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Abstract:
We use linear time series and wavelets approach to study the relationships between U.S. and international
prices for corn, soybeans, and cotton. We then compare results obtained with each approach and verify
that structural breaks discovered with wavelet analysis match those produced with subsequent partial-
period cointegration analysis. We find little evidence that short-term fluctuations between domestic
and international prices are stable, while long-term relationships for many price pairs experience distinct
structural breaks. We further find that even though China is among the largest importers of U.S. agricul-
tural products, its commodity prices share little or no relationship with those prevailing in U.S. markets.
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1. Introduction
As the world becomes more integrated, current and expected international commodity supply and
demand fundamentals play a significant role in setting domestic commodity prices (Rapsomanikis,
Hallam, and Conforti, 2006). Over the last few decades, agricultural markets have experienced
significant changes in trading volumes, market structures, and market participants (Irwin and
Sanders, 2012). Anecdotally, shifting production and trading patterns for several major agricultural
commodities have affected the degree to which U.S. developments inform global prices, as well as the
impact international production and demands shocks have on prices paid to farmers domestically.

Most studies that focus on market integration and cross-border price transmission apply error-
correction models (ECMs) to high-frequency price data. These models often assume that under
integration, prices across borders follow a single, long-term linear relationship. Thus, these models
may miss important price discovery dynamics (Yan and Zivot, 2010; Yang, Bessler, and Leatham,
2001). Moreover, if a structural break occurs, models with fixed parameters yield flawed results
(Vacha et al., 2013). Nevertheless, some researchers have identified cointegration (Bessler, Yang,
and Wongcharupan, 2003; Boyd and Brorsen, 1986; Goodwin and Schroeder, 1991), whereas
others have not (Mohanty, Meyers, and Smith, 1999).

More recent work has applied nonlinear approaches, including nonparametric price transmis-
sion (Nazlioglu, 2011). Perhaps cross-border prices are better characterized by repeated short-run
price relationships that vary through time, rather than the existence of a single long-run cointe-
grating equation. Global agricultural markets are evolving, sometimes in response to significant
public policy shocks, such as the global trade friction, U.S. ethanol policy, and Argentina’s taxation
of exports, so flexibility in modeling is attractive for analyzing commodity markets (Beckman,
Dyck, and Heerman, 2017).
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Wavelet analysis avoids many of the limitations of cointegration models and is a good candi-
date to study periodic phenomena in time series (Ramsey, 2002; Rösch and Schmidbauer 2017;
Vacha and Barunik, 2012). Wavelets are flexible to the presence of structural change and often
offer a more realistic portrait for the interaction of global prices; they can uncover structural
changes in agricultural price relationships because of factors like shifting production and trade
patterns (Ramsey, 1999). Instead of fitting the data into, say, a single long-run relationship, wave-
let analysis permits commodity prices to exhibit relationships over a range of frequencies and
time. In addition, it offers the ability to assign directionality to the relationship between two series.

By decomposing two time series into the time-frequency domain, wavelet analysis permits the
study of an evolving relationship between them, over a continuous range of frequencies (running
from short, to medium, to long term).1 A model-free approach to time series analysis offers impor-
tant advantages over traditional models that study price dynamics (Chang and Lee, 2015).
Avoiding the linear restrictions imposed by cointegration-based models affords wavelets more
flexibility in modeling heterogeneity in financial and economic time series data and studying price
comovement (Joseph, Sisodia, and, Tiwari, 2015).

Wavelet tools are relatively new to applied economics and the study of financial data.2 Some of
the first economic applications include studying macroeconomic variables (Aguiar-Conraria,
Azevedo, and Soares, 2008), measuring the business cycle (Yogo, 2008), and understanding
comovements in stock market returns (Rua and Nunes, 2009) and energy prices (Vacha and
Barunik, 2012; Vacha et al., 2013). Wavelet analysis has also been used to study price discovery
in oil markets (Chang and Lee, 2015); bullion, energy, metals, and agriculture in Indian markets
(Joseph, Sisodia, and Tiwari, 2015); and the relationships between ethanol and feedstock markets
in Brazil and the United States (Kristoufek, Janda, and Zilberman, 2016).

In this article, we assess the integration between the United States and major international mar-
kets for three commodities (corn, soybeans, and cotton) to identify structural changes in these
relationships over time and to search for evidence of changes in the direction of the transmission
of shocks. Our wavelet results indicate that the relationships between the U.S. and international
agricultural prices are in many cases not stable and characterized by structural breaks. Short-run
price fluctuations are not highly correlated, while medium- and long-term price relationships shift
regularly. Even among those pairs of prices that exhibit stronger relative long-run relationships,
we find evidence of structural breaks, pointing to the fluid nature of the way shocks are transmit-
ted in international agricultural markets.

2. Data
We obtain daily closing U.S. and international futures prices for corn, soybeans, and cotton from
futures markets in each country for that particular commodity. Commodity futures markets,
where they exist, are generally strong and effective facilitators of the price discovery process
(Adjemian et al., 2013, Arnade and Hoffman, 2015; Carter and Mohapatra, 2008; Figuerola-
Ferretti and Gonzalo, 2010; Schwarz and Szakmary, 1994). Futures markets have a comparative
advantage in incorporating new fundamental information (Yan and Zivot, 2010). This follows
from the fact that well-functioning futures markets have higher liquidity, are more transparent,
and have lower transaction costs than most spot markets so that they can react more quickly to
new information (Adämmer, Bohl, and Gross, 2016; Xu, 2018).

1Spectral analysis, in contrast, decomposes times series into infinite frequency length and discards all time-localization
information (Rua and Nunes 2009). Wavelets permit analysis of relationships at various frequencies through time.

2According to Graps (1995), wavelet analysis was independently developed in the natural science fields such as mathemat-
ics, physics, electrical engineering, and seismic geography in the 1930s. Wavelet analysis has been extensively used in geog-
raphy, engineering, astronomy, medicine, and other natural science disciplines (Rua, 2012), and it has also been used for
economic and financial investigation (Ramsey, 2002; Rösch and Schmidbauer 2017).
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We draw U.S. data from the Chicago Mercantile Exchange (CME) for corn and soybeans and
Intercontinental Exchange (ICE) for cotton; the Dalian Commodity Exchange for Chinese corn and
soybeans (“No. 1” contract) and the Zhengzhou Commodity Exchange for Chinese cotton; the
Tokyo Commodity Exchange for Japanese corn and soybeans; the National Commodity and
Derivatives Exchange for Indian soybeans and the Multi Commodity Exchange for Indian cotton;
and the South African Commodity Exchange for that country’s soybean prices. Because trading vol-
umes in Brazil’s Bolsa Balcão S.A. markets are very low, we use daily cash price indices as reported
by the Center for Advanced Studies on Applied Economics. Before analyzing market integration
characteristics, we convert all prices into U.S. dollars using the daily exchange rate archived by
the St. Louis Federal Reserve (FRED, 2018). Like Hernandez, Ibarra, and Trupkin (2013),
standardizing these prices in U.S. dollars helps us to control for the effects of the exchange rate.
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Figure 1. U.S. and international corn, soybean, and cotton prices in dollars per metric ton.
Sources: For the United States: the Chicago Mercantile Exchange for corn and soybeans (both No. 2 Yellow), and the Intercontinental
Exchange (ICE) for cotton (No. 2); Brazil: the Center for Advanced Studies on Applied Economics for corn (Yellow), soybeans (Yellow), and
cotton (Type 41-4); China: the Dalian Commodity Exchange for corn (Yellow) and soybeans (No. 1), and the Zhengzhou Commodity
Exchange for cotton (Cotton No. 1); Japan: the Tokyo Commodity Exchange for corn (No. 3 Yellow) and soybeans (#2 or better
Yellow); India: the National Commodity and Derivatives Exchange for soybeans and the Multi Commodity Exchange for cotton;
South Africa: the South African Commodity Exchange for soybeans (SB grade).
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Figure 1 plots nominal prices for U.S. and international commodity markets in dollars per
metric ton.

Because futures prices across markets represent different delivery dates, we use the nearest-to-
deliver contract in all cases.3 In some cases, trading hours for these markets only partially overlap,
and when applicable, contracts are rolled over at the beginning of the expiration month. We use
the log of end-of-day prices for the period covering from October 2011 to May 2018—where the
data are available.4 Most of the commodity prices presented in Figure 1 follow similar patterns
visually—for example, they decline significantly from the highs experienced during the 2011/2012
food price crisis to the beginning of 2015, before ticking up recently. However, Chinese market
prices stand out for their dissimilarity: they are relatively less variable over the entire period and
exceed other international prices by a substantial margin.

3. Methods
We use two distinct methods to study price relationships over the entire period: traditional and
wavelets approach. We then compare results obtained under each approach and verify that breaks
discovered under wavelet analysis match those produced under subsequent partial-period
cointegration analysis. An advantage of wavelets compared with traditional statistical break tests,
like Bai and Perron (1998), is their ability to offer a more detailed portrait of price relationships as
they change over time.

3.1. Error correction models

To test stationarity conditions, we apply Augmented Dickey-Fuller (ADF) tests (Dickey and
Fuller, 1979) to all price series and their first differences against the null hypothesis of the presence
of a unit root. As shown in Table 1, ADF tests fail to reject the null hypothesis for all series in the
levels but reject those hypotheses for all first differences. So, all series are I (1).

Next, we test whether a linear combination of each price pair, United States and international,
is cointegrated using Johansen’s cointegration test (Johansen, 1995) and present the results in
Table 2. If the series are cointegrated, the price pair follows a common long-run trend, and their prices
are shown to exhibit a long-term relationship. Using these tests, we find that U.S. corn price is not
cointegrated with either the corn price in Brazil, a major corn producer and exporter, or the corn price
in China, the second major corn producer after the United States, although not a global trader. This is
consistent with China’s domestic corn policy through early 2016, which instituted minimum purchase
prices for corn that were typically higher than those on the international market (Wu and Zhang,
2016). U.S. corn and soybean prices are cointegrated with those in Japan, which is consistent with
the fact that the United States is one of the major corn and soybeans suppliers to the Japanese market.
Johansen tests reveal that soybean prices in the United States are also cointegrated with those realized
in Brazil, the other major producer and exporter of soybean products. On the other hand, soybean
prices for the major global soybean importer, China, are not cointegrated with soybean prices for the
United States, one of the major global exporters. We find that U.S. cotton prices are linearly cointe-
grated with those observed in Brazil and India, major cotton exporters, but not cointegrated with
Chines prices, even though China is a major global cotton importer, as shown in Table 3.

Our tests indicate the existence of a single cointegrating vector, r= 1, between U.S. prices, Pusa,
and the price series observed for several countries, Pj, meaning that a linear combination of the

3Even though delivery dates do not often match up identically between domestic and international futures contracts, stor-
age ties together intertemporal prices, so our futures prices should capture cross-border shock transmission accurately. These
data can be sourced from each exchange.

4Depending on the country and commodity, up to 3% of observations in each year (e.g., July 4 in the United States and May
1 labor day in China) are interpolated using the last traded value. To keep the analysis uniform, we use October 2011 to May
2018 prices.
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series has a stable mean and variance. Engle and Granger (1987) proved that under a cointegration
condition, the relationship between two prices can be specified using an ECM:
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where ΔPusa
t and ΔPt

j represent the daily change in the U.S. and country j’s commodity prices,
respectively; εusat and εt

j are white noise error terms, which may be correlated; and constant
terms are represented by γusa and γ j. The long-term relationship between U.S. and country
j’s commodity prices are captured by the expression �Pusa

t�1 � βP j
t�1 � c�, where the cointegrating

parameter is represented by coefficient β. The coefficients in the expression, αusa and αj, repre-
sent the U.S. and country j’s adjustment rates, respectively, measuring the speed of the adjust-
ment toward the long-term equilibrium in response to a short-term deviation of the system
(Theissen, 2002). If, for instance, αj is statistically different from zero, but αusa is not, the results
are supportive of a leading role of the U.S. market in the price transmission process, because
only the prices in country j adjust to shocks. For example, if the price series are cointegrated and
αusa= 0 or is otherwise close to zero, price leadership occurs entirely or substantially in the U.S.
market; the market whose price does not adjust, or adjusts the least, is the leader. These adjust-
ment rates can be used to estimate price discovery weights, which are also known as factor
weights (Gonzalo and Granger, 1995). The absolute value of the price discovery weight for
the United States, ωusa, can be calculated using ωusa � j αj

αj�αusa j. A country with the larger price
discovery weight is the leader in the system; its prices adjust least to departures from the long-
run equilibrium.

Table 1. Augmented Dickey-Fuller (ADF) unit root tests for prices and their first differences

Commodity Market Level First Difference

Corn U.S. −1.83 (1) −41.52 (0) ***

Brazil −2.54 (2) −27.74 (1) ***

China −1.59 (2) −27.56 (1) ***

Japan −1.75 (1) −42.11 (0) ***

Soybeans U.S. −2.37 (1) −41.27 (0) ***

Brazil −2.71 (1) −41.37 (0) ***

China −2.98 (1) −21.57 (3) ***

India −3.22 (6) −15.46 (5) ***

Japan −2.69 (7) −14.56 (8) ***

South Africa −2.85 (2) −30.11 (1) ***

Cotton U.S. −1.69 (7) −16.36 (6) ***

Brazil −1.64 (7) −16.14 (4) ***

China −0.97 (6) −16.55 (5) ***

India −2.09 (1) −41.64 (0) ***

Notes: The null hypothesis is that the price series, p (in log form), has a unit root. ADF specification,
Δpt � αo � α1t � βi

P
l
i�1 Δpt�i ;, has a time trend (α1) and drift (αo, intercept), where l (number in

parentheses) is the lag order selected on the basis of the Akaike information criterion, with maximum
lag= 8. Asterisks (***) denote rejection of the null hypothesis at the 0.01 level.
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3.2. Wavelet framework

For a time series x(t), wavelets ψ(t) are continuous, real- or complex-valued square integrable
functions that are composed of scale, s, which controls the frequency or width of the wavelets
and time parameter τ, a proxy for the location across time of wavelets (Rösch and
Schmidbauer 2017; Rua and Nunes, 2009; Vacha and Barunik, 2012; Vacha et al., 2013).
Mathematically, wavelets are specified as

ψτ;s t� � �
ψ t�τ

s

� �
��
s

p : (2)

Once the assumptions about the mother wavelet function are met,5 continuous Morlet wavelet
transformations, consisting of a complex sine wave within a Gaussian envelope (Rua, 2010), can
be represented using a function of two variables as

Wx τ; s� � �
Z∞

�∞

x t� � 1�����
sj jp ψ� t � τ

s

� �
dt; (3)

with the asterisk (*) marking the complex conjugate operator so that there is no loss of informa-
tion through the transformation procedure (Torrence and Webster, 1999). The Morlet method
dates back to the early 1980s when it was introduced to decompose a signal into its frequency
and phase contents as time evolves. Unlike the Fourier transformation, which does not allow

Table 2. Johansen’s cointegration test for U.S. and trading partner commodity prices

Commodity
U.S.-Trading Partner
Combination Trace Statistics

Corn U.S.-Brazil 11.59 (Not cointegrated)

U.S.-China 6.45 (Not cointegrated)

U.S.-Japan 17.93 ***

Soybeans U.S.-Brazil 25.35 ***

U.S.-China 12.69 (Not cointegrated)

U.S.-India 13.35 (Not cointegrated)

U.S.-Japan 25.22***

U.S.-South Africa 8.21 (Not cointegrated)

Cotton U.S.-Brazil 22.40 ***

U.S.-China 13.15 (Not cointegrated)

U.S.-India 21.05 ***

Notes: Asterisks (** and ***) denote rejection of the null hypothesis at the 0.05 and 0.01 level,
respectively, based on the Mackinnon, Haug, and Michelis (1999) test. The cointegration test
includes a linear deterministic trend (the level data have linear trends, but the cointegrating
equations have only intercepts) specified as Δpt � α βpt�1 � c� � �P

l
i�1 πiΔpt�i � γ � εt ;

where Δpt is daily change in commodity prices, α is adjustment rate, β is a cointegrating
parameter,πi represents a number of short-run dynamic parameters, γ is a drift, and εt is white
noise.

5Rua and Nunes (2009) state these conditions. For instance, a mother wavelet must have zero mean, its square integrates to
unity, and it exhibits an admissibility condition. More information about wavelets and Morlet, specifically, can be found in
Cohen (2017).
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the frequency content of the signal to change over time (Rua, 2010), the Morlet wavelet provides a
good balance between time and frequency localization (Kristoufek, Janda, and Zilberman,
2016).6

The scale parameter, s, controls how the wavelets are stretched or compressed. For instance, if
the scale is small, the wavelets are compressed, and therefore, they detect high frequencies and vice

Table 3. Global corn, soybean, and cotton production; net export; global export; and import
share, 2011–2017

Country Production Net Export
Global Export

Share
Global Import

Share

Corn Million Metric Tons %

Brazil* 81 24 19 1

China* 247 −4 0 3

India 24 2 2 0

Japan* 0 −15 0 12

South Africa 13 1 1 1

U.S.* 343 45 35 1

Rest of the world 307 −48 43 82

World 1014 5 100 100

Soybeans Million Metric Tons %

Brazil* 95 52 42 0

China* 14 −77 0 63

India* 10 0 0 0

Japan* 0 −3 0 3

South Africa* 1 0 0 0

U.S.* 101 47 39 1

Rest of the world 82 −20 18 34

World 303 1 100 100

Cotton Million 480 lb. Bales %

Brazil* 7 4 9 0

China* 29 −12 0 28

India* 29 6 17 3

Japan 0 0 0 1

South Africa 0 0 0 0

U.S.* 16 12 31 0

Rest of the world 35 −10 43 68

World 117 0 100 100

Source: U.S. Department of Agriculture, Foreign Agricultural Service (2018b).
Note: Asterisk indicates countries included in this study.

6This section relies heavily on the works of Rösch and Schmidbauer (2017), Torrence and Webster (1999), Vacha and
Barunik (2012), and Vacha et al. (2013).
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versa. We obtain the wavelet coefficients by first performing a continuous transformation on the
time series data of finite length, T, where t= 1, : : : ,T using the Morlet method. This approach
helps to preserve the basic information of the series. Then, we obtain a matrix of wavelet coef-
ficients with τ= 1, : : : , N rows, and s= 1, : : : , K columns, where N and K are a maximum number
of locations across time and scale used for wavelet decomposition, respectively. Each wavelet coef-
ficient, Wx(τ, s), represents local variance at a specific scale s and position τ.

3.2.1. Wavelet coherence
To study the relationship between U.S. and international prices, we use a bivariate framework
called wavelet coherence that requires cross-wavelet transformation. Wavelet coherence provides
appropriate tools for comparing the frequency contents of two time series, x(t) and y(t), the former
representing the U.S. (Pusa) and the latter representing the international Pj futures price series,
respectively. Their cross-wavelet transformation is defined as

Wxy τ; s� � � Wx τ; s� �Wy
� τ; s� �; (4)

where Wx(τ, s) and Wy(τ, s) are continuous wavelet transformations of the series x(t) and y(t),
respectively, and again, the asterisk (*) indicates the complex conjugate operator. Wavelet coherence
can detect regions in the time-frequency space where the time series comove.7 On the other hand,
the cross-wavelet transformation may detect a situation where the two series do not necessarily have
a common power. That is, the transformation does not represent local covariance between the time
series at each scale (Vacha and Barunik, 2012). To overcome this challenge, we follow the approach
of Torrence and Webster (1999) and define the squared wavelet coherence coefficient as

R2 τ; s� � � S s�1Wxy τ; s� �� ��� ��2
S�s�1jWx τ; s� �j2� S �s�1jWy τ; s� �j2� ; (5)

where S is a smoothing operator. The coefficient of the squared wavelet coherence is in the range of
0≤ R2≤ 1. Similar to the squared correlation coefficient in linear regression, the squared wavelet
coherence coefficient measures the local correlation between two price levels at each scale and can be
efficiently represented in time-frequency space by a graphical color map. Coefficient values close to
zero indicate weak correlations and are represented by cooler (e.g., blue) colors in the map, whereas
strong correlations are represented by warmer (e.g., red) colors. The frequency, or the “run” of a
relationship, is depicted in the map along the vertical axis—lower locations in the map equate to a
low frequency, or long run; higher locations in the map represent the relationship between short-run
fluctuations. The horizontal axis of the map indicates the time for which relationships are repre-
sented. Thus, correlations that hold for longer periods of time stretched further across the horizontal
axis. We use Monte Carlo simulation methods to test the coefficients against the null hypothesis of
autoregressive, AR(1) noise at the 5% level; statistically significant relationships are shown in the
map as areas bordered by a thick black contour (Torrence and Webster, 1999).8 Because wavelet
analysis is sensitive to boundary conditions, estimates at the beginning and end of the period of
interest are less reliable (particularly at low frequencies). Therefore, we overlay the chart with a “cone
of influence” to distinguish between reliable (bright) and less reliable (pale) regions (Kristoufek,
Janda, and Zilberman, 2016).

7In contrast, spectral analysis decomposes prices into frequency components only and cannot detect specific time periods
when two series move together.

8The method is basically bootstrapping the data and calculating wavelet coherence for each series, to get a mean and vari-
ance. We present our coherence results in figures using colors, contour lines, and arrows.
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3.2.2. Phase difference
The square coherence shown in equation (5) loses complex information about direction of price
comovement. To recover this information, we apply a wavelet coherence phase difference using
the following specification:

φxy τ; s� � � tan�1
= S s�1Wxy τ; s� �� 	
 �
< S s�1Wxy τ; s� �� 	
 �
 !

φxy 2 �π;π� 	; (6)

where = an imaginary and< a real part operator (Torrence andWebster, 1999). The phase, which
refers to the location of a specific frequency within the calendar year, is represented by arrows on
the wavelet coherence plots. Phase coherence means two time series with the same frequency peak
at the same observation. If one cycle is located slightly ahead of another in time, it is a leader. A
zero phase difference means that the examined time series move together. The arrows in the map
point to the right (left) when times series are positively (negatively) correlated with no series as a
leader. In addition, arrows pointing down mean that the first time series leads the second one,
whereas arrows pointing up represent the opposite. Combinations of these effects are depicted
by arrow rotation: for instance, an arrow pointing up and to the right means the two series
are positively correlated with the first time series following the second one.

4. Results and discussion
4.1. Error correction models

According to our ECM results shown in Table 4, the U.S. and Japanese corn prices are cointe-
grated, and their adjustment rates indicate that Japanese prices adjust more quickly to disequilib-
rium than the U.S. prices. The U.S. corn price is responsible for 77% of the price discovery weight,
so it is considered as a leader in that price relationship. This finding is consistent with Japan being
the second-largest export market for U.S. corn, on average purchasing 11 million metric tons—
24% of U.S. exports—from 2013 to 2017 (U.S. Department of Agriculture, Foreign Agricultural
Service (USDA-FAS), 2018a). Because U.S. and Brazilian, and U.S. and Chinese corn prices are
not found to be cointegrated in Table 2, we perform no ECM on those price pairs.

Cointegration parameters for soybean prices in the United States and Japan are also statistically
significant, supporting the cointegration test shown in Table 2. Japanese prices bear the burden of
adjustment, and the U.S. soybean price discovery weight exceeds 80%. Our adjustment rate find-
ings indicate that the U.S. soybean prices do not respond to price shocks in Japan. On average,
Japan imported 4%, or 2.1 million metric tons, of U.S. soybean exports from 2013 to 2017 (USDA-
FAS, 2018a).

According to our ECM findings in Table 4, the soybean markets in the United States and Brazil
are highly integrated; both are major global competitors, as documented in Table 3. Over the
period under study, our linear results indicate that the U.S. soybean prices contributed to more
than 90% of the price discovery weight. As a result, it is likely that price signals from the U.S.
market influence planting and marketing decisions made by Brazilian soybean producers.

The cointegration parameters for the U.S. and Brazilian, and the U.S. and Indian cotton prices
pairs are likewise statistically significant and match the results of cointegration tests shown in
Table 2. Adjustment rates presented in Table 4 indicate that when the U.S. cotton price is too
high, it falls back to Brazilian prices, but that cotton prices in India adjust toward the U.S. price
levels. The U.S. cotton prices represent about 36% and 93% of the price discovery weight com-
pared with Brazilian and Indian cotton prices, respectively, indicating that the U.S. cotton prices
are marginal leaders in Brazil but significant leaders in India. Brazil and India are important com-
petitors of the United States in Asian and European cotton markets (Kiawu, Valdes, and
MacDonald, 2011). As shown in Table 3, while the United States averaged 31% of global cotton
exports from 2011 to 2017, average export shares for India and Brazil were 17% and 9% over the
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same period, respectively. India’s average annual cotton production during that period was 29
million 480-pound bales, compared with 16 million 480-pound bales in the United States and
7 million in Brazil. India’s cotton sector is characterized by a larger volume of domestic use, about
23 million 480-pound bales, and smaller volume of net exports, 6 million 480-pound bales, than
the United States.

4.2. Wavelet analysis

Figures 2, 3, and 4 show bivariate wavelet coherence between daily U.S. and international corn,
soybean, and cotton prices, respectively.9 The most striking finding from these results is that the
relationships between U.S. and international prices are, in many cases, not stable. Quite distinct
from the findings in the previous section—which force the U.S. and international prices into a
linear relationship—wavelet coherence shows that the U.S. and international agricultural markets
often appear to alternate between periods of integration and nonintegration. Short-term fluctua-
tions (lasting less than 1 month, or about 20 trading days) in U.S. and international prices gener-
ally bear no consistent, significant relationship for any commodity we studied. Medium-term
movements, at the frequency of about one to two seasons, appear and disappear regularly.
Long-horizon fluctuations (lasting a year or more), though, do reveal some clearer correlations.

Table 4. Error-correction models (ECM) results

Commodity Country Cointegrating Parameter, β Adjustment Rate, α

Corn U.S. 1 −0.005

(0.006) /77/

Japan −1.116 *** 0.018***

(0.071) (0.005)

Soybeans U.S. 1 1 −0.002 −0.005

(0.006) /93/ (0.005) /83/

Brazil −0.947*** 0.024***

(0.063) −0.005

Japan −1.195*** 0.023***

(0.134) (0.005)

Cotton U.S. 1 1 −0.017*** −0.001

(0.005) /36/ (0.006) /93/

Brazil −0.857*** 0.009**

(0.092) (0.004)

India −1.206*** 0.019***

−0.120 (0.005)

Notes: Standard errors are given in parentheses. Asterisks (*, **, and ***) indicate significance at 10%, 5%, and 1% levels,
respectively. The number of lags, l= 2 in our case, is determined using the Akaike information criterion. The numbers
within slashes (“//”) are the percent of price discovery weights or common factor weights for the U.S. commodity,

ωusa � αj

αj�αusa
��� ���. The j’s country commodity weight is 1 – ωusa. The ECM theoretical formulation is based on the

assumption that the adjustment rates, α, move in opposite directions. So, one rate is always positive, and the other
is negative (Arnade and Hoffman 2015). The value of the weight is always presented in absolute value.

9Virtually identical results are produced if we use daily returns rather than price levels, even for commodity price pairs that
are not cointegrated throughout the observation. Wavelet analysis can be used for either stationary or nonstationary time
series (Aguiar-Conraria, Azevedo, and Soares, 2008).
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Figure 2a explores the relationship between U.S. and Brazilian prices directly and offers insights
into structural changes experienced by the world’s dominant corn exporters during the period.
The United States and Brazil accounted for more than half of global corn exports from 2011
to 2017, and the United States exported more in every year besides 2012/2013 (USDA-FAS,
2018b). As the share of Brazilian corn supply to the global market increased and U.S. corn pro-
duction fell because of the 2012 drought, Figure 2a identifies Brazilian corn prices as the leader in
the price pair, at the medium- to long-run frequency. Yet as the U.S. export share increased in
2014/2015, our wavelet results indicate that its corn prices led at the long-run frequency through
most of 2015. Figure 2a shows no significant medium- or long-term integration between U.S. and
Brazilian corn prices since 2016. Several factors contribute to these observed changes, including
increased use of corn for ethanol feedstocks in the United States and declining corn exports fol-
lowing the 2012/2013 drought in the U.S. Corn Belt. These factors help raise Brazil’s share of
world corn exports, especially in the September to January period—months traditionally domi-
nated by the United States and other Northern Hemisphere exporters (Canada and the European
Union). Since 2016, the Brazilian real (its unit of currency) has weakened relative to the U.S. dol-
lar, and transportation costs have declined substantially because of lower global energy prices,
boosting Brazil’s ability to compete with the United States across export markets (Allen and
Valdes, 2016).

Figure 2b shows that corn prices in the United States and China have no consistent relationship
during the study period. This is unsurprising given the divergence between their price series dis-
played in Figure 1. In 1995, the government of China adopted a policy of 95% self-sufficiency for

(a) (b) (c)

Figure 2. Wavelet results for U.S. and international corn market integration, 2011–2018.
Source: Author calculations using original exchange data.
Notes: The horizontal axis of each panel represents the time dimension, and the vertical axis represents the frequency (in trading days)
associated with price relationships considered. Weak correlations are represented by cooler (e.g., blue) colors, whereas strong corre-
lations are represented by warmer (e.g., red) colors. Arrows indicate significant lead or lag relationships, and black contour lines identify
areas where the identified relationship is significant at the 5% level. A perfect positive (negative) correlation with no clear lead or lag
relationship is represented by red (blue) and right-pointing (left-pointing) arrows. Arrows pointing downward indicate that the U.S. corn
price leads the trading partner’s price. For example, the red area in Figure 2b indicates that the U.S. and Chinese corn prices were
correlated, while the latter prices were the leader during the period 2016–2017 (as shown on the horizontal axis) after a trading period
frequency of 3 to 6 months (as shown on the vertical axis). The white areas in the figures represent the “cone of influence” and are less
reliable to interpret. The asterisk is a scale indicating the level of correlation.
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grains, and it developed commodity support programs to provide income to farmers and influence
their production decisions by altering their relative economic incentives (Lee et al., 2016). For
instance, between 2008 and 2012, China increased its price supports for corn producers by
54%. Hence, Chinese corn trade policy bears little relationship to the country’s production,
making China’s corn exports and imports difficult to predict (U.S. Department of Agriculture,
Economic Research Service, 2018).

The U.S. and Japanese corn prices in Figure 2c exhibit the strongest medium- and long-term
relationships out of the price pairs that we studied. Significant long-run fluctuations, at the fre-
quency of about a year (>200 trading days), are shared over virtually the entire period of

(a) (b) (c) 

(e) (d)

Figure 3. Wavelet results for U.S. and international soybean market integration, 2011–2018.
Source: Author calculations using original exchange data. Note: See Figure 2.
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observation. Price changes in the medium run (lasting 3–6 months, or about one to two seasons)
also exhibit significant integration between 2012 and 2017, with the Japanese corn price displaying
a leading role both following the U.S. drought of 2012 and after mid-2015. This latter shift occurs
around the same time that Brazil becomes the top U.S. competitor for the Japanese corn market.
Short-run price fluctuations, at the 1–2 week frequency (between 4 and 8 trading days), alternate
between correlation and noncorrelation over the entire period.

The wavelet coherence in Figure 3a demonstrates that U.S. and Brazilian soybean prices had a
consistent long-term relationship over the period of interest, with Brazil generally leading the rela-
tionship, from 2013 on. As shown in Table 3, Brazil is the world’s largest soybean exporter, fol-
lowed by the United States, and both countries account for more than 80% of global soybean
exports (Lee et al., 2016). After the Brazilian real weakened starting in 2016, the U.S. and
Brazilian soybean prices exhibit significant comovement at long-, medium-, and short-term fre-
quencies. The recent trade dispute between the United States and China, the world’s largest soy-
bean purchaser, has offered Brazil an even stronger position in the world export market,
particularly the Chinese market that accounts for 60% of the global trade (Gale, Valdes, and
Ash, 2019). For instance, in response to the 25% Chinese tariff on U.S. soybeans, Muhammad
and Smith (2018) estimated a $4.5-billion decline in U.S. soybean exports to China and a
$4.4-billion increase in Brazilian exports.

The U.S. and Chinese soybean price pair in Figure 3b displays some evidence of medium- to
long-term relationship but does not amount to a consistent, strong coherence over the entire
period.10 This finding is consistent with the price data in Figure 1, which show that Chinese soy-
bean prices were significantly higher than those in the rest of the countries we studied and that
although their general trends matched up at times, there were periods of notable departure.

(a) (b) (c)

Figure 4. Wavelet results for U.S. and international cotton market integration, 2011–2018.
Source: Author calculations using original exchange data. Note: See Figure 2.

10Using data from an earlier time frame, Liu and An (2011) documented a significant relationship between soybean futures
prices in these two countries.
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Chinese retaliatory tariffs on U.S. soybeans since 2018 have affected American soybean prices and
prevented U.S. producers from taking advantage of high prices in China (Adjemian et al., 2019).
Indeed, the volume of U.S. soybean exports to China has declined, while the latter increased its
soybean imports from U.S. competitors Brazil and Argentina (Hopkinson, 2018).

Figure 3c and d displays long-term relationships between U.S. and Japanese, and U.S. and
Indian soybean prices between 2011 and 2014, respectively. U.S. prices lead foreign prices in these
commodity markets. Phase arrows in Figure 3e tend to point upward, indicating periods of inter-
mittent short- to medium-term South African price leadership relative to U.S. soybean prices. In
2015, South African farmers planted soybeans on a record number of acres and became a net
exporter of the commodity (Mokhema, 2015).

The U.S. and Brazil, and the U.S. and India cotton prices are found to exhibit significant
medium- and long-term relationships, with subsequent alternating periods of lead-lag relation-
ships, as shown in Figure 4a and c, respectively. India is becoming an important cotton export
competitor after extensively adopting the Bt cotton variety for more than 90% of the area it plants
to the crop (USDA-FAS, 2018b). On the other hand, Figure 4b shows no consistent long-term
relationship between U.S. and Chinese cotton prices, although China is among the largest export
market for U.S. cotton, on average importing 913,000 metric tons of cotton and cotton products
from 2011 to 2015 out of 2,611,000 metric tons of U.S. exports—a 35% share (USDA-FAS, 2018a).
Medium-term relations appear periodically, indicating that the United States leads the price deter-
mination process at certain times.

4.3. Robustness checks

Using our wavelet results as a guide to identifying structural breaks in the price series under study,
we display Johansen trace test results in Table 5 for the periods identified in the wavelet analysis as
bearing no relationship between price pairs. According to Table 5, during those periods with no
wavelet coherence, the commodity price series in our study are also not cointegrated. Even though
original Johansen statistics identified the U.S. and Japanese soybean prices as cointegrated for the

Table 5. Johansen’s cointegration test for no-relationship periods identified by wavelet coherences

Commodity
U.S.-Trading Partner
Combination

Selected Period of No Cointegration
Identified Using Wavelet

Trace Statistic for the
Selected Period

Corn U.S.-Brazil 2016–2018 10.78

U.S.-China 2013–2016 5.37

U.S.-Japan 2017–2018 13.17

Soybeans U.S.-Brazil None N/A

U.S.-China 2017–2018 11.69

U.S.-Japan 2015–2017 10.22

U.S.-India 2015–2017 8.44

U.S.-South Africa 2013–2017 9.68

Cotton U.S.-Brazil 2015–2017 12.39

U.S.-China 2013–2015 9.54

U.S.-India 2016–2017 11.51

Notes: The cointegration test includes a linear deterministic trend, and the 0.05 and 0.01 critical values for rejecting the null hypothesis of no
cointegration are 15.41 and 20.04, respectively. “N/A” indicates that wavelet analysis failed to identify a period of no significant relationship
between the two prices over the period of observation.
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whole period, the same tests rejected cointegration once the wavelet coherence analysis identified
no relationship for the period between 2017 and 2018. These findings demonstrate the flexibility
of wavelets to structural breaks and their usefulness in identifying them.

In addition, Table 6 reaffirms that wavelet results between the U.S. and each trading partner’s
commodity prices can also be verified using cointegration tests. For instance, even though the U.S.
and Brazilian corn prices do not have a long-term correlation for the entire period according to
Table 2, they do for the period 2013–2015 (found to be significantly related according to our wave-
let analysis), which reveals a strong cointegration in Table 6. These two countries are the leading
global producers and exporters of corn, and the ECM estimated in Table 6 finds that both coun-
tries are responsible for half of the price discovery weight for that period, beginning around the
time of the 2012 U.S. drought and subsequent stocks drawdown.

5. Conclusions
Global agricultural markets are evolving, with new roles for emerging exporters (like Brazil for
corn) and large buyers (such as China), so flexibility in modeling is attractive for analyzing com-
modity prices. Wavelet methods have some advantages over traditional linear cointegration
methods—especially when it comes to the identification of structural changes— they can com-
municate more richness in price relationships by offering a literal portrait of correlation at a range
of frequencies over time.

In this study, we identify structural changes in the integration of several international commod-
ity markets. Daily shocks to the U.S. and many international prices generally bear no significant
relationship over the period of interest: short-term dynamics are not highly correlated, while tem-
porary medium-term relationships appear and disappear periodically. Long-term relationships
are present in the data in some cases, but not in others.

Table 6. Johansen’s cointegration test for relationship periods identified by wavelet coherences

Commodity

U.S.-Trading
Partner
Combination

Selected Period
When Wavelet

Coherence Exists

Trace Statistic
for Selected

Period

Price Discovery
Weights in
Percenta

Corn U.S.-Brazil 2013–2015 15.72 ** 49

U.S.-China None N/A N/A

U.S.-Japanb 2013–2015 26.75 *** 73

Soybeans U.S.-Brazilb 2013–2017 16.64 ** 85

U.S.-China None N/A N/A

U.S.-Japanb 2012–2014 16.64 ** 62

U.S.-India 2012–2014 21.84 *** 41

U.S.-South
Africa

2011–2012 18.59 ** 95

Cotton U.S.-Brazilb 2012–2014 18.03 ** 47

U.S.-China None N/A N/A

U.S.-Indiab 2012–2015 17.07 ** 74

Notes: Asterisks (*, **, and ***) denote rejection of the null hypothesis at the 0.1, 0.05, and 0.01 level, respectively
(MacKinnon Haug, and Michelis, 1999). The cointegration test includes a linear deterministic trend.
aRefer to Table 4 for how to calculate the price discovery weights for the U.S. commodities.
bAlso cointegrated in the whole period analysis as shown in Table 2.
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Both our wavelet and cointegration models indicate that the U.S. soybean prices lead those in
Japan, where the United States is the major supplier of the Japanese feed imports. Consistent long-
term relationships emerge between the United States and Brazil, the two largest producers and
exporters of soybeans, with some indications that Brazilian shocks lead at times. We also find
that that Chinese agricultural commodity markets are not well integrated with those in the
United States, providing evidence that Chinese domestic commodity policies successfully insu-
lated its prices (and increased them substantially) from international shocks.

Our findings reveal numerous structural breaks in price relationships, which calls into question
the common practice of testing cointegration across long periods of time. Wavelet analysis pro-
vides a better tool to assess short-term but informative market integration, price transmission, or
price discovery. In the meantime, a number of factors affect whether long-term relationships in
commodity prices exist among major exporters and importers. From the U.S. perspective, ongoing
trade arguments and negotiations, unfavorable exchange rates, declining international transpor-
tation costs, foreign government subsidies and other protections, and new and stronger export
competitors in agricultural production can act to reduce U.S. export market share and make
the U.S. commodity markets less influential in setting international commodity prices (Allen
and Valdes, 2016; Cooke et al., 2016). Although we have established the changing nature of price
relationship and identified the presence of structural changes in several markets, in future research
we intend to explore the role of these other factors in influencing shifting international price
relationships.
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