € &0 and \x
starlike, and, for every single b €
property. However, if with b e 39

1/V2. Then each f € ^(b) is uniformly
the number fj, is the largest one with this

Ht)w(t) dt e

satisfies / ' € C°(lD>), then there exists /if > /x such that z + (1/ J* b(t)w(t) dt is
uniformly starlike as well.

This result is somewhat surprising, as it implies that, for instance, a restriction to
functions of the form (1.3), however large n may be, does not increase the optimal
value of (i. One of the first examples of a uniformly starlike function, given by
Goodman in [3], was the second degree polynomial / (z) = z + z2/2^/2. Goodman
showed that the coefficient of z2 could be increased somewhat, and the polynomial
would still be uniformly starlike. We see that this function satisfies the assumption of
Theorem 1.5 (with b(z) = z) and that his observation reflects a more general fact.

Our final result deals with functions / € &/ starlike with respect to symmetrical
points, which are defined by the condition

2zf'(z)
Re

fiz)-f(-z)
> 0, z € D.
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Note that they form a superset of the uniformly starlike functions, but not a subset of
5?*. They are, however, close-to-convex univalent.

THEOREM 1.6. Letbe^0andc:=(l/2)supzeDf^ \b{tz)\dt, ix(c):= 1/Vl+c2.
Then f e ^^(b) implies that f is starlike with respect to symmetrical points. Ifb
is an even function satisfying (1.2), then the constants fi(c) are best possible.

This result says, for instance, that/ 6 ^./-/ils starlike with respect to symmetrical
points, but this is not known to be best possible (b(z) = z is not even). However, if
/ € < /̂Vio is °f m e form / (z) = z+a3z

3+a*z4-\ , then / is starlike with respect
to symmetrical points, and the bound 3/~/T6 is best possible (as we are dealing with
the case b(z) = z2).

As indicated before, the containment properties of function classes described in
these theorems and corollaries are not too surprising, and some of them have been
known before. What is striking here are the sharpness conclusions, and they all rely
on the following single observation, which slightly extends previous results in [1] and
in [8].

THEOREM 1.7. Letx, y e D, Z\, Zi e 3D andb e 88. Then there exists a sequence
of functions Vk e 3& n J f (5) such that Vk(l) = z, and

(1.7) lim r b{t) Vk(t)dt = zi T b(t)dt.
k ° J J

= zi T
Jx

The functions Vk can be chosen independently ofx, y.

The proof of Theorem 1.7 will be given in the Appendix.

2. Proof of Theorem 1.2 and its corollaries

PROOF OF THEOREM 1.2. (i)Fixa € r\(6), so that there exists/ e &i(b),zo e D,
with a = Zof'(zo)/f(zo)- We write

b(t)w(t) dt = z + kF(z).
Jo

Then

f
Jo

a_zof'(zo) _ l+kF'izp) l+kz
/(2b) l+XF(zo)/zo l+kcw X o

since
1 r1

121 = \F(zo)\ < 1, — f0
CZQ JO

b(t)F(t)dt < - [ \b(tzo)\dt
C JO
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We remark that a simple calculation shows

(2.1)

(ii) Assume that for some / e &i(b) there exists a sequence vk e D>, vk -*• 1, such
that

lim = co € d£lktC.
* °̂° f(vk)

Then

(2.2) l i m f ( v k ) = l+k[ b(t)w(t)dt = 1
*-><» Jo

(2.3) lim vtf'iv,,) = 1+ X lim b(vk)w(vk) = 1 + kzu
k-*oo *->oo

with z\, Z2 € D. In fact, we must have Z\,Zz € 30 , since otherwise

1 4- A.z,

This and the assumption concerning c imply that

c = I b(t)w(t)dt < J \b(t)\dt<c,
Jo Jo

so that | w (01 = 1 andargi(0 = constant. Without loss of generality we may assume
w = 1, and then (2.2) and (2.3) lead to

argz, = argi( l) = arg / b(t)dt = argz2,
Jo

or Z\ = Zi- Then (2.1) gives co £ 3fiAc, a contradiction.
(iii)If(y € fi>.,c. then there are z, w e Dsuchthatw = (1+Xz)/(1+A.cu;). Asimple

homotopy argument can be used to show that we can assume that \z\ = \w\ = r < 1,
and re-writing the above representation we get

1 -I-

In Theorem 1.7 let x = 0, v = 1 and choose the functions Vk accordingly. Then

Mz) :=z + Xr [ b(t)Vk(t)dt € ^r(b) C
Jo

and we have
/,'(1) l+A-rHd) 1+Xrz,

l i m = : = : = CO,

* / 0 ) l+krfib(t)Vk(t)dt l+krz2fob(t)dt
which clearly implies that co € I \ (b). D

https://doi.org/10.1017/S1446788700002482 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002482


310 Frode R0nning, Stephan Ruscheweyh and Nikolas Samaris [8]

To exploit the properties described in Theorem 1.2 we need a more explicit de-
scription of the boundary of £2X c.

THEOREM 2.1. For 0 < c < 1 and 0 < A. < 1, cA. ̂  1, the boundary ofQ,x,c is
described by (x(0), y(9)), 9 € [0, 2n), where

l+kcos9 -^k2 sin2 9 + ckcos9jl +k2+2kcos9 -dk2 sin2 9
(2.4) x(e)= r^x2 '

y(0) = (*(<?)-1) tan 6>.

PROOF. Let G(9, <p) - (1 + kew)/(l + ckei<p). For fixed 9 the function G(9, <p)
describes the circle

(2 5) Ix 1 I l y - - \2_c2k2(l+k2
 + 2kcos9)

We need to determine the outer envelope of the circles (2.5) when 9 varies from 0
to 2n. Hence we have to solve the system consisting of (2.5) and the equation that we
get by differentiating (2.5) with respect to 9, namely

(2.6) xsin9 — ycosfl = sin#.

A combination of (2.5) and (2.6) yields the parametrization shown in Theorem 2.1. •

THEOREM 2.2. (i) For c> 0 and 0 < a < 1 let

sin (an/2)
(2.7) k(a) :=

+2ccos(an/2)

Then \ arg co\ < an/2 holds for every u> €
(ii) For zo = ei<p", w0 = e^0, with <p0 = sin"1 (VI - k(a)2) e (n/2,n) and

Q = (pQ — (1 + a/2)n, we have

arg-
l+xk(a)zo
+xck(a)w0

n> a-, x > 1.

In particular, A.(a) is the largest constant with the property described in (i).

This result can be derived from Theorem 2.1. Since a more elegant direct proof is
available, we prefer to include this proof here.

PROOF. Let z and w be points in the unit disk. Then

arg
1 + A.z

1 + ckw sin-'(cA.).
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With K = sin(or7r/2) the condition to check is

sin [sin"1 A. + sin~!(cA.)] < K

which can be written as

ky/l - C2k2 + Cky/l - k2 < K.

After squaring and simplifying this becomes

(( ! _ c
2)2 + 4K2C2) k4 - 2 (1 + c2) K2k2 + K4>0.

The smallest positive root in X2 of this bi-quadratic equation is

(\-C2)2+AK2C2

which translates into (2.7).
To find the extremal values of q> and ty we draw the circles 1 + kel<e and 1 + eke"1',

and the tangent to these two circles from the origin. A simple geometric argument
then gives the values <p0 and xfr0 as stated. •

PROOF OF COROLLARY 1.3. That/ e ^(a)(.b) implies that/ is strongly starlike
of order a follows immediately from Theorem 2.2, while the sharpness statement is a
consequence of Theorem 1.2 (ii). •

PROOF OF COROLLARY 1.4. The parabola \w - 1| < Re w intersects the real axis
in x = 1/2. The curve yCtk, given by (2.4), intersects the real axis in the points JC(O)
and x(n) with x{n) < x(0). For the functions in ^(b) to satisfy (1.6) it is therefore
necessary that k is so small that x(n) > 1/2. This is sharp for A. = l/(c + 2), and we
will prove that indeed the curve yc,i/(C+2) lies inside the parabolic domain. The upper
half of the parabola is given by y = -J2x — 1, x > 1/2, so it is enough to prove that

y(0) < y/2x(G) - 1, 0 < 6 < it.

For c> 0 and k = l/(c + 2) we get

c2 + 2c + 2 + (c + 2) cos6 - c2 sin2 6 + cB(cosO) cos d
2x(0) - 1 =

y(0) =

2c+ 2
c2 sin 0 cos 9 + (c + 2) sin 9 + cB (cos 9) sin 9

4c+ 4

where B(u) := y/Ac + 5 + 2(c + 2)u + c2u2.
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Writing u := cosO we have to show h(u) :=2x(0)-l- y(9f > 0, - 1 < u < 1,
and

h(u) = - [12 + 28c + 10c2 - 4c3 + (16 + 24c + 4c3)«
(4c + 4)2 L

+ (4 + 4c + He2 + 12c3 - 2C4)M2 + (8c2 + 4C3)K3 + 2c4«4

+ (2cV + (4c + 2c2)w2 + (8c + 8c2 - 2C3)M - 4c - 2c2)5(«)].
Separating the term containing B(u), squaring both sides and simplifying we see that
h(u) > 0 holds if

16(1 + C)2(W + 1 ) ( ( 1 + C 2 ) M + 1 + 2 C - C 2 ) ( ( 1 + C 2 ) H 2 + ( 6 + 2 C ) W + 9 + 6 C - C 2 ) > 0 .

Here all factors are positive for u > —1. The sharpness statement follows from The-
orem 1.2. •

3. ProofofTheoremsl.5and 1.6

PROOF OF THEOREM 1.5. A function / € £? is uniformly starlike if and only if

f(z)-f(xz)
(compare [6]). If

b(t)w(t) dt=z
Jo

then we need to show that

(3-D R e — _ _ i ± i i ^ - - > 0 , X,zeB.
1 + fi(F(xz) - F(z))/(xz - z)

However,

\F'(z)\ = \b(z)w(z)\ F(xz) - F(z)
xz — z z — xz

b(t)w(t)dt < 1,

so that Theorem 2.1 with c = 1, A. = /x = 1/V2 establishes (3.1). For the proof
that fi cannot be replaced by any larger number we assume without loss of generality
that 6(1) = 1, and note

(3.2) R e - - < 0 , forx > 1, z\ = z2 = — = - .
1+XfJ.Zi s/l

For this choice of z\,Zt we define Vk as in Theorem 1.7, so that Vk(l) = z\, and for
all x e D

b{t)Vk(t)dt - • z2—!— / b(t)dt,
1 x J

[ b{t)Vk(t)dt • z 2 /
- x Jx 1 - x Jx

https://doi.org/10.1017/S1446788700002482 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002482


[11] Sharp starlikeness conditions 313

It is now clear that we can choose a sequence Xj —> 1 and kj —>• oo for j —> oo such
that

1 f1

/ b(t)Vk(t)dt -+ z2, 7 - • oo.

Hence, if x > 1 we have by (3.2)

Re < 0
\+xn/(\-Xj) fl

x.b(t)Vkj(t)dt

for some j large enough. This implies that the corresponding function

f(z):=z+Xfi fZb(t)Vkj(t)dt
Jo

cannot be uniformly starlike.
I f / ' e C°(D) holds for

f{z)=z

then we can easily show that

(3.3) inf Re
;.«D 1 +

If not, then we must have

b(t)w(t)dt

1 + fib(z)w(z)
> 0.

:-xz)£tb(t)w(t)dt

1 F
/ b(t)w(t)dt

XZ Jxz

which is only possible for the limiting case x ->• 1 and some z € 30. Then, however,

b(z)w(z) = lim —-— f b(t)w(t) dt,
*->iz-xz Jxz

and we are in a situation of (2.1), which yields a contradiction. The final claim of
Theorem 1.5 follows readily from (3.3). •

PROOF OF THEOREM 1.6. Let

f
JoThen, by Theorem 2.2 with a = 1,

2zf'(z) _
Ke = Ke

b(t)w(t)dt e Z

1 + n(c)b(z)w(z)
= K e ;

/ (z) - / (-z) 1 + Qi(c)/2) /_, b(tz)w(tz) dt
> u,

since

\b(z)w(z)\ b{tz)w(tz)dt < c.
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If b is even and satisfies (1.2), then (1 /2) /_ , b(t)dt = c, and an application of
Theorem 1.7 with x = — 1, y = 1 produces a sequence of functions Vk e 3S such that
for every x > 1

l+xn(.c)Kz)Vk(z)
lim Re < 0

for z e
proofs.

{x^c)/2)j\b{tz)Vk{tz)dt

»close enough to 1. We omit the details which are similar to those in previous

•

4. Appendix

PROOF OF THEOREM 1.7. We may assume that z\ = 1. If z2 = 1 as well, then
Vk = 1, k € N will work. Hence we assume that z2 = e'v, (p ^ 0. Let rk be a sequence
of numbers with 0 < rk < 1 and rk -> 1 for A: —> oo. We define

- rkz2)
Vk(z) :=

zrk(z2 - - rkz2)'

and note that
number

we see that

\Vt(z) - Z2\ =

: 3C\Ji?{®), with Vt(l) = 1, k € N. Furthermore, introducing the

A =

- rk)
- rkz2

1 - Z 2

rkz2z - r\z

1 - Z 2 - ( 1 - r t ) ( z 2 ( z - 1 ) - z ( l + rk))/(\ - z ) ( l - z 2 )

" | l - z | 1 - 4 A ~ | l - z |

if A < 1/10. It is easily seen that the condition

10(1 - rk)
U-z |> | sirup |

is sufficient for A < 1/10. That means that Vk ->• z2 uniformly in all closed subsets
of D which do not contain z — 1. From here it is clear that (1.7) holds for all choices
of x, y in which not at least one, say y, equals 1. Hence we assume x ^ 1, y — 1. A
straightforward estimation of the quantity

*(0[V*(0-Z2]rfr < / l&(y(O)l|V4(y(O)-Z2l^,
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with y(t) := x + t(\ — x) now shows that qk —> 0 for k —> oo, which implies (1.7).

Note that the V*'s have been defined independently of x, y. •
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