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In-situ transmission electron microscopy (TEM) provides a unique opportunity to directly observe 

kinetic processes in materials. Meanwhile, a large number of images could be acquired during in-situ 

TEM experiments, making the data analysis process tedious and potentially biased. Therefore, it is 

highly desirable to establish capabilities for automated image analysis to improve the efficiency and 

consistency. In recent years, an exciting and powerful tool for analyzing microstructures in TEM images 

that have emerged and developed quickly is Convolutional Neural Network (CNN) because of its high 

accuracy for image classification and recognition. Nowadays, more and more studies have applied CNN 

to analyze microstructure evolution of materials under extreme environments [1][2]. In this project, we 

developed a CNN-based model for automated grain morphology analysis in TEM images of UO2. In-situ 

Kr ion irradiation was conducted to investigate the radiation-induced grain growth of UO2. During the 

experiment, thin films of UO2 with nanograins were irradiated by 1 MeV Kr ions using the Intermediate 

Voltage Electron Microscopy (IVEM) facility at Argonne National Laboratory. Both dark-field (DF) 

and bright-field (BF) TEM images were acquired during the experiments and more than 100 TEM 

images were collected in total. 

 

To process this large dataset, we first developed a model that can automatically recognize grains and 

measure the grain sizes in DF-TEM images. Our model is based on U-Net, which is a CNN model with 

a unique U-shaped architecture that makes it efficient in segmentation and particle analysis. There is a 

contracting path to extract image context and a symmetric expansive path to propagate context 

information to higher resolution layers [3]. Our model contains one input layer, one output layer, four 

max-pooling layers, four concatenate layers, and 23 convolutional layers. A schematic plot showing the 

model architecture is presented in Figure 1. a. A single NVIDIA Tesla P100 GPU was used to train the 

model to about 200 epochs with L2 Regularization. The training was terminated when the validation loss 

stops decreasing and only the best model during the entire training process was automatically saved. The 

total training time was about six hours. Since the size of training data plays a critical role in improving 

the U-net model performance, we used data augmentation to enlarge the dataset. As CNN relies on 

spatial information to tune the model parameters, methods like cropping, rotation, flipping, and scaling 

are simple but useful augmentation methods. Our original dataset contains 20 TEM DF images of 

1024×1024 pixels and after data augmentation, the final dataset has 200 DF-TEM images in total. 

Compared to the models trained by the original dataset, the performance of the models trained by the 

augmented dataset increased about 4% in F1 score. Our DF U-Net model has successfully reached 

similar performance as human experts (see Figure 1. b). The developed model reached 97.46% in 

accuracy and 81.15% in F1 score for analyzing grains in DF-TEM images. Tests show that the 

developed U-Net model is about 2000 times faster than human experts in labeling images and it has 

been applied to accelerate the data analysis for understanding the radiation-induced grain growth in UO2. 

The major limitation of the DF model is that overlapped grains cannot be separated. 
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The developed neural network model also showed the potential for processing BF-TEM images. 

Therefore, we collected a new dataset containing 350 augmented BF-TEM images of 1024×1024 pixels 

for training. However, the developed BF model did not achieve the same performance as the DF model. 

Overall the BF model has about 90% in accuracy and 70% in F1 score. Fig. 1c shows the processed 

result of a regular BF image with only a fraction of grain boundaries recognized. We noticed that the 

present BF model can reach a much better performance for BF-images with continuous and clear grain 

boundaries as shown in Figure 1. d, suggesting that the BF model could be further improved if a larger 

training dataset with higher quality is used. The training images used now were labeled by three 

researchers and their standards for labeling were not quite consistent, which may confuse the model. The 

quality of training images is being improved now and a new U-Net model is being developed for 

processing BF images and in-situ TEM videos. 
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Figure 1. (a) U-Net Architecture used in this study; (b,c,d) Original TEM images and the corresponding 

labeled images by U-Net. TEM images are in gray scale. In the labelled results, grain or grain 

boundaries are highlighted in yellow. 
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