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Abstract

We study the convex feasibility problem in CAT(κ) spaces using Mann’s iterative projection method. To
do this, we extend Mann’s projection method in normed spaces to CAT(κ) spaces with κ ≥ 0, and then we
prove the ∆-convergence of the method. Furthermore, under certain regularity or compactness conditions
on the convex closed sets, we prove the strong convergence of Mann’s alternating projection sequence in
CAT(κ) spaces with κ ≥ 0.
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1. Introduction

Mann introduced his iterative method in 1953 [14]. Mann’s method is an important
simple method to locate fixed points of a given map. More precisely, let V be a normed
vector space. Given a closed convex set C in V and a map T : C→ C, Mann’s iterative
method is defined by the sequence {xn} where

xn+1 = (1 − tn)T (xn) + tnxn, n = 0, 1, . . . ,

and x0 is a given starting point in C. Mann’s iterative method can be generalised to a
general geodesic metric space (M, d) (see, for example, [8, 10, 12]). Given a closed
convex subset C in M and a map T : C → C, we can define the sequence {xn} by

xn+1 := T (xn)#tn xn,

where x#ty is the point γ(t) on the geodesic γ : [0, 1]→ M connecting γ(0) = x and
γ(1) = y and x0 is a given starting point in C. Many authors studied the convergence
of Mann’s iterative method for various classes of maps (for example, nonexpansive
maps and quasi-nonexpansive maps) in geodesic metric spaces (for example, Banach
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space [11, 17, 19], CAT(0) space [8] and CAT(κ) space [10, 12]). In particular, in [10],
He et al. studied Mann’s iterative method for a nonexpansive mapping in a CAT(κ)
space with κ > 0 and proved that the sequence ∆-converges to a point.

Mann’s alternating projection method in a geodesic space is defined by a sequence
{xn} given by {

x2n−1 = PA(x2n−2)#t2n−2 x2n−2,

x2n = PB(x2n−1)#t2n−1 x2n−1,
n ∈ N, {tn}n≥0 ⊂ [0, 1), (1.1)

where x0 is a given starting point and A and B are closed convex sets. This is
an important simple method to solve the convex feasibility problem, which is to
find common elements in two given convex sets. This problem has been studied
in many contexts (for example, Hilbert space [3, 7], CAT(0) space [2] and CAT(κ)
space [5]). It is a generalisation of the alternating projection sequence introduced by
von Neumann [15]. Indeed, if we take tn = 0 for all n ≥ 0 in (1.1), then we obtain the
alternating projection method given by

x2n−1 = PA(x2n−2), x2n = PB(x2n−1), n ∈ N, (1.2)

where x0 is a given point. Its convergence has been studied in a complete CAT(0)
space [2], and in a complete CAT(κ) space for κ > 0 [5]. Mann’s alternating method
for two nonexpansive mappings in a p-uniformly convex metric space is studied in [6].
Note that for κ ≥ 0, every CAT(κ) space (with diameter π/(2

√
κ) for κ > 0) is a p-

uniformly convex metric space (see [16]). But, in general, the metric projection
PC for a convex closed subset C of a complete CAT(κ) space for κ > 0 need not be
nonexpansive. In [12], it is shown that Mann’s iterative method for a countable family
of (quasi-)nonexpansive mappings in a CAT(1) space ∆-converges to a point.

The main purpose of this paper is to prove the ∆-convergence of Mann’s alternating
projection sequence (1.1) in a CAT(κ) space. Although the metric projection map PC
for a convex closed subset C of a complete CAT(κ) space is a quasi-nonexpansive
mapping, our main result does not come from [12, Theorem 3.8]. Moreover, our result
includes the alternating projection sequence given by (1.2), but the result in [12] does
not (see Remark 3.8). Also, we prove the strong convergence of the sequence under
certain regularity or compactness conditions on CAT(κ) spaces.

This paper is organised as follows. In Section 2 we briefly review the basic
notions of CAT(κ) spaces and ∆-convergence. In Section 3 we first introduce
Mann’s alternating projection method in a CAT(κ) space with κ ≥ 0, and prove its
∆-convergence (Theorem 3.6). In particular, we obtain the ∆-convergence of the
alternating projection method in CAT(κ) spaces (Corollary 3.9). Then we prove the
strong convergence of Mann’s alternating projection method by assuming certain
regularity or compactness conditions on the CAT(κ) spaces (Corollary 3.10).

2. Preliminaries

2.1. CAT(κ) spaces. In this subsection we recall some fundamental notions of a
geodesic metric space and a CAT(κ) space with κ ≥ 0. We basically follow [4].
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Let (M, d) be a metric space and x, y ∈ M. A continuous map γ : [0, 1]→ M is said
to be a geodesic (path) connecting x and y if it satisfies the following properties:

γ(0) = x, γ(1) = y and d(γ(t1), γ(t2)) = |t1 − t2|d(x, y) for all t1, t2 ∈ [0, 1].

The image of the geodesic γ with γ(0) = x and γ(1) = y is called a geodesic segment
connecting x and y and denoted by [x, y].

A metric space (M, d) is called an r-geodesic space if for any x, y ∈ M with
d(x, y) < r, there exists a geodesic γ connecting x and y. If r = ∞, then (M, d) is
called a geodesic space, that is, for any x, y ∈ M there exists a geodesic γ connecting
x and y.

Let Sn be the set of all elements in Rn+1 such that 〈x , x〉 = 1, where 〈· , ·〉 is the
Euclidean inner (scalar) product. Let ρ : Sn × Sn → R be the function defined by

ρ(x, y) = arccos〈x , y〉.

Indeed, ρ is the great-circle distance. It is well known that (Sn, ρ) is a geodesic metric
space. Note that for any x, y ∈ Sn with ρ(x, y) < π, there exists a unique geodesic γ
with γ(0) = x and γ(1) = y.

We always assume that κ ≥ 0. Put D0 :=∞ and Dκ := π/
√
κ for κ > 0. Given a real

number κ ≥ 0, define the model space Mn
κ to be the following metric space:

(i) if κ = 0 then Mn
0 is n-dimensional Euclidean space Rn;

(ii) if κ > 0 then Mn
κ is the geodesic metric space obtained from (Sn, ρ) by multiplying

the function ρ by the constant 1/
√
κ.

We use the symbol ρκ for the distance function of Mn
κ for each κ ≥ 0. It is clear that Mn

κ

is a geodesic metric space. Note that if ρκ(x, y) < Dκ then there is a unique geodesic
connecting x and y in Mn

κ (if κ = 0 then Dκ =∞.)
Let (M, d) be a geodesic metric space. A geodesic triangle ∆ := ∆(x, y, z) ⊆ M

consists of three points x, y, z in M and three geodesic segments [x, y], [y, z] and [x, z].
Given a geodesic triangle ∆ = ∆(x, y, z) ⊆ M, a geodesic triangle ∆ = ∆(x, y, z) ⊆ M2

κ is
said to be a comparison triangle for ∆ if

d(x, y) = ρκ(x, y), d(x, z) = ρκ(x, z) and d(y, z) = ρκ(y, z).

A point p in [x, y] ⊆ ∆ is a comparison point for p in [x, y] ⊆ ∆ if d(p, x) = ρκ(p, x).
Note that for a geodesic triangle ∆(x, y, z) ⊆ M, if d(x, y) + d(y, z) + d(z, x) < 2Dκ, then
a comparison triangle ∆ ⊆ M2

κ for ∆ always exists (see [4]). For a geodesic triangle
∆ = ∆(x, y, z) ⊆ M satisfying d(x, y) + d(y, z) + d(z, x) < 2Dκ, we say that 4 satisfies
the CAT(κ) inequality if, for any p, q ∈ 4 and their comparison points p, q ∈ 4,

d(p, q) ≤ ρκ(p, q).

Definition 2.1. Let (M, d) be a metric space.

(i) (M, d) is a CAT(0) space if (M, d) is a geodesic space and all geodesic triangles
in M satisfy the CAT(0) inequality.
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(ii) (M, d) is a CAT(κ) space with κ > 0 if (M, d) is a Dκ-geodesic space and all
geodesic triangles ∆(x, y, z) ⊆ M with d(x, y) + d(y, z) + d(z, x) < 2Dκ satisfy the
CAT(κ) inequality.

Note that if (M, d) is a CAT(κ) space, there is a unique geodesic which connects
each pair of points x, y ∈ M whenever d(x, y) < Dκ (see [4]).

If (M, d) is a CAT(κ) space, with diam(M) = sup{d(x, y) | x, y ∈ M} < Dκ/2 for
κ > 0, then for any geodesic γ : [0, 1]→ M with γ(0) = x and γ(1) = y, any z ∈ M
and t ∈ [0, 1], there exists a constant cM ∈ (0, 1] such that

d(z, γ(t))2 ≤ (1 − t)d(z, x)2 + td(z, y)2 − cMt(1 − t)d(x, y)2 (2.1)

(see [16]). In particular, if (M, d) is a CAT(0) space, then cM = 1 (see [8]).
A subset C of a geodesic metric space M is said to be convex if any two points

x, y ∈ C can be joined by a geodesic in M and the geodesic segment of every such
geodesic is contained in C. Note that any ball in a CAT(κ) space for κ > 0 of radius
smaller than Dκ/2 is convex. In particular, any ball in a CAT(0) space is convex.

For a nonempty subset S of a metric space (M, d), the distance function of S is
defined by

d(x, S ) = inf{d(x, s) ; s ∈ S } for x ∈ M.

We now recall the notion of a projection map in a complete CAT(κ) space. Let
(M, d) be a complete CAT(κ) space and x ∈ M be given. Let C be a nonempty closed
convex subset of M (with d(x,C) < Dκ/2 if κ > 0). It is well known that for given
x ∈ M, there exists a unique point PC(x) in C such that

d(x, PC(x)) = d(x,C). (2.2)

(For the case of CAT(0) space, see [18], and for the case of CAT(κ) space (κ > 0),
see [9].) By the uniqueness of PC(x) for all x ∈ M, we can define the (metric)
projection PC of M onto C by

PC : M 3 x 7−→ PC(x) ∈ C.

Proposition 2.2 [1]. Let (M, d) be a complete CAT(κ) space with diam(M) < Dκ/2 for
κ > 0 and C ⊆ M be a nonempty closed convex set. Then for all x ∈ M and z ∈ C,

d(z, PC(x))2 + cMd(x, PC(x))2 ≤ d(x, z)2,

where cM is given in (2.1). In particular, if (M, d) is a CAT(0) space, then cM = 1 [18].

2.2. ∆-convergence in CAT(κ) spaces. We recall the notion of ∆- (or weak)
convergence in CAT(κ) spaces. Let (M, d) be a complete CAT(κ) space and {xn} ⊆ M
be a bounded sequence. For a given point x ∈ M, set

r(x, {xn}) := lim sup
n→∞

d(x, xn).
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Then r({xn}) := infy∈M r(y, {xn}) is called the asymptotic radius of {xn}. The asymptotic
centre A({xn}) of {xn} is defined by

A({xn}) := {x ∈ M | r(x, {xn}) = r({xn})}.

It is easily seen that

z ∈ A({xn}) ⇐⇒ lim sup
n→∞

d(z, xn) ≤ lim sup
n→∞

d(x, xn) for any x ∈ M.

A sequence {xn} is said to ∆-converge to x ∈ M if for any subsequence {xnk } of
{xn}, the point x is the unique asymptotic centre of {xnk }, and then x is called the ∆-
limit of {xn}. A point x in M is called a ∆-cluster point of a sequence {xn} if there
exists a subsequence {xnk } of {xn} such that {xnk } ∆-converges to x. This concept
was first introduced by Lim [13] and has been studied by many authors (see, for
example, [5, 6, 9, 10]). In Hilbert space, it is well known that the notion of ∆-
convergence coincides with the notion of weak convergence.

Proposition 2.3 [9]. Let M be a complete CAT(κ) space and {xn} ⊆ M be a bounded
sequence with r({xn}) < Dκ/2 for κ > 0. Then

(i) A({xn}) has only one point;
(ii) {xn} has a ∆-cluster point x ∈ M, that is, {xn} has a ∆-convergent subsequence.

Proposition 2.4 [10]. Let (M, d) be a complete CAT(κ) space and let z ∈ M. If a
sequence {xn} ⊆ M satisfies r(z, {xn}) < Dk/2 for κ > 0 and {xn} ∆-converges to x ∈ M,
then

x ∈
∞⋂

k=1

conv({xk, xk+1, . . .}),

where conv(A) =
⋂
{B ⊆ M | A ⊆ B and B is closed and convex}, and

d(x, z) ≤ lim inf
n→∞

d(xn, z).

Remark 2.5. Under the same assumptions as in Proposition 2.4, if r(z, {xn}) < Dk/2 for
any z in a subset C of M, then

d(x, z) ≤ lim inf
n→∞

d(xn, z) for all z ∈ C

(see also [2, Lemma 3.2] for the case of CAT(0) spaces).

3. Mann’s alternating projections

We now recall the notion of Fejér monotone sequences in metric spaces M. Let {xn}

be a sequence in M. For a nonempty subset C ⊆ M, a sequence {xn} is said to be Fejér
monotone with respect to (w.r.t.) C if for any z ∈ C and n ∈ N,

d(xn+1, z) ≤ d(xn, z).

In what follows we recall some properties of Fejér monotone sequences.
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Proposition 3.1 [5]. Let (M, d) be a complete metric space. Let {xn} be a sequence
in M and let C be a nonempty closed convex subset of M. Suppose that {xn} is Fejér
monotone w.r.t. C. Then

(i) {xn} is a bounded sequence;
(ii) d(xn+1,C) ≤ d(xn,C) for all n ∈ N;
(iii) {xn} converges to some x ∈ C if and only if d(xn,C)→ 0 as n→∞.

Lemma 3.2 [10]. Let (M, d) be a complete CAT(κ) space and let C ⊂ M be a nonempty
set. Suppose that the sequence {xn} ⊂ M is Fejér monotone w.r.t. C and satisfies
r({xn}) < Dκ/2 for κ > 0. Suppose also that any ∆-cluster point x of {xn} belongs to
C. Then {xn} ∆-converges to a point in C.

The same result as in Lemma 3.2 holds in a CAT(0) space (see [2, Proposition 3.3]).
Let A and B be closed convex subsets of a complete CAT(κ) space (M, d). Mann’s

alternating projection method produces a sequence {xn} by{
x2m−1 := PA(x2m−2)#t2m−2 x2m−2,

x2m := PB(x2m−1)#t2m−1 x2m−1,
m ∈ N, {tk}k≥0 ⊂ [0, 1), (3.1)

where x0 is a given starting point and x#ty is the point γ(t) on a geodesic γ : [0,1]→ M
connecting γ(0) = x and γ(1) = y, called the t-weighted geometric mean of x and y.

Remark 3.3. If we take tk = 0, for k = 0, 1, . . ., in the sequence (3.1) constructed by the
Mann’s alternating projection method, then we have the sequence constructed by the
alternating projection method [2, 5]:

x2m−1 = PA(x2m−2), x2m = PB(x2m−1), n ∈ N, (3.2)

where x0 is a given starting point, and A and B are closed convex subsets of a complete
CAT(κ) space (M, d) for κ ≥ 0.

Throughout this section, (M, d) denotes a complete CAT(κ) space for κ ≥ 0. In the
case of κ > 0, we also assume that diam(M) < Dκ/2, unless specified otherwise.

Lemma 3.4. Let A and B be convex closed subsets of M with A ∩ B , ∅. The sequence
{xn} ⊆ M given in (3.1) with a starting point x0 is Fejér monotone w.r.t. A ∩ B.

Proof. Let z ∈ A ∩ B. For fixed n ∈ N, without loss of generality we assume that
xn = PA(xn−1)#tn−1 xn−1. Then xn+1 = PB(xn)#tn xn. If xn+1 = z, then the proof is clear;
indeed, d(xn+1, z) = 0 ≤ d(xn, z). Suppose that xn+1 , z. Then

d(xn+1, z)2 = d(PB(xn)#tn xn, z)2 ≤ tnd(xn, z)2 + (1 − tn)d(PB(xn), z)2.

But, by Proposition 2.2,

cMd(xn, PB(xn))2 + d(PB(xn), z)2 ≤ d(xn, z)2,

which implies that

d(PB(xn), z) ≤ d(xn, z).
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Therefore,

d(xn+1, z)2 ≤ tnd(xn, z)2 + (1 − tn)d(PB(xn), z)2

≤ tnd(xn, z)2 + (1 − tn)d(xn, z)2 = d(xn, z)2,

which completes the proof. �

Lemma 3.5. Let A and B be convex closed subsets of M with A ∩ B , ∅. Let x0 be a
given starting point and {xn} the sequence given in (3.1) with limn→∞ tn , 1. Then

max{d(xn, A), d(xn, B)} → 0 as n→∞. (3.3)

Proof. By using Proposition 2.2, for any z ∈ A ∩ B ⊂ A,

d(x2m, z)2 ≥ d(z, PA(x2m))2 + cMd(x2m, PA(x2m))2.

Taking the infimum for z ∈ A ∩ B and applying the projection property (2.2),

d(x2m, A ∩ B)2 ≥ d(A ∩ B, PA(x2m))2 + cMd(x2m, A)2.

Therefore,

d(x2m, A)2 ≤
1

cM
(d(x2m, A ∩ B)2 − d(A ∩ B, PA(x2m))2). (3.4)

But, by (2.1),

d(x2m+1, A ∩ B)2 ≤ t2md(x2m, A ∩ B)2 + (1 − t2m)d(PA(x2m), A ∩ B)2. (3.5)

Combining (3.4) and (3.5),

d(x2m, A)2 ≤
1

cM

((
1 +

t2m

1 − t2m

)
d(x2m, A ∩ B)2 −

( 1
1 − t2m

)
d(x2m+1, A ∩ B)2

)
≤

1
(1 − t2m)cM

(d(x2m, A ∩ B)2 − d(x2m+1, A ∩ B)2).

Similarly, in the case where z ∈ A ∩ B ⊂ B,

d(x2m−1, B)2 ≤
1

(1 − t2m−1)cM
(d(x2m−1, A ∩ B)2 − d(x2m, A ∩ B)2).

By Lemma 3.4, the sequence {xn} is Fejér monotone w.r.t. A ∩ B. Therefore, by (ii) in
Proposition 3.1, the sequence {d(xn, A ∩ B)} is a bounded and decreasing sequence in
R. Hence, {d(xn, A ∩ B)} converges to some point in R. Since limn→∞ tn , 1, it follows
that d(x2m, A)→ 0 and d(x2m−1, B)→ 0 as m→∞. On the other hand,

d(x2m−1, x2m) = d(x2m−1, PB(x2m−1)#t2m−1 x2m−1)
= (1 − t2m−1)d(x2m−1, PB(x2m−1))
= (1 − t2m−1)d(x2m−1, B)→ 0,

as m → ∞, which implies that d(x2m−1, A) → 0 and d(x2m, B) → 0 as m → ∞.
Therefore, we conclude that

d(xn, A)→ 0 and d(xn, B)→ 0

as n→∞. Since max{an, bn} = 1
2 (an + bn + |an − bn|) for real-valued sequences {an}

and {bn}, we have proved (3.3). �
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We now recall the notion of regularity of sets in metric spaces (see [2]). Let A and B
be two nonempty subsets of a metric space (M, d). We say that A and B are boundedly
regular if for any bounded subset V ⊆ M and any ε > 0, there exists δ > 0 such that for
any x ∈ V and max{d(x, A), d(x, B)} ≤ δ,

d(x, A ∩ B) ≤ ε.

The following theorem is the main result in this paper.

Theorem 3.6. Let A and B be convex closed subsets of M with A ∩ B , ∅. Let x0 be a
given starting point and {xn} be the sequence given in (3.1) with limn→∞ tn , 1. Then

(i) {xn} ∆-converges to a point x ∈ A ∩ B;
(ii) {xn} converges to a point x ∈ A ∩ B whenever A and B are boundedly regular.

Proof. (i) We only show the result for κ > 0. The proof for κ = 0 is similar. Let (M, d)
be a complete CAT(κ) space for κ > 0. Let {xn} ⊆ M be Mann’s alternating projection
given in (3.1). By Lemma 3.4, the sequence {xn} is Fejér monotone w.r.t. A ∩ B which
implies that {xn} is bounded with r({xn}) < Dκ/2 for κ > 0. Thus, by Proposition 2.3(ii),
{xn} has a ∆-cluster point, x say, in M. By the definition of a ∆-cluster point, we can
take a subsequence {xnk } ⊆ {xn} which ∆-converges to x. Thus, by Remark 2.5 and
(3.3) in Lemma 3.5,

d(x, A) = d(x, B) = 0,

which implies that x ∈ A ∩ B. Since the sequence {xn} is Fejér monotone w.r.t. A ∩ B,
by Lemma 3.2, we conclude that {xn} ∆-converges to a point x ∈ A ∩ B.

(ii) Suppose that A and B are boundedly regular. Then since {xn} is a bounded
sequence, by (3.3) in Lemma 3.5,

d(xn, A ∩ B)→ 0 as n→∞.

Therefore, by Proposition 3.1(iii), {xn} converges to a point x ∈ A ∩ B. �

Remark 3.7. In [6], we can find the ∆-convergence of Mann’s alternating projection
method in a complete CAT(0) space. Indeed, the authors prove the ∆-convergence
of Mann’s alternating sequence for nonexpansive mappings on p-uniformly convex
metric spaces. For any nonempty closed convex subset C of a complete CAT(0) space,
the metric projection PC : M → C ⊂ M is a nonexpansive map. But, in general, if
κ > 0, then the metric projection map PC for a nonempty closed convex subset C of a
complete CAT(κ) space need not be nonexpansive.

Remark 3.8. Under some conditions for the given maps, a similar result to
Theorem 3.6(i) can be found in [12], since the metric projection map PC for a
nonempty closed convex subset C of a complete CAT(κ) space is a quasi-nonexpansive
mapping. However, Theorem 3.6 does not come from the result in [12]. Indeed, since
the sequence of metric projections {PA, PB, PA, PB, . . .} does not converge in general,
the projections PA and PB do not satisfy condition (C3) in [12, Theorem 3.8]. Also
our result includes the alternating von Neumann sequence given in (3.2), but the result
in [12] does not (see [12, Theorem 3.8]).
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Corollary 3.9 [2, 5]. Let A and B be convex closed subsets of M with A ∩ B , ∅. Let
x0 be a given starting point and {xn} be the sequence given in (3.2) constructed by the
alternating projection method. Then

(i) {xn} ∆-converges to a point x ∈ A ∩ B;
(ii) {xn} converges to a point x ∈ A ∩ B whenever A and B are boundedly regular.

Proof. The corollary follows from Remark 3.3 and Theorem 3.6. �

A metric space (M, d) is called boundedly compact if every bounded and closed
subset of M is compact.

Corollary 3.10. Suppose (M, d) is a boundedly compact complete CAT(κ) space with
diam(M) < Dκ/2 for κ > 0. Let A and B be convex closed subsets of M with A ∩ B , ∅.
Let x0 be a starting point and {xn} be the sequence given in (3.1) constructed by
Mann’s alternating projection method with limn→∞ tn , 1. Then {xn} converges to a
point x ∈ A ∩ B.

Proof. By Theorem 3.6(i), {xn} ∆-converges to a point x ∈ A ∩ B. Since the sequence
{xn} is Fejér monotone w.r.t. A ∩ B, the sequence {d(xn, x)} is bounded and decreasing
in R, and so {d(xn, x)} converges to a point in R. Note that {xn} ⊂ conv({xn}), where
conv(A) =

⋂
{C ⊆ M | A ⊆ C and C is closed and convex}. Since conv({xn}) is a closed

and bounded subset in M, there exists a subsequence {xnk } of {xn} such that {xnk }

converges to a point x̃ ∈ M. Thus,

lim
k→∞

d(xnk , x̃) = 0 ≤ lim
k→∞

d(xnk , z) for all z ∈ M,

which implies that x̃ ∈ A({xnk }). By the uniqueness of the asymptotic centre, x = x̃.
Since {d(xn, x)} converges, {xn} converges to x ∈ A ∩ B. �

By applying the Hopf–Rinow theorem (see [4]) and simple modifications of the
proof of Corollary 3.10, we have the following corollary.

Corollary 3.11. Let (M, d) be a locally compact complete CAT(κ) space with
diam(M) < Dκ/2 for κ > 0. Let A and B be convex closed subsets of M with A ∩ B , ∅.
Let x0 be a starting point and {xn} be the sequence given in (3.1) constructed by
Mann’s alternating projection method with limn→∞ tn , 1. Then {xn} converges to a
point x ∈ A ∩ B.
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